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Abstract— In this paper, we propose a novel color constancy
approach, called Bag of Color Features (BoCF), building upon
Bag-of-Features pooling. The proposed method substantially
reduces the number of parameters needed for illumination
estimation. At the same time, the proposed method is consistent
with the color constancy assumption stating that global spatial
information is not relevant for illumination estimation and local
information (edges, etc.) is sufficient. Furthermore, BoCF is
consistent with color constancy statistical approaches and can
be interpreted as a learning-based extension of many statistical
approaches. To further improve the illumination estimation
accuracy, we propose a novel attention mechanism for the
BoCF model with two variants based on self-attention. BoCF
approach and its variants achieve competitive, compared to the
state of the art, results while requiring much fewer parameters
on three benchmark datasets: ColorChecker RECommended,
INTEL-TUT version 2, and NUS8.

Index Terms— Color constancy, illumination estimation, bag of
features, attention mechanism.

I. INTRODUCTION

COLOR constancy in general is the ability of an imaging
system to discount the effects of illumination on the

observed colors in a scene [1], [2]. When a person stands
in a room lit by a colorful light, the Human Visual System
(HVS) unconsciously removes the lightening effects and the
colors are perceived as if they were illuminated by a neutral,
white light. While this ability is very natural for the HVS,
mimicking the same ability in a computer vision system is
a challenging and under-constrained problem. Given a green
pixel, one can not assert if it is a green pixel under a white
illumination or a white pixel lit with a greenish illumination.
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Nonetheless, illumination estimation is considered an impor-
tant component of many higher level computer vision tasks
such as object recognition and tracking. Thus, it has been
extensively studied in order to develop reliable color constancy
systems which can achieve illumination invariance to some
extent [1], [3].

The RGB image value ρ(x, y) in the position (x, y) of an
image can be expressed as a function depending on three key
factors [3]: the illuminant distribution I (x, y, λ), the surface
reflectance R(x, y, λ) and the camera sensitivity S(λ), where
λ is the wave length. This dependency is expressed as

ρ(x, y) =
∫

λ
I (x, y, λ)R(x, y, λ)S(λ)dλ. (1)

Color constancy methods [3], [4] aim to estimate a
uniform projection of I (x, y, λ) on the sensor spectral
sensitivities S(λ), i.e.,

I = I (x, y) =
∫

λ
I (x, y, λ)S(λ)dλ, (2)

where I is the global illumination, i.e., it is assumed constant
over the scene.

Recently, deep learning approaches and Convolutional
Neural Networks (CNNs) in particular have become dominant
in almost all computer vision tasks, including color con-
stancy [5]–[8], due to their ability to take raw images directly
as input and incorporate feature extraction in the learning
process [9]. Despite their accuracy in estimating illumination
across multiple datasets [6], [10], [11], deploying CNN-based
approaches on low computational power devices, e.g., mobile
devices, is still limited, since most of the high-accuracy deep
models are computationally expensive [6]–[8], which make
them inefficient in terms of time and energy consumption.
Additionally, most of the available datasets for illumination
estimation are rather small-scale [10], [12], [13] and hence not
suitable for training large models. For this purpose, many state
of the art approaches [5], [6] rely on pre-trained networks to
overcome this limitation. On the other hand, these pre-trained
networks [9], [14] are originally trained for a classification
task. Thus, they are usually agnostic to the illumination color.
This makes their usage in color constancy counter-intuitive
as the illumination information is distorted in the early pre-
trained layers. An alternative approach is of course to reduce
the number of model parameters in order to use existing
datasets, as shallower models, in general, need less examples
to learn.
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Fig. 1. Building blocks of Bag of Color Features (BoCF) approach for
illumination estimation.

Furthermore, in [13], [15] it is argued that global spatial
information is not an important feature in color constancy.
The local information, i.e., the color distribution and the
color gradient distribution (i.e. edges) can be sufficient to
extract the illumination information [13]. Thus, using reg-
ular neural networks configurations to extract deep features
is counter-intuitive in this particular problem. To address
these drawbacks and challenges, we propose in this paper
a novel color constancy deep learning approach called Bag
of Color Features (BoCF). BoCF uses Bag-of-Features Pool-
ing [16], which takes advantage of the ability of CNNs
to learn relevant shallow features while keeping the model
suitable for low-power hardware. Furthermore, the proposed
approach is consistent with the assumption that global spatial
information is not relevant [13], [15] for color illumination
estimation.

Bag-of-Features Pooling is a neural extension [16], [17]
of the famous Bag-of-Features model (BoF), also known as
Bag-of-Visual Words (BoVW) [18], [19]. BoFs are widely
used in computer vision tasks, such as action recognition [20],
object detection/recognition, sequence classification [21], and
information retrieval [22]. A BoF layer can be combined
with convolutional layers to form a powerful convolutional
architecture that is end-to-end trainable using the regular back-
propagation algorithm [17].

The block diagram of the proposed BoCF model is illus-
trated in Figure 1. It consists of three main blocks: feature
extraction block, Bag of Features block, and an estimation
block. In the first block, regular convolutional layers are
used to extract relevant features. Inspired by the assumption
that second order gradient information is sufficient to extract
the illumination information [13], we use only two convolu-
tional layers to extract the features. In our experiments, we also
study and validate this hypothesis empirically. In the second
block, i.e., the Bag of Features block, the network learns
the dictionary using back-propagation [17] over the non-

linear transformation provided by the first block. This block
outputs a histogram representation, which is fed to the last
component, i.e., the estimation block, to regress to the scene
illumination.

In most CNN-based approaches used to solve the color
constancy problem [5]–[8], fully connected layers are con-
nected directly to a flattened version of the last convolu-
tional layer output. This increases the numbers of parameters
dramatically, as convolutional layer outputs usually have a
high dimensionality. In the proposed method, we address this
problem by introducing an intermediate pooling block, i.e., the
Bag of Features block, between the last convolutional layer
and the fully connected layers. The proposed model achieves
comparable results to previous state of the art illumination
estimation methods while substantially reducing the number of
the needed parameters, by up to 95%. Additionally, the pooling
process natively discards all global spatial information, which
is, as discussed earlier, irrelevant for color constancy. Using
only two convolutional layers in the first block limits the model
to only shallow features. These two advantages make the
proposed approach both consistent and in full corroboration
with statistical approaches [13].

To further improve the performance of the proposed model,
we also propose two variants of a self-attention mechanism
for the BoCF model. In the first variant, we add an attention
mechanism between the feature extraction block and the Bag
of Features block. This mechanism allows the network to
dynamically select parts of the image to use for estimating
the illumination, while discarding the remaining parts. Thus,
the network becomes robust to noise and irrelevant features.
In the second variant, we add an attention mechanism on
top of the histogram representation, i.e., between the Bag of
Features block and the estimation block. In this way, we allow
the network to learn to adaptively select the elements of
the histogram which best encode the illuminant information.
The model looks over the whole histogram after the spa-
tial information has been discarded and generates a proper
representation according the current context (histogram). The
introduced dynamics will be shown in the experiments to
enhance the model performance with respect to all evaluation
metrics and across all the datasets.

The main contributions of the paper are as follows:
• From the application side, we propose a novel CNN-

based color constancy method, called Bag of Color Fea-
tures (BoCF), which is light weight and able to achieve
comparable results across multiple datasets compared to
the state of the art.

• From the interpretability side, we establish explicit links
between BoCF and prior statistical methods for illumi-
nation estimation and show that the proposed method
can be framed as a learning-based extension of many
statistical approaches. Thus, this powerful approach
fills the gap and provides the missing links between
CNN-based approaches and static approaches.

• From the methodology side, we propose two novel atten-
tion mechanisms for BoCF that can further boost the
performance of neural BoF compared to the standard
BoF in the color constancy problem. To the best of our
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knowledge, this is the first work which combines an
attention mechanism with Bag-of-Features Pooling.

• The proposed method is extensively evaluated over three
datasets showing a competitive performance with respect
to the existing state of the art, while substantially reducing
the number of parameters.

The rest of this paper is organized as follows. Section II
provides the background of color constancy approaches and a
brief review of the Bag-of-Features Pooling technique and the
attention mechanism used in this work. Section III details the
proposed approach along with the two attention mechanisms
based variants. Section IV introduces the datasets and the
evaluation metrics used in this work along with the evaluation
procedure. Section V presents the experimental results on
three datasets: ColorChecker RECommended [12], NUS8-
Dataset [13], and INTEL-TUT version2 [10]. In Section VI,
we highlight the links between our approach and many existing
methods and we show how our approach can be considered
as a generic framework for expressing existing approaches.
Section VII concludes the paper.

II. RELATED WORK

A. Color Constancy

Typically, two types of color constancy approaches are
distinguished, namely static methods and supervised methods.
The former involves methods with static parameters settings
that do not need any labeled image data for learning the
model, while the latter are data-driven approaches that learn to
estimate the illuminant in a supervised manner using labeled
data.

1) Static Methods: Static methods exploit the statistical or
physical properties of a scene by making assumptions about
the nature of colors. They can be classified into two categories:
methods based on low-level statistics [23]–[26] and methods
based on the physics-based dichromatic reflection model [4],
[15], [27], [28]. A number of approaches belonging to the
first category were unified by Van de Weijer et al. [25] into a
single framework, where the illumination I est is estimated as
follows:

I est (n, p, σ ) = 1

k
(

∫
x

∫
y
| �n ρσ (x, y)|pdxdy)

1
p , (3)

where n denotes the derivative order, p the Minkowski norm
and k the normalization constant for I est . Also, ρσ (x, y) =
ρ(x, y) ∗ gσ (x, y) denotes the image convolution with a
Gaussian filter with a scale parameter σ . This framework
allows for deriving different algorithms simply by setting the
appropriate values for n, p and σ . The well-known Gray-
World method [24], corresponding to (n = 0, p = 1,
σ = 0), assumes that under a neutral illumination the average
reflectance in a scene is achromatic and the illumination is esti-
mated as the shift of the image average color from gray. White-
Patch [23] (n = 0, p = ∞, σ = 0), assumes that the maxi-
mum values of RGB color channels are caused by a perfectly
reflecting surface in the scene. Therefore, the illumination
components correspond to these maximum values. Besides
Gray-World and White-Patch methods, which make use of

the color distribution in the scene to build their estimations,
Gray-Edge method [25] utilizes image derivatives. Instead
of the global average color, Gray-Edge methods (n = 1,
p = p, σ = σ) assume that the average color of edges or
the gradient of edges is gray. The illuminant’s color is then
estimated as the shift of the average edge color from gray.

Physics-based dichromatic reflection models estimate the
illumination by analyzing the scene and exploiting the physical
interactions between the objects and the illumination. The
main assumption of most methods in this category is that
all pixels of a surface form a plane in RGB color space.
As a scene contains multiple surfaces, this results in multiple
planes. The intersection between these planes is used to
compute the color of the light source [27]. Lee et al. [15]
exploited the bright areas in the captured scene to obtain an
estimate of the illuminant color. In this work, we establish
links between our proposed approach, BoCF, and several static
methods. We show that BoCF can be interpreted as a learning-
based extension of several of these approaches.

2) Supervised Methods: Supervised methods can be fur-
ther divided into two main categories: characterization-based
methods [29], [30] and training-based methods [5], [6], [31],
[32]. The former involves ’light’ training processes in order
to learn the characterization of the camera response in some
way, while the latter involves methods that try to learn the
illumination directly from the scene.

Gamut Mapping [29], [30] is one of the most famous
characterization-based approaches. It assumes that, for a given
illumination condition, only a limited number of colors can
be observed. Thus any unexpected variation in the observed
colors is caused by the light source illuminant. The set
of colors that can occur under a given illumination, called
canonical gamut, is first learned in a supervised manner. In the
evaluation, an input gamut which represents the set of colors
used to acquire the scene is constructed. The illumination is
then estimated by mapping this input gamut to the canonical
gamut. Fast Fourier Color Constancy (FFCC) method [33]
reformulated the color constancy problem as a spatial local-
ization task in the Fourier domain.

Another group of training-based methods combines different
illumination estimation approaches and learns a model that
uses the best performing method or a combination of methods
to estimate the illuminant of each input based on the scene
characteristics [31]. Bianco et al. used indoor/outdoor classi-
fication to select the optimal color constancy algorithm given
an input image [32]. Lu et al. proposed an approach which
exploits 3D scene information for estimating the color of a
light source [34]. However, these methods tend to overfit and
fail to generalize to all scene types.

The first attempt to use Convolutional Neural Networks
(CNNs) for solving the illuminant estimation problem was
established by Bianco et al. in [5], where they adopted a
CNN architecture operating on small local patches to over-
come the data shortage. In the testing phase, a map of local
estimates is pooled to obtain one global illuminant estimate
using median or mean pooling. Hu et al. [6] introduced a
pooling layer, namely confidence-weighted pooling. In their
fully convolutional network, they incorporate learning the
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confidence of each patch of the image in an end-to-end
learning process. Patches in an image can carry different
confidence weights according to their estimated accuracy in
predicting the illumination. Shi et al. [7] proposed a network
with two interacting sub-networks to estimate the illumination.
One sub-network, called the hypothesis network, is used to
generate multiple plausible illuminant estimations depending
on the patches in the scene. The second sub-network, called
the selection network, is trained to select the best estimate
generated by the first sub-network. Inspired by the success
of Generative Adversarial Networks (GANs) in image to
image translation [35], Das et al. formulated the illumination
estimation task as an image-to-image translation task [36] and
used a GAN to solve it. However, these CNN-based methods
suffer from certain weaknesses: computational complexity and
disconnection with both the illumination assumption [13] and
the prior static methods, e.g., Grey-World [24] and White-
Patch [23]. This paper attempts to cure these drawbacks by
proposing a novel CNN approach, BoCF, which discards the
global spatial information in agreement with [13] and [25],
and is competitive with the training-based methods while using
only 5% of the parameters.

B. Bag-of-Features Pooling

Passalis and Tefas proposed a Bag-of-Features Pooling
(BoFP) layer [16], [17], which is a neural extension of the
Bag-of-Features model (BoF). BoFPL can be combined with
convolutional layers to form a powerful architecture which
can be trained end-to-end using the regular back-propagation
algorithm [17], [37]. In this work, we use this pooling tech-
nique to learn the codebook of color features. Thus, the naming
Bag of Color Features (BoCF). This pooling discards all the
global spatial information and outputs a fixed length histogram
representation. This allows us to reduce the large number of
parameters usually needed when linking convolutional lay-
ers to fully connected layers. Furthermore, discarding global
spatial information forces the network to learn to extract the
illumination without global spatial inference, thus improving
model robustness and adhering to the illumination assump-
tion [13]. As an additional novel feature to the prior works
using Bag-of- Features Pooling [17], [37], we propose an
attention mechanism to enable the model to discard noise and
focus only on relevant parts of the input presentation. To the
best of our knowledge, this is the first work which combines
attention mechanisms with Bag-of-Features Pooling.

C. Attention Mechanisms

Attention mechanisms were introduced in Natural Language
Processing (NLP) [38] for sequence-to-sequence (seq2seq)
models in order to tackle the problem of short-term memory
faced in machine translators. They allow a machine translator
to see the full information contained in the original input and
then generate the proper translation for the current word. More
specifically, they allow the model to focus on local or global
features, as needed. Self-attention [39], also known as intra-
attention, is an attention mechanism relating different positions
of a single sequence in order to compute a representation

of the same sequence. In other words, the attention mask is
computed directly from the original sequence. This idea has
been exported to many other problems in NLP and computer
vision such as machine reading [40], text summarization
[41], [42], and image description generation [43]. In [43],
self-attention is applied to an image to enable the network to
generate an attention mask and focus on the region of interest
in the original image.

Attention in deep learning can be broadly interpreted as
a mask of importance weights. In order to evaluate the
importance of a single element, such as a pixel or a feature in
general, for the final inference, one can form an attention vec-
tor by estimating how strongly the element is correlated with
the other elements and use this attention vector as a mask when
evaluating the final output [43]. Let x = [x1, . . . , xn] ∈ R

n

be a vector. The goal of a self-attention mechanism is to learn
to generate a mask vector v ∈ R

n depending only on x, which
encodes the importance weights of the elements of x. Let f
be a mapping function between x and v. The dependency can
be expressed as follows:

v = f (x) = [v1, . . . , vn], (4)

under the constraint:
n∑

i=1

vi = 1. (5)

After computing the mask vector v, the final output of the
attention layer y is computed as follows:

y = [y1, . . . , yn] = [x1v1, . . . , xnvn]. (6)

The concept of attention, i.e., focusing on particular regions
to extract the illumination information in color constancy, can
be rooted back to many statistical approaches. For example,
White-Patch reduces this region to the pixel with the highest
RGB values. Other methods, such as [15] focus on the
bright areas in the captured scene, called specular highlights.
Instead of making such a strong assumption on the relevant
regions, in BoCF we allow the model to learn to extract these
regions dynamically. In FC4 [6], the concept of confidence
maps resembles attention, as the network learns to assign a
confidence score to each patch. To the best of our knowledge,
this is the first work, which directly uses attention mechanisms
in the color constancy problem.

III. PROPOSED APPROACH

In order to reduce the number of parameters needed to learn
the illumination [6], [7], we propose a novel color constancy
approach based on the Bag-of-Features Pooling [17], called
herein the BoCF approach. The proposed approach along with
the novel attention variants is illustrated in Figure 2. The
proposed model has three main blocks, namely the feature
extraction, the Bag of Features, and the illumination estimation
blocks. In the first block, a nonlinear transformation of a raw
image is obtained. In the second block, a histogram represen-
tation of this transformation is compiled. This histogram is
used in the third block to estimate the illumination. For the
first variant of attention, as illustrated in Figure 2 (in red),
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the attention is applied on the image representation before the
BoF, whereas for the second variant (in green) it is applied on
the histogram output of the BoF.

A. Feature Extraction

The feature extraction algorithm takes a raw image as an
input and outputs a nonlinear transformation representing the
image features. A CNN is used in this block. CNNs are known
for their ability to extract relevant features directly from raw
images. Technically, any CNN architecture can be used in this
block. However, we observed in our experiments that only
two convolutions followed by downsampling layers, e.g., max-
pooling yields satisfactory results. This is in accordance with
the assumption of statistical methods that the second order
information is enough to estimate the illumination [13], [25].

After a raw image is fed to the feature extraction block,
the output of the last convolutional layer is used to extract
feature vectors that are subsequently fed to the next block.
The number of extracted feature vectors depends on the size
of the feature map and the used filter size as described in [17].

B. Bag-of-Features

The Bag-of-Features is essentially a codebook (dictionary)
learning component. The output features of the previous block
are pooled using the Bag-of-Features Pooling and mapped to
a final histogram representation. During training, the network
optimizes the codebook using the traditional back-propagation.
The output of this block is a histogram of a fixed size, i.e., the
size of the codebook, which is a hyper-parameter that needs
to be tuned to avoid over-fitting. This approach discards all
global spatial information. As described in [17], the Bag-of-
Features Pooling is composed of two sub-layers: an RBF layer
that measures the similarity of the input features to the RBF
centers and an accumulation layer that builds the histogram of
the quantized feature vectors. The normalized output of each
RBF neuron can be expressed as

[�(x)]k = ex p(−||x − yk ||/mk)∑
j ex p(−||x − y j ||/m j )

, (7)

where x is a feature vector (output of the feature extraction
block), yk is the center of the k-th RBF neuron, exp is the
exponential function, and mk is a scaling factor. The output of
the RBF neurons is accumulated in the next layer, compiling
the final representation s of each image:

s = 1

N

∑
j

�(x j ), (8)

where N is the number of feature vectors extracted from the
last convolutional layer.

C. Illumination Estimation

In the illumination estimation block, we use a fully con-
nected network, which takes as input the histogram formed in
the previous block and outputs the illumination, i.e, 3-element
vector containing an RGB value. To this end, we use a multi-
layer perceptron with only one hidden layer.

Let s ∈ R
n be the histogram compiled by the second block,

the BoF block, as defined in Eq. 8. The intermediate layer
output h ∈ R

m of the illumination estimation block can be
computed as follows

h = ϕ(W1s + b1), (9)

where W1 ∈ R
n×m is the weight matrix, b1 ∈ R

m is the bias
vector, and ϕ is the Rectified Linear Units (ReLU) activation
function [44]. The final estimate I ∈ R

3 is computed as follows

I = φ(W2h + b2), (10)

where W2 ∈ R
m×3 is the weight matrix, b2 ∈ R

3 is the bias
vector, and φ is the softmax activation function defined by

φ(ai ) = ex p(ai)∑
j ex p(a j)

, (11)

D. Attention Mechanism for BoCF

We introduce a novel attention mechanism in the BoCF
model to enable the algorithm to dynamically learn to focus
on a specific region of interest in order to yield a confident
output. We combine self-attention, described in Section II-C,
with the Bag-of-Features Pooling for the color constancy
problem. We propose two variants of this mechanism which
can be applied in our model.

In the first variant, we apply attention on the nonlinear
transformation of the image after the feature extraction block.
This enables the model to learn to ’attend’ the region of the
interest in the mapping and to reduce noise before pooling.
By applying attention in this stage, the number of parameters
will rise exponentially as we need as many parameters as
features.

In the second variant, we apply the attention mechanism
on the histogram representation of the BoCF, i.e., after the
global spatial information has been discarded. This enables the
model to dynamically learn to ’attend’ to the relevant parts
of the histogram which encode the illuminant information.
In this variant, the attention mask size is equal to the size
of the histogram. Thus, the number of additional parameters
is relatively small.

Following the notations of Eq. 4 and Eq. 5, x ∈ R
n

is the feature vector extracted from the CNN for the first
mechanism or the histogram output for the second mechanism.
The attention mask v ∈ R

n is obtained via the following
transformation:

v = φ(Wx + b), (12)

where W ∈ R
N×N is a weight matrix, b ∈ R

N is the bias.
Using softmax as φ ensures that the masking constraint

defined in (Eq. 5) is not violated. Finally, y, the final output
of the attention mechanism, is computed using the following
equation

y = λ(v � x) + (1 − λ)x, (13)

where � is the element wise product operator and λ ∈ R is a
weighting parameter between the original x and the masked x,
i.e., v � x. λ is a learnable parameter in our model. Not using
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Fig. 2. Proposed approach (basic, no attention) along with attention variants (Attention1 in red and Attention2 in green). An example input image is fed
into the three different models and the corresponding three different outputs for the estimated illuminant are illustrated in the Figure.

λ and outputting only the masked histogram is also an option.
However, we determined experimentally that outputting the
weighted sum of both the original and the masked version
is more robust and stable for the gradient-based optimizers,
since it is less susceptible to random initialization weights of
the attention.

Parameter λ can be optimized using the gradient decent
in the back-propagation process along with the rest of the
parameters. Its gradient with respect to the output of the
attention block can be obtained via the following equation

∂y
∂λ

= v � x − x. (14)

IV. EXPERIMENTAL SETUP

In this section, we present the experimental setup used
in this work. In Subsection IV-A, we introduce the datasets
used to test our models. In Subsection IV-B, we report the
network architectures of the three blocks used in BoCF.
In Subsection IV-C, we detail the evaluation process followed
in our experiments. Finally, the evaluation metrics used are
briefly described in Subsection IV-D.

A. Image Datasets

1) ColorChecker RECommended Dataset: ColorChecker
RECommended dataset [12] is a publicly available updated
version of Gehler-Shi dataset [11]1 with a proposed (rec-
ommended) ground truth to use for evaluation. This dataset

1http://www.cs.sfu.ca/ colour/data/shi_gehler/

contains 568 high-quality indoor and outdoor images acquired
by two cameras: Canon 1D and Canon 5D. Similar to the
works in [5]–[8], for ColorChecker REComended dataset,
we used three-fold cross validation to evaluate our algorithms.

2) NUS-8 Camera Dataset: NUS-8 is a publicly available
dataset,2 containing 1736 raw images from eight different
camera models. Each camera has about 210 images. Following
previous works [6], [13], we perform 3-fold cross validation
experiments on each camera separately and report the mean of
all the results for each evaluation metric. As a result, although
the total number of images in NUS-8 dataset is large, each
experiment involves using only 210 images for both training
and testing.

3) INTEL-TUT2: INTEL-TUT23 is the second version of
the publicly available INTEL-TUT dataset [10]. The main
particularity of this dataset is that it contains a large number of
images taken by several cameras from different scenes. We use
this dataset with an extreme testing protocol, the third protocol
described in [10]. The models are trained with images acquired
by one camera and containing one type of scene and tested on
the other cameras and the other scenes. This extreme test is
useful to show the robustness of a given model and its ability
to generalize across different cameras and scenes.

INTEL-TUT2 contains images acquired with three different
cameras, namely Canon, Nikon, and, Mobile. For each camera,
the images are divided into four sets: field (144 images per
camera), lab printouts (300 images per camera), lab real

2http://cvil.eecs.yorku.ca/projects/public_html/illuminant/illuminant.html
3http://urn.fi/urn:nbn:fi:csc-kata20170901151004490662
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Fig. 3. Samples from INTEL-TUT2 dataset. The rows contain samples
images taken by Canon, Nikon, and mobile cameras, respectively, while
the columns contain images from lab printouts, lab real scenes, and field,
respectively.

Fig. 4. Samples from field2 set specific for Canon in INTEL-TUT2 dataset.

scenes (4 images per camera), and field2. The last set field2
concerns only Canon and it has a total of 692 images. Figure 3
shows some samples from the field, lab printouts, and lab
real scenes sets of the three cameras, while Figure 4 displays
samples from field2 related to Canon camera.

We used only Canon field2 set for training and validation
(80% for training and 20% for validation). We constructed
two test sets. The first one, called field in this work, contains
all the field images (field sets, i.e., non lab images) taken by
the other camera models, i.e., Nikon and Mobile. The second
set, called non-field in this work, contains the rest of the
images, i.e., lab scenes, acquired by Nikon and Mobile (lab
printouts and lab real scenes sets). Comparing the performance
on these two sets allowed us to test both scene and camera
invariance of the model. As we were using different camera
models in same experiments, the variation of camera spectral
sensitivity was discounted. For this purpose, we used Color
Conversion Matrix (CCM) based preprocessing [45] to learn
the 3 × 3 color conversion matrices (CCMs) for each camera
pair.

B. Network Architectures

The BoCF network is composed of three blocks: the feature
extraction, the Bag of Features block, and the illumination
estimation blocks as described in Section III. The feature
extraction block consists of convolution layers followed by
max pooling operators. We experimented with different num-
ber of layers two and three. Thirty convolution filters of size
4 × 4 are used in each layer. Max-pooling with a window
size 2 was applied in each layers. For the codebook size,
i.e., number of RBF neurons in the Bag of Features block,

Fig. 5. Bag of Color Features (BoCF) network topology.

we experimented with three different values 50, 150, and 200.
The illumination estimation block consists of 2 fully connected
layers. The first (hidden layer) has a size of 40 and it takes as
an input the histogram representation and the second one (final
output) has a size of 3 to output the illumination. The network
is trained from scratch. The biases were initialized with
zeroes while the convolution filters and the fully connected
layers’ weights with Xavier uniform. Figure 5 represents the
architecture of the basic model used in our work with two
convolution layers and a dictionary with 150 elements.

C. Evaluation Procedure

To evaluate the proposed approach, we used two sets of
experiments. In the first set, we evaluated different variants
of the model to study the effect of the hyper-parameters and
validate the effectiveness of each component in our model
by conducting ablation studies. For this purpose, we used
ColorChecker RECommended dataset. In the second set of
experiments, we compared our approach with current state-
of-the-art approaches on the three datasets.

For all testing scenarios, we augmented the datasets using
the following process: As the size of the original raw images
is high, we first randomly cropped 512 × 512 patches of each
image. This ensured getting meaningful patches. The crops
were then rotated by a random angle between −30◦ and +30◦.
Finally, we rescaled the RGB values of each patch and its
corresponding ground truths by a random factor in the range of
[0.8, 1.2]. Before feeding the sample to the network, we down-
sampled it to 227 × 227. In testing, the images were resized
to 227 × 227 to fit the network model.

Our network was implemented in Keras [46] with Ten-
sorflow backend [47]. We trained our network end-to-end
by back-propagation. The loss function used is the Recov-
ery Angular Error defined in Sec IV-D. For optimization,
Adam [48] was employed with a batch size of 15 and a
learning rate of 3 × 10−4. The model was trained on image
patches of size 227 × 227 for 3000 epochs. The centers of
the dictionary were initialized using the k-means algorithm as
described in [17]. The parameter λ discussed in Section III-D
was initialized as 0.5.

D. Evaluation Metrics

We report the mean of the top 25%, the mean, the median,
Tukey’s trimean, and the mean of the worst 25% of the
recovery angular error (RAE) [49] between the ground truth
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TABLE I

COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED BOCF APPROACH ON COLORCHECKER RECOMMENDED DATASET

illuminant and the estimated illuminant, defined as

RAE(I gt , I Est ) = cos−1(
I gt I Est

�I gt��I Est� ), (15)

where I gt is the ground truth illumination for a given image
and I Est is the estimated illumination. The mean of the
worst 25% reflects how the model performs in the worst-case
scenario and typically shows the largest differences between
different methods..

V. EXPERIMENTAL RESULTS

In this section, we provide the experimental evaluation of
the proposed method and its variants. In Subsection V-A,
different topologies for the three blocks of BoCF are evaluated
on the ColorChecker RECommended dataset and the effect of
each block in our model is examined by reporting the results
of the ablation studies. In Subsection V-B, we compare the
performance of the proposed models with different state-of-
the-art algorithms on the three datasets.

A. BoCF Performance Evaluation

We first evaluated the accuracy of the different variants
of BoCF on ColorChecker RECommended dataset. Table I
presents the comparative results for BoCF using different
topologies in the three blocks. We evaluated the model using
different numbers of convolution layers in the first block,
different dictionary sizes in the second block (codewords), and
with/without attention. In addition, in order to show the effect
of using more convolutional layers, we used the pretrained
model SqueezeNet [9] in the first block.

Table I shows that the dictionary size in the Bag-of-Features
Pooling block significantly affects the overall performance of
the model. Using a larger codebook results in higher risk of
overfitting to the training data, while using a smaller codebook
size restricts the model to only few codebook centers which
can decrease the overall performance of the model. Thus,
the choice of this hyperparameter is critical for our model.
The findings in Table I confirm this effect and highlights the
importance of this hyperparameter. By comparing the model
performance using different dictionary sizes, we can see that

a dictionary of size 150 yields the best compromise between
the number of parameters and the overall performance.

Using three convolutional layers instead of two in the first
block yields slightly better median errors and worse trimean
errors. We note that using a pretrained model, squeezeNet,
increases the number of parameters without improving the
overall results. However, to keep the model as shallow as
possible, we opt for the two convolution layers.

Table I shows that models equipped with an attention mech-
anism perform better than models without attention almost
consistently across all error metrics. This is expected as
attention mechanisms allow the model to focus on relevant
parts only and, as a result, the model becomes more robust
to noise and to inadequate features. The performance boost
obtained by both attention variants is more highlighted in
terms of the median and trimean errors compared to the non-
attention variant.

By comparing the performance achieved by the two atten-
tion variants, we note that the first attention variant yields in
a better performance in terms of worst 25% error rate, while
the second variant yields better median and trimean error rates.
It should also be remembered that the first variant applies
attention over the feature map output of the first convolutional
block. Thus, it dramatically increases the number of model
parameters (over 20 times) compared to the second variant
(doubling the number of parameters) which applies the atten-
tion over the histogram.

Figure 6 presents a visualization of the attention weights
[50] for both attention variants. The heat maps demonstrate
which regions of the image each model pays attention to so
as to output a certain illumination. We note a large difference
between the attention variants. The first attention variant tends
to focus on regions with dense edges and sharp shapes, while
the second model focuses on uniform regions to estimate the
illumination. With the second variant of attention, the model
learns to focus on homogeneous areas because attention is
applied on top of a histogram. Thus, the model learns to focus
on certain bins of this histogram. As each bin corresponds to
the occurrence of one specific element of the dictionary, it is
usually mapped to a homogeneous region of the image. With
regards to the the first variant, one plausible explanation is
that the models learns to focus on the edges. It is known that
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Fig. 6. Attention mask visualization [50] for three samples from INTEL-TUT2, ColorChecker RECommended, and NUS8 datasets, respectively. The first
column contains the input image. The second one illustrates the attention mask generated by the first attention variant overlaid on the input image. The
last column contains the attention masks generated by the second variant of the attention overlaid on the input image. Gamma correction was applied for
visualization.

TABLE II

RESULTS OF THE ABLATION STUDIES FOR THE BOCF OVER THE REC-
OMMENDED COLORCHECKER DATASET. BOCF IS THE BASIC BOCF

COMPOSED OF THE THREE BLOCKS. IN BOCF-1, THE FEATURE

EXTRACTION BLOCK IS REMOVED, WHILE IN BOCF-2 THE
FULLY CONNECTED LAYER IN THE ESTIMATION BLOCK IS

SUBSTITUTED WITH A LINEAR REGRESSION.
IN BOCF-3, THE BOF POOLING LAYER IS

REPLACED WITH A GLOBAL AVERAGE
POOLING LAYER

the edges are an important feature in color constancy [25] and
the model learns to extract and ’attend’ this information to
estimate the illumination.

Ablation studies

To examine the effect of each block in our proposed
approach, we conduct ablation studies on the ColorChecker
RECommended dataset. Table II reports the results of the
basic BoCF approach, the results achieved by removing the
feature extraction block, the results obtained by removing
the estimation block, i.e., replacing the fully connected layer
in the estimation block with a simple regression, and the
results obtained by replacing the BoF block by a global
average pooling layer [51]. We note that removing any

TABLE III

NUMBER OF PARAMETERS OF DIFFERENT CNN-BASED APPROACHES

block significantly decreases the overall performance of our
models.

Comparing the model with and without the feature extrac-
tion block, we note a large drop in performance especially in
terms of the worst 25% error rate, i.e., 1.8◦ drop compared to
0.6◦ drop when the estimation block is removed. We also note
that BoF pooling performs better than global average pooling
across all metrics except the median.

B. Comparisons Against State-of-the-art

We compared our BoCF approach with the state-of-the-
art methods on ColorChecker RECommended, NUS-8, and
INTEL-TUT2 datasets. Tables IV, V, and VI provide quanti-
tative results for ColorChecker RECommended, NUS-8, and
INTEL-TUT2 datasets, respectively. We provide results for the
static methods Grey-World, White-Patch, Shades-of-Grey, and
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TABLE IV

RESULTS OF BOCF APPROACH AND COMPARATIVE METHODS ON THE RECOMMENDED COLORCHECKER DATASET

TABLE V

RESULTS OF BOCF APPROACH AND BENCHMARK METHODS ON NUS-8 DATASET

General Grey-World. The parameter values n, p, ρ are set
as described in [25]. In addition, we compare against Pixel-
based Gamut, Bright Pixels, Spatial Correlations, Bayesian
Color Constancy [11], and six convolutional approaches: Deep
Specialized Network for Illuminant Estimation (DS-Net) [7],
Bianco CNN [5], Fast Fourier Color Constancy [33], Con-
volutional Color Constancy [52], Fully Convolutional Color
Constancy With Confidence-Weighted Pooling (FC4) [6], and
Color Constancy GANs (CC-GANs) [36]. The results for
ColorChecker RECommended and NUS-8 datasets were taken
from related papers [6], [36].

From RECommended ColorChecker and NUS-8 results
in Tables IV and V, we note that the learning-based methods
usually outperform the statistical-based methods across all
error metrics. This can be explained by the fact that statistical
approaches rely on some assumptions in their model. These
assumptions can be violated in some testing samples which
results in high error rates especially in terms of the worst
25% error.

TABLE VI

RESULTS OF BOCF APPROACH AND BENCHMARK

METHODS ON INTEL-TUT2

Table IV shows that the proposed method BoCF variants
achieve competitive results on RECommended ColorChecker
dataset. The only models performing slightly better than BoCF
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TABLE VII

RESULTS OF BOCF APPROACH AND COMPARATIVE METHODS ON THE RECOMMENDED
COLORCHECKER DATASET USING REPRODUCTION ANGULAR ERROR METRIC

are FC4(SqueezeNet) and DS-Net. By comparing the number
of parameters required by each model given in Table III,
we see that BoCF achieves very competitive results, while
using less than 1% of the parameters of FC4(SqueezeNet) and
less than 0.1% of the parameters of DS-Net.

Compared to Bianco CNN, we note that our model performs
better across all error metrics except for the worst 25% error
metric. Bianco CNN operates on patches instead of the full
image directly and this makes it more robust but, at the same
time, it increases its time complexity as the network has to
estimate many local estimates before outputting the global one.

Results for NUS-8 dataset are similar to their counter parts
on ColorChecker RECommended, as illustrated in Table V.
Our models achieve comparable results with FC4 and overall
better results compared to DS-Net across all error metrics.
Bianco CNN outperforms all the other CNN-based methods.
As discussed earlier, this can likely be explained by the fact
that Bianco operates on patches while BoCF and FC4 produce
global estimates directly.

Table VI reports the comparative results achieved on
INTEL-TUT2 dataset. We note that all the error rates are
high as this is an extreme testing scenario. The models are
trained and validated using only one type of scene (field2 set)
acquired by one camera model (Canon) and then evaluated
over different scene types and different camera models not
seen during the training as described in Section IV-C. The
proposed BoCF model achieves better overall performance
compared to Bianco CNN on the non-field set, on both sets
compared to Color Constancy Convolutional AutoEncoder
(C3AE) methods and competitive results compared to FC4.
The model is robust in transfer learning because it is invariant
to the spatial location of the extracted feature (this is the
strong point of the BoF). So, by having a representation that
is "by construction" invariant to spatial changes makes the
network less sensitive to spatial changes, and as a result, more
robust.

By comparing the performance achieved by BoCF with and
without attention, we note that both the attention mechanisms
proposed in this paper significantly boost the performance of
our model for all datasets. It should also be mentioned that
despite requiring much less parameters, the second variant
of our attention model, where the attention is applied over
the histogram representation, performs slightly better than the

first variant, where the attention is applied over the feature
extraction block.

We also compare the performance of the proposed method
based on Reproduction Angular Error [53] with other methods,
which have been evaluated using this metric in the literature.
The comparison are shown in Table 7. We note that our models
outperform Bianco CNN across all metrics and the second
variant of attention outperforms FFCC model in terms of mean
error, while achieving similar performance in terms of trimean.

VI. DISCUSSION

When comparing our approach to the competing methods,
it must be pointed out that our approach can be linked to
many static-based approaches. In Grey-World [24], one takes
the average of the RGB channels of the image. In the proposed
method, this corresponds to using the identity as a feature
extractor and using equal weights in the estimation block.
This way all the histogram bins will contribute equally in the
estimation. White-Patch [23] takes the maximum across the
color channels, which corresponds to giving a high weight
to the histogram bin with the highest intensity and giving
zero weights to the rest. Grey-edge and its variants [25]
correspond to using the first and second order derivatives as a
feature extractor. Thus, BoCF approach can be interpreted as a
learning-based extension of these statistical based approaches.
Instead of using the image directly, we allow the model to learn
a suitable non-linear transformation of the original image,
through the feature extraction block, and instead of imposing
a prior assumption on the contribution of each feature in
the estimation, we allow the model to learn the mapping
dynamically using the training data. BoF provides the link
between these two tasks as it allows us to learn a dictionary
and to output a histogram representation of the transformed
image.

It is interesting to note that the attention variants in our
approach can be tightly linked to the confidence maps in
FC4 [6]. In FC4, confidence scores are assigned to each patch
of the image and a final estimate is generated by a weighted
sum of the scores and their corresponding local estimates. This
way the network learns to select which features contribute to
the estimation and which parts should be discarded. Similarly,
attention mechanism learns to dynamically pay attention to the



LAAKOM et al.: BAG OF COLOR FEATURES FOR COLOR CONSTANCY 7733

parts encoding the illumination information and discarding the
rest.

VII. CONCLUSION

In this paper, we proposed a novel color constancy method
called BoCF, which is composed of three blocks. In first block,
called feature extraction, we employ convolutional layers to
extract relevant features from the input image. In the second
block, we apply Bag-of-Features Pooling to learn a code-
book and output a histogram. The latter is fed into the last
block, the estimation block, where the final illumination is
estimated. This end-to-end model is evaluated and compared
with prior works over three datasets: ColorChecker RECom-
mended, NUS-8, and INTEL-TUT2. BoCF was able to achieve
competitive results compared to state-of-the-art methods while
reducing the number of parameters up to 95%. In this paper,
we also discussed links between the proposed method and
statistic-based methods and we showed how the proposed
approach can be interpreted as a supervised extension of
these approaches and can act as a generic framework for
expressing existing approaches as well as developing new
powerful methods.

In addition, we proposed combining the Bag-of-Features
Pooling with two novel attention mechanisms. In the first
variant, we apply attention over the nonlinear transform of
the image after the feature extraction block. In the second
extension, we apply attention over the histogram representation
of the Bag-of-Features Pooling. These extensions are shown
to improve the overall performance of our model.

In future work, extensions of the proposed approach could
include exploring regularization techniques to ensure diversity
in the learned dictionary and improve the extension capability
of the model.
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