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Abstract
We focus on electro-/magnetoencephalography imaging of the neural activity and, in particular, finding a robust estimate 
for the primary current distribution via the hierarchical Bayesian model (HBM). Our aim is to develop a reasonably fast 
maximum a posteriori (MAP) estimation technique which would be applicable for both superficial and deep areas without 
specific a priori knowledge of the number or location of the activity. To enable source distinguishability for any depth, we 
introduce a randomized multiresolution scanning (RAMUS) approach in which the MAP estimate of the brain activity is 
varied during the reconstruction process. RAMUS aims to provide a robust and accurate imaging outcome for the whole 
brain, while maintaining the computational cost on an appropriate level. The inverse gamma (IG) distribution is applied as 
the primary hyperprior in order to achieve an optimal performance for the deep part of the brain. In this proof-of-the-concept 
study, we consider the detection of simultaneous thalamic and somatosensory activity via numerically simulated data mod-
eling the 14-20 ms post-stimulus somatosensory evoked potential and field response to electrical wrist stimulation. Both a 
spherical and realistic model are utilized to analyze the source reconstruction discrepancies. In the numerically examined 
case, RAMUS was observed to enhance the visibility of deep components and also marginalizing the random effects of the 
discretization and optimization without a remarkable computation cost. A robust and accurate MAP estimate for the primary 
current density was obtained in both superficial and deep parts of the brain.

Keywords Brain imaging · Depth reconstruction · EEG and MEG data · Hierarchical Bayesian model · Randomized 
multiresolution scanning

Introduction

This study concentrates on electro-/magnetoencephalogra-
phy (E/MEG) imaging of the brain activity (He et al. 2018). 
The present focus is on the hierarchical Bayesian model 
(HBM) (Calvetti et al. 2009; Lucka et al. 2012) which allows 
one to find a focal and robust reconstruction by exploring 
a posterior probability distribution following from a con-
ditionally Gaussian prior model. Our aim is, in particular, 
to develop a fast maximum a posteriori (MAP) estimation 
technique which would be applicable for both superficial 

and deep areas without additional a priori knowledge of the 
brain activity, such as physiological depth weighting (Cal-
vetti et al. 2015, 2018; Homa et al. 2013). While high-den-
sity measurements (Seeber et al. 2019) and advanced signal 
processing strategies (Pizzo et al. 2019) have recently been 
shown to be essential in distinguishing deep activity, this 
study focuses on the importance to reduce the random effects 
of the numerical discretization and optimization errors on 
the reconstruction process.

We introduce a randomized multiresolution scanning 
(RAMUS) method in which the MAP estimate of the brain 
activity is refined gradually in the reconstruction procedure. 
RAMUS aims at reducing the random effects of the numeri-
cal discretization on the final estimate. It processes the well 
and ill-conditioned parts of the source space separately 
which has been suggested for ill-posed problems, e.g., in 
(Pursiainen 2008; Liu et al. 1995; Piana and Bertero 1997a). 
A multiresolution decomposition provides an approximative 
split between detectable and undetectable parts for different 
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source depths, as the maximal source localization accuracy 
varies strongly with respect to the depth (Tarkiainen et al. 
2003; Cuffin et al. 2001a, b; Grover 2016; Wang et al. 2009) 
with only the low resolution fluctuations being visible in the 
deep part of the brain (Pascual-Marqui et al. 1999; Pascual-
Marqui 1999). At each resolution level, a MAP estimate 
is evaluated via the iterative alternating sequential (IAS) 
algorithm and the inverse gamma (IG) hyperprior which has 
been found to be advantageous for detecting deep activity 
(Calvetti et al. 2009).

The previous results suggest that HBM can find a focal 
solution deep in the head via the Markov chain Monte Carlo 
(MCMC) sampling techniques, especially, if the activity can 
be constrained into a region of interest (ROI) (Calvetti et al. 
2009; Lucka et al. 2012). However, processing large data 
sets involving temporal measurement sequences with an 
advanced MCMC approach without a priori knowledge of 
a ROI might be computationally too expensive for the prac-
tical use. Therefore, finding a robust and fast approach to 
distinguish activity reliably is crucial regarding the practical 
applications. In this proof-of-the-concept study, we consider 
the detection of simultaneous somatosensory and thalamic 
activity with numerically simulated data. This setup mod-
els the detection of the somatosensory evoked potentials 
and fields (SEP/F) in response to the electrical stimulation 
of the median nerve, particularly, thalamic (deep) P14/
N14 and somatosensory (superficial) P20/N20 component 
peaked at 14 and 20 ms post-stimulus, respectively (Buchner 
et al. 1988, 1995, 1994a, b; Haueisen et al. 2007; Attal and 
Schwartz 2013; Fuchs et al. 1998).

In the numerical experiments, both a spherical and real-
istic model has been used to analyze the source reconstruc-
tion discrepancies with RAMUS. The results suggest that a 
randomized set of decompositions (Mallat 1989; Clark et al. 
1995) is essential to marginalize out the possible modeling 
errors due to projecting the source space into different reso-
lution levels which, again, is necessary in order to achieve 
the depth-invariance of the final MAP estimate.

Methodology

Observation Model

For the EEG source modelling, we employ the finite ele-
ment method and the current preserving H(div) approach 
(Pursiainen 2012a; Pursiainen et al. 2016; Miinalainen et al. 
2019) in which the primary current distribution of the neu-
ral activity is assumed to have a square-integrable diver-
gence �P ∈ H(div) = {�|∇ ⋅ � ∈ L2(�)} in the source space 
denoted by S . The observation model is

where � ∈ ℝ
m is the measurement vector, � ∈ ℝ

m×3K is the 
lead field matrix, � ∈ ℝ

3K is the unknown primary current 
distribution with K denoting the total number of the source 
positions, and � ∈ ℝ

m is the measurement noise vector 
which is modelled as Gaussian random variable with zero 
mean and covariance matrix of the form �2� ∈ ℝ

m×m . In this 
numerical study, the diagonal covariance is used for simplic-
ity as it allows fixing the noise level with a single parameter, 
i.e., the standard deviation � . We refer to ℝ3K as the source 
space S for the inverse problem of finding � given the data 
� . The number of sources is three times the number of their 
positions, as each position is assumed to have three sources 
oriented along the Cartesian coordinate axes.

Hierarchical Bayesian Model

In the HBM framework, the prior of � is not fixed but ran-
dom. It is determined by the realization of the so-called 
hyperparameter � . The hyperparameter follows an a priori 
assumed distribution, i.e., the hyperprior. Consequently, the 
prior is a joint density given by p(�,�) ∝ p(�) p(� ∣ �) of 
� and � . The conditional part of the prior p(� ∣ �) corre-
sponds to a zero mean Gaussian density with a diagonal 
covariance matrix predicted by the hyperprior p(�) . The 
hyperparameter � is of the same dimension as � with each 
entry defining the variance of its respective entry in � . The 
density of the hyperprior is long-tailed, implying that � is 
likely to be a sparse vector with only few nonzeros, which is 
advantageous for finding a focal reconstruction of the brain 
activity. As a hyperprior, one can use, e.g., the gamma (G) 
or inverse gamma IG(� ∣ �, �0) density (Calvetti et al. 2009), 
whose shape and scale are controlled by the parameters � 
and �0 , respectively. IG is a conjugate prior for a Gaussian 
distribution with an unknown variance (here the conditional 
prior), meaning that the corresponding posterior (here the 
actual prior) is also Gaussian. Again, G is a conjugate prior 
with respect to the reciprocal of the variance (O’Hagan and 
Forster 2004).

The posterior probability density of � , following from 
the classical Bayes formula (O’Hagan and Forster 2004), 
is of the form

i.e., it is proportional to the product between the 
prior density p(�,�) , and the likelihood function 
p(� ∣ �) ∝ exp(−(2�2)−1‖�� − �‖2) given by the measure-
ment noise model (Schmidt et al. 1999).

We consider finding the inverse estimate via the itera-
tive alternating sequential (IAS) MAP estimation method 

(1)� = �� + �,

(2)p(�,� ∣ �) =
p(�,�) p(� ∣ �)

p(�)
∝ p(�,�) p(� ∣ �),



163Brain Topography (2020) 33:161–175 

1 3

(Appendix 5) using primarily the IG density as the hyper-
prior. IG has been suggested for depth localization in Cal-
vetti et al. (2009), where the IG and G based IAS MAP 
estimate have been shown to correspond to the minimum 
support and minimum current estimate (MSE and MCE) 
(Nagarajan et al. 2006), respectively, while the first step 
of the iteration concides with the classical minimum norm 
estimate (MNE) (Hämäläinen et al. 1993). A recent com-
parison between IAS and other brain activity reconstruc-
tion techniques can be found in (Calvetti et al. 2018).

The numerical exploration of the posterior density 
p(�,� ∣ �) is subject to the numerical discretization, i.e., 
the numerical definition of the source space S for � and 
the resulting lead field matrix. We aim to reduce the 
effect of the discretization via the following two strate-
gies motivating the introduction of the RAMUS approach: 

(1) The reduction of the source space is essential to 
improve the ability of a solver to recover focal sources 
both in deep and superficial locations. Furthermore, 
since a sparse source space results here in source 
reconstruction of low spatial resolution, a source space 
refinement during the reconstruction process of this 
study is crucial.

(2) A randomized set of decompositions enables averaging 
out (marginalizing) the effect of the discretization error.

The theoretical justification of (1) and (2) are given in 
the following sections “Coarse-to-Fine Optimization” and 
“Randomized Scanning”, respectively.

Coarse‑to‑Fine Optimization

The EEG source imaging problem is severely ill-posed 
(Grech et al. 2008) and it is well-known that most of the 
solvers suffer from depth bias effects (Pascual-Marqui 1999; 
Koulouri et al. 2017; Awan et al. 2018). A way to reduce 
the ill-conditioning in the computations is by introducing 
coarser (sparse) source space, i.e., regularization by discre-
tization (Hansen 2010; Kirsch 2011), or by approximating 
the source distribution as a linear combination of spatial 
basis functions (redundant dictionaries) as proposed in 
Haufe et al. (2008). With a dimensionality reduction, the 
linear system to be solved is often over-determined and 
stable estimates can be obtained. However, this comes at 
a cost of poor resolution reconstructions due to large dis-
cretization errors. The idea of employing a multiresolution 
approach (Mallat 1989), where a progressive refinement in 
the source space is performed in order to obtain more accu-
rate estimates, has been proposed for the E/MEG problem 
for example in Gavit et al. (2001); Malioutov et al. (2005).

The source space S can be decomposed via the direct sum 
of S+

�
= {�} ∪ {� ∶ ‖��‖ ≥ �} and S−

𝜀
= {� ∶ ‖��‖ < 𝜀} , 

i.e. S = S
+
𝜀
⊕ S

−
𝜀
 , where � is determined by the noise level. 

S
+
�
 and S−

�
 represent the sets of the detectable and undetecta-

ble source distributions, respectively. If possible, it is advan-
tageous to decompose S into S+

�
 and S−

�
 as, thereby, one can 

avoid source localization errors related to the indetectable 
distributions S−

�
 (Pursiainen 2008; Piana and Bertero 1997b; 

Liu et al. 1995). In E/MEG, a coarse enough source con-
figuration can be distinguished, i.e., it belongs to S+

�
 , while 

a dense one has modes that cancel each other and might be 
indetectable, i.e., in S−

�
 (Fig. 1). The coarsity is specifically 

Fig. 1  1st from the left In E/MEG, a coarse enough source configu-
ration can be distinguished, i.e., it belongs to S+

�
 , while a dense one 

has modes that cancel each other and might be indetectable, i.e., in 
S
−
�
 (Fig.  1). 2nd and 3rd from the left: An example of subdividing 

the grey matter compartment to subdomains in the case of a coarse 

(center) and fine (right) resolution. Here, the sparsity factor s, i.e., the 
ratio between number of subdomains for two consequtive resolution 
levels, would be four. An example of mapping a subdomain from a 
coarse to fine resolution is given by {2} → {2, 28, 29, 30}
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important considering deep activity for which the magnitude 
of the lead field is comparably low and, therefore, any deep 
source configuration is likely to belong to S−

�
 . For a given 

lead field matrix � , the maximum possible number of detect-
able sources and, thereby, the maximal dimension of S+

�
 is 

determined by the maximum number of nonzero singular 
values which coincides with the smaller dimension of � , 
that is, the number of the data entries m.

In the coarse-to-fine reconstruction strategy, the aim is to 
first limit the source space S to a subspace S+

�
 by restricting 

its resolution, to gradually increase its resolution, and to 
eventually obtain an approximation for the whole space S . 
A nested set of restricted subspaces with different resolu-
tions referred here to as a multiresolution decomposition 
is obtained recursively by selecting a uniformly random set 
of source positions from a given source space and associat-
ing those with the original set of positions through nearest 
interpolation. The coarsest resolution level is associated 
with the index � = 1 . When moving from the �-th resolution 
level to the (� + 1)-th one, the number of source positions 
is assumed to grow by a constant sparsity factor s > 1 . An 
example for a dual resolution decomposition and a mapping 
of the subdomains between them can be found in Fig. 1.

In the IAS MAP estimation process, once the activity has 
been found at a coarse reconstruction level, the support of 
the candidate solution will shrink along with the increasing 
resolution (Fig. 2). That is, the size of the details found is 
subject to the resolution level. Therefore, the final estimate 
is found as a combination of the estimates obtained for the 
different levels. In order to distinguish the weakly detectable 
activity, especially, the deep components, the number of the 
dimensions in the initial set should be of the same size with 
m, following from the maximal dimensionality of S+

�
.

Randomized Scanning

Since a sparse source space is likely to induce a bias to the 
consequent estimates, we propose to use a random set of 
(initial) sparse source spaces that aims to reduce the propa-
gation of random discretization and optimization errors. The 
relationship between the global posterior optimizer �∗ and �k 
for the original source space S and its restriction Sk , respec-
tively, can be modeled via the equation

where �k and �k represent a discretization and optimization 
error, respectively. Of these, �k depends of the quality of the 
MAP optimization method and vanishes in the ideal case, 
while �k is fixed. If the degrees of freedom in S1,S2,… ,SD 
have an independent and identical random distribution, the 
respective discretization errors �1, �2,… , �D can be modeled 
as independently and identically distributed random vari-
ables and, by the law of large numbers and the central limit 
theorem, the discretization error term 1

D

∑D

k=1
�k of the mean

is an asymptotically Gaussian variable with expectation 
�̃ and the rate of convergence 1

D

∑D

k=1
→ �̃ is of the order 

O(D−1∕2) with respect to the number of source spaces (Liu 
2001). Consequently, the random effects of the discretiza-
tion errors can be marginalized via estimating �∗ in multiple 
randomly (independently and identically) generated source 
spaces. The expectation �̃ can be regarded as the remaining 
systematic discretization error which is specific to the set 
S1,S2,… ,SD , i.e., the resolution level, and is related, for 
example, to the relationship between the maximal achiev-
able level of detail and the structure of the actual unknown 
brain activity.

Since the outcome of the optimization process for each 
given source space is a priori sensitive to the discretization 
errors, the estimate for �k is found using the one for �k−1 as 
the initial guess. This approach is motivated by the present 
gradually progressing coarse-to-fine subdivision due to which 
the subsequent optimizers will be nearly similar. We consider 
it necessary in order to maintain each estimate in the vicin-
ity of the global optimum and, thereby, the norm of the opti-
mization error �k as small as possible. Namely, using a fixed 
initial guess might mean that, instead the global optimizer, a 
local one is found for some of the source spaces as depicted in 
Fig. 3. The global optimum might correspond to a situation in 
which both a superficial and deep source are detected, while 
the deep activity might be undetected at a local one.

Technically, updating the initial guess makes the estimate 
for �k dependent on the previous one obtained for �k−1 , i.e., 
the sequence of the estimates is a time-homogeneous Markov 
chain. We regard the present approach as a surrogate transition 
rule (Liu 2001) estimating the outcome of an ideal optimiza-
tion method which would find the global optimum precisely 
with �k = 0 , thereby, resulting in the identity

(3)�k = �∗ + �k + �k,

(4)1

D

D∑

k=1

�k = �∗ +
1

D

D∑

k=1

�k +
1

D

D∑

k=1

�k

(5)1

D

D∑

k=1

�k = �∗ +
1

D

D∑

k=1

�k → �∗ + �̃,

Fig. 2  Once an approximation for a non-zero source has been found 
at a coarse resolution level (left) the its support will shrink at the finer 
levels (right)
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which will hold approximately, if the surrogate rule is accu-
rate enough.

RAMUS

We propose the following algorithm for RAMUS to reduce 
the random discretization and optimization effects when 
finding a reconstruction for the unknown parameter � with 
the IAS MAP estimation method. 

1. Choose the desired number of the resolution levels L and 
the sparsity factor (the ratio of source counts) s between 
each level. The number of the sources at a given resolu-
tion level will be K

�
= Ks(�−L) , where � = 1, 2,… , L is 

the index of the resolution level, the larger the value of 
the index � the finer the resolution.

2. For each resolution level � = 1, 2,… , L , create a random 
uniformly distributed set of center points �1, �2,… , �K

�
 . 

Find source point subsets B1 , B2 , … , BK
�
 applying the 

nearest interpolation scheme with respect to the center 
points. That is, each subset Bj consists of those source 
positions of the total source space S , whose nearest 
neighbor with respect to �1, �2,… , �K

�
 is �j . The aver-

age number of source positions associated with Bj is 
approximately given by the sparsity factor s. The resolu-
tion of this subdivision grows along the number of the 
center points. The unknown parameter is assumed to be 
constant in each subset, and the actual source count is 
assumed to stay unchanged regardless of the resolution.

3. Repeat the first two steps to generate a desired number 
D of independent multiresolution decompositions �1 , 
�2 , … , �D.

4. Start the reconstruction process with the decomposition 
�1 and a suitably chosen initial guess �(0).

5. For decomposition �k , find a reconstruction �(�) with 
the IAS MAP technique with the initial guess �(�−1) for 
the resolution levels � = 1, 2,… , L.

6. After going through all the decompositions, obtain the 
final estimate for the decomposition (basis) k as the nor-
malized mean 

 where the denominator follows from the need to balance 
out the effect of the multiplied source count following 
from the interpolation of a coarse level estimate to a 
denser resolution level.

7. If k < D , move to the next decomposition, i.e., update 
k → k + 1 , and repeat the previous step with the initial 
guess �(k−1) for the resolution level � = 1.

8. Obtain the final reconstruction as the mean: 

Technically, this process is equivalent to first evaluating the 
mean (7) for each resolution level and then the normalized 
mean (6) over the different resolutions, showing that an 
approximation of the form (3) is, in fact, obtained for each 
set of independent and identically generated source spaces. 
Since the final reconstruction is obtained as a mean over all 
the reconstruction levels, also the potential systematic dis-
cretization errors will be averaged with an equal weighting. 
This approach is used, as different resolution levels localize 

(6)�
(k)

=

L∑

�=1

�(�) ∕

L∑

�=1

s(L−�),

(7)�
(k)

=
1

D

D∑

k=1

�
(k)
.

Fig. 3  An estimate for the global posterior optimizer �
k
 obtained for 

the source space S
k
 is found using the estimate for �

k−1 as the initial 
guess (“ Randomized Scanning” section). We consider this approach 
necessary in order to maintain the estimates as close to the global 
optimum as possible. Namely, using a fixed initial guess might 
mean that the global optimizer is not found for some of the source 
spaces. Left: The global posterior optimizer is found for the posterior 
of space 1 (solid contours). Right: For space 2 (dashed contours), it 

is found (solid grey path), if the final estimate obtained in the case 
one 1 is used as the initial guess for 2 (grey circled point), while a 
local optimizer is obtained (dashed grey path) with the original initial 
guess 1 (black circled point) resulting in an optimization error. The 
global optimum might, in practice, correspond to a situation in which 
both a superficial and deep source are detected, while the deep activ-
ity might be undetected at the local one
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different details (“Coarse-to-Fine Optimization” section). 
Consequently, the details found for the most levels are likely 
to gain the highest intensity in the final reconstruction. A 
schematic illustration of the resulting data flow has been 
included in Fig. 4.

Numerical Implementation with Zeffiro Interface

The forward and inverse solvers applied in this study were 
implemented in the Matlab (The MathWorks Inc.) as a part 
of the Zeffiro Interface (ZI) code package which is openly 
available in GitHub1. ZI is a tool enabling finite element 
(FE) based forward and inverse computations in electromag-
netic brain applications. The forward approach of ZI together 
with the basic version of the IAS source reconstruction 
approach have been validated numerically in (Miinalainen 
et al. 2019; Pursiainen 2012b). ZI generates a uniform tet-
rahedral finite element (FE) mesh. Each source distribution 
is obtained by picking the first K entries of the randomly 
(uniformly) permuted set of the tetrahedron centers for the 
brain compartment. Due to the uniform mesh structure, this 
strategy leads to an evenly distributed set of source points. �.

ZI allows performing the source reconstruction routines 
using either a CPU or a GPU (graphics processing unit) type 
processor. Today, effective GPUs are available in power PCs 
an workstations but most laptops are still limited to CPU 
processing. Therefore, to compare the performance differ-
ence between GPU and CPU platforms, the computing time 
for forming a random set of multiresolution decompositions 
and inverting a given measurement data vector were evalu-
ated for NVIDIA Quadro P6000 workstation GPU and Intel 
i7 5650U laptop CPU.

Numerical Experiments

In the numerical experiments, we used the realistic popula-
tion head model2 (PHM) (Lee et al. 2016), consisting of 
five layers (white matter, grey matter, cerebrospinal fluid 
(CSF), skull, and skin) and the three-layer Ary model in 
which concentric 87, 92 and 100 mm spheres present grey 
matter, skull and scalp layer. The cerebellum and vetricle 
layers included in the PHM were modeled as part of the 
grey matter and CSF, respectively. The conductivity of each 
layer can be found in Table 1. The PHM and Ary model were 
discretized with a uniform point lattice with the resolution 
0.85 and 1 mm, leading to 24M and 30M tetrahedral ele-
ments and 4M and 5M nodes, respectively. In both cases, a 
single lead field matrix was generated for 10000 randomly 
distributed synthetic source positions. The lead field matrix 
entries were evaluated in SI units, i.e., Ohm/m and 1/m2 
for EEG and MEG, respectively. Each point contained three 
sources oriented along x-, y- and z-directions. Since the grey 
matter compartment of PHM does not include the thalamus, 
the source space was extended to cover both the white and 
grey matter compartment. Note that the lead field matrix and 
the corresponding source space have to be generated only 
once after which the space can be decomposed in multiple 
ways, e.g., different resolutions, as is the case in the pro-
posed RAMUS process.

Simulated Measurements

For the Ary model, a total of 102 sensor points were dis-
tributed over the upper hemisphere. Using those, both elec-
trode and radial magnetometer measurements of the elec-
tromagnetic field were simulated as shown in Fig. 5. The 
magnetometer locations were obtained by scaling the radial 
component of the source locations by a factor of 1.2. The 
electrodes were modeled using the complete electrode model 
(Pursiainen et al. 2012). The inner and outer radius of the 
ring were 5 and 10 mm, respectively. The average contact 
resistance of each electrode was assumed to be 1 kOhm. In 

Fig. 4  A schematic visualization of the data flow during the recon-
struction process for the multiresolution decompositions 1, 2,… ,D 
each one with resolution levels 1, 2,… ,L . The final estimate (6) 
obtained for the decomposition k is used as the level-one initial guess 
for the decomposition k + 1 . This sequential strategy for selecting the 
initial guess aims to minimize the effect of the optimization errors 
as suggested in Fig.  3. Note that with a good enough initial guess 
the global optimum is always found, meaning that the differences 
between the optimization results can be associated with the discre-
tization errors which are modeled here as independently and identi-
cally distributed random variables

Table 1  The conductivities (S/m) of the different compartments for 
PHM and Ary model (Ary et al. 1981)

Justification of the values used for the realistic model can be found in 
Dannhauer et al. (2011)

Model WM GM CSF Skull Skin

Ary 0.33 0.0042 0.33
Deep 0.14 0.33 1.79 0.0064 0.43

1 https ://githu b.com/samps apurs iaine n/zeffi ro_inter face
2 https ://itis.swiss /virtu al-popul ation /regio nal-human -model s/phm-
repos itory /

https://github.com/sampsapursiainen/zeffiro_interface
https://itis.swiss/virtual-population/regional-human-models/phm-repository/
https://itis.swiss/virtual-population/regional-human-models/phm-repository/
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the case of PHM, an EEG cap with 72 ring electrodes (10 
mm outer and 5 mm inner diameter, 1 kOhm resistance) was 
attached on the head model.

Two current dipoles were placed in shallow and deep 
parts of the grey matter. The source locations can be found 
in Table 2. Physiologically these could be interpreted as the 
somatosensory (superficial) P20/N20 and thalamic (deep) 
P14/N14 component, i.e., the 20 and 14 ms post-stimulus 
peaks. Activity for both locations occurs at the same time in 
the SEP/F response to the median nerve stimulus (Buchner 
et al. 1988, 1994a, 1995). When active simultaneously, the 
deep source was assumed to be slightly stronger in magni-
tude compared to the superficial one to enable the visibility 
of the deep part. This situation occurs momentarily in the 
median nerve stimulation, since the thalamic source obtains 
its maximum before the somatosensory activity increases in 
magnitude.

As the measurement error term, we used zero mean 
Gaussian white noise with standard deviation of 3% respect 

to maximal signal amplitude. To investigate the noise-
robustness of the source reconstruction, 5% noise was used 
in a single test. For the generality of the results, the maxi-
mum data entry of each dataset was normalized to one. The 
accuracy of the source recovery was analyzed in two 60 
mm diameter spherical ROIs centered at the source loca-
tions (Fig. 5).

IAS MAP Iteration

The previous experience shows that, in order to distinguish 
deep activity (Calvetti et al. 2009), the hyperparameter val-
ues for the hyperprior have to be set as small as possible 
without risking the numerical stability of the reconstruction 
process. In the present study, the scale parameter �0 was 
chosen to be 1E-10 and the shape parameter � was given 
the smallest possible value 1.5. These values were found 
to work generally well and they are supported also by the 
earlier studies (Calvetti et al. 2009). Ten iteration steps were 
performed to obtain a MAP estimate for a single resolution 
level. A single step was utilized in a single test.

Validation Tests

We analyzed the performance of the RAMUS reconstruction 
approach both visually and numerically in the tests (A)–(I) 
using the Ary model. The spherical domain was used in 
order to optimize the clarity of the results. In addition to 
these reconstructions, one test (J) was performed using 
PHM, i.e., the realistic model. The specifications for (A)–(J) 
can be found in Table 3.

The accuracy obtained in the cases (A)–(I) was analyzed 
by comparing the average position (center of mass), orienta-
tion and magnitude of the reconstructed distribution within 
the ROI to that of the actual dipole source. These average 
estimates were obtained with respect to the final recon-
structed distribution of 10000 sources in each case (A)–(I) 
and for both single and multiple resolution reconstructions. 
In addition, the relative magnitude (between 0 and 1) of the 
distribution was calculated for each ROI. The source was 
classified as detected, if the relative maximum exceeded the 
value 0.1, and otherwise undetected. This threshold criterion 
was chosen as it represents roughly the limit of a visually 
detectable source. In (A)–(I), we varied the number of mul-
tiresolution decompositions, sparsity factor, hyperprior, the 
source magnitudes, and the measurement modality (EEG 
or E/MEG). When combining the lead field matrices for E/
MEG, the MEG lead field matrix and data was scaled so that 
the Frobenius norm, i.e., the 2-norm of all the entries, was 
equal to that of the EEG lead field matrix.

The case (I), was studied using three alternative 
approaches in addition to the basic multiresolution scheme. 
In the first one of these, the noise level was increased to 5%. 

Fig. 5  The volumetric FE mesh for the realistic five-layer PHM and 
three-layer Ary model. Top row: The left image shows the domain 
with 102 EEG ring electrodes on it and the right one visualizes the 
positioning of the 102 radial magnetometers which has been obtained 
by scaling the electrode locations by the factor of 1.2. Bottom row: 
The source locations with the ROIs for the Ary model (left) and a 
cut-view of the PHM (right) with 1cm diameter ring electrodes which 
were modeled using the complete electrode model (Pursiainen et al. 
2012)

Table 2  The source locations and orientations utilized in the numeri-
cal experiments

Type Corresp. x (mm) y (mm) z (mm) Angle (°)

Superf. P20/N20 − 5 0 77 11
Deep P14/N14 7 0 5 68
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The second one involved only the coarse resolution level 
with otherwise unchanged parameters. In the last one, only 
single IAS MAP iteration was performed on each recon-
struction level, meaning that the estimate obtained coincided 
with MNE (Calvetti et al. 2009).

A total of 100–400 source positions at the coarse level, 
i.e., a number roughly comparable to that of the data entries 
(“Coarse-to-Fine Optimization” section), was found to work 
appropriately in the detection of the deep activity. When 
the sparsity factor between s = 8 and s = 5 , the source posi-
tion count was within this interval at the coarsest level of a 
three-level multiresolution decomposition for the initial set 
of 10000 source positions. At the coarsest level, each source 
position was associated to about s2 ( sL−1 with L = 3 ), i.e., 
between 64 and 25 finest-level source positions, respectively. 
The number D of multiresolution decompositions was cho-
sen to be comparable to this number, slightly below or above 
that, in order to guarantee sufficient averaging over all the 
possible random basis choices.

Results

The results obtained in the numerical experiments have been 
included in Tables 4, 5 and Figs. 6, 7, 8, 9, 10 and 11. In 
each case, the deep and superficial component have been 
analyzed separately. Histograms for the cases (A)–(I) illus-
trate the accuracy of the reconstructed source with respect to 
the source position (mm), orientation (deg), amplitude, and 
the relative maximum of the current density within the ROI 
(Figs. 6, 7, 8 and 9) with respect to the global maximum. 

Table 3  The specifications of 
the reconstructions computed in 
the numerical experiments

a Scaling factor
b Number of decompositions

ID Geom. Data sa Dec.b Hyperprior Amplitude

Deep Superf.

(A) Ball EEG 8 100 IG 10 5
(B) Ball EEG 8 100 IG 10 0
(C) Ball EEG 8 100 IG 0 5
(D) Ball EEG 8 100 IG 10 7
(E) Ball EEG 5 100 IG 10 7
(F) Ball EEG 8 20 IG 10 7
(G) Ball EEG 8 100 G 10 5
(H) Ball E/MEG 8 100 IG 10 5
(I) Ball E/MEG 8 100 IG 10 7
(J) PHM EEG 8 100 IG 10 7

Table 4  The computing time (in seconds) for 100 random three-level 
multiresolution decompositions and of a corresponding RAMUS 
(randomized multiresolution scan) estimate obtained with a NVIDIA 
Quadro P6000 workstation GPU and Intel i7 5650U laptop CPU

Processor Dec. EEG E/MEG

Quadro P6000 36 14 28
i7 5650U 176 55 116

Table 5  The percentage of the reconstructions fulfilling the source 
detection criterion (the local maximum in the ROI >0.1 of the global 
maximum). This threshold criterion was chosen as it represents 
roughly the limit of a visually detectable source. In case (B), where 

only the deep source is present there are 4% false positive detections 
for the superficial one. This is due to the relatively large deviation of 
the deep source due to which it is moved partially in the superficial 
ROI in the corresponding estimates

a Noise level (%)
b The resolution levels ( � ) in the reconstruction process

Type na
�
b ROI (A) (B) (C) (D) (E) (F) (G) (H) (I)

MAP 3 1–3 Deep 100 100 0 98 100 86 0 100 92
Sup. 100 4 100 100 100 100 100 100 100

5 Deep 100 90
Sup. 100 100

MNE 3 1–3 Deep 0
Sup. 100

MAP 3 1 Deep 96
Sup. 100
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The last one of these is utilized as a measure for the distin-
guishability of the source within the ROI. Examples of the 
reconstructions in the cases (A)–(I) are illustrated in Fig. 10, 
and the distributions obtained for (J), i.e., the realistic PHM, 

Fig. 6  The results of the deep source localization for the numerical exper-
iments (A–I) conducted in the spherical domain (Table  3). The distri-
butions of the position (mm), angle (°) and relative logarithmic (log10) 
amplitude difference to the exact dipole source, computed in the ROI, 
have been analyzed as histograms. The sample size is 50. Each recon-
struction in the sample has been obtained by reconstructing the activity in 
the whole brain for an independent random realization of the noise vector 
and associating the total integrated activity in each ROI to the correspond-
ing (deep or superficial) dipole source. Additionally, the histogram of the 
relative maximum in the ROI is given. The solid vertical line shows the 
median for each distribution, and the dashed lines mark the 90% confi-
dence interval. In general, the results show that the IG hyperprior is nec-
essary for detecting the deep source. The accuracy and reliability of the 
results increase along with the number of multiresolution decompositions. 
Furthermore, using E/MEG instead of EEG increased the accuracy of the 
deep source localization, while EEG was advantageous with respect to the 
amplitude of the deep source. The results are not visualized for the cases 
in which the localization criterion (relative maximum > 0.05) was satis-
fied by less than 5% of the reconstructions

Fig. 7  The results of the superficial source localization for the numer-
ical experiments (A–I) conducted in the spherical domain (Table 3). 
In contrast to the case of the deep source, the superficial one is 
detected accurately in each case where its amplitude differs from 
zero. The most accurate results were obtained, when the deep source 
was absent. E/MEG yielded superior result compared to EEG
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are shown in Fig. 11. The additional cases evaluated for (I), 
are presented in Fig. 8 and 9.

The histograms in Figs. 6, 7, 8 and 9 illustrate the numeri-
cal accuracy of the RAMUS reconstruction approach. Case 
(A) suggests that the activity in both superficial and deep 
areas can be reconstructed in EEG, when applying IG as 
hyperprior. In (A), the superficial source is found with the 
median positioning accuracy of 8 mm, angle difference of 
4.5° and logarithmic (log10) relative amplitude error of 
− 0.25, i.e., the amplitude of the reconstructed source is 
56% compared to that of the actual one. For the deep source 
these errors are 15 mm, 12 deg, -0.65 (22% amplitude), 
respectively. Furthermore, as shown by the relative maxi-
mum, the superficial source always maximizes the (global) 

reconstruction, and the relative maximum within the deep 
ROI is around 50% of the global one in median.

Based on (B) and (C), it is obvious that the reconstruc-
tion accuracy is better, if only one of the two sources is 
active. Furthermore, increasing the intensity of the super-
ficial source decreases the reconstruction accuracy for 
deep one which is shown by the case of (D) for which the 
median position, orientation amplitude, and relative maxi-
mum for the deep source are 18 mm, 17°, − 0.85 and 0.25, 
respectively. That is, the accuracy is lower than in (A). In 
(E), a sparsity factor of 5 was used instead of 8, meaning 
that the resolution difference between the subsequent lev-
els was less steep, resulting in a weaker distinguishability 
of the deep source. The same observation was made in the 
case (F) in which 20 randomized decompositions instead 
of 100 were used. The deep activity was absent in (G), 
where we used the G hyperprior instead of IG, confirming 
the necessity of IG as the hyperprior. In (H) and (I), the 
use of the E/MEG lead field was observed to improve the 
deep localization accuracy around 7 mm and orientation 
accuracy about 8° with respect to the corresponding cases 
(A) and (D) of EEG data, while the superficial localization 
accuracy was practically unchanged for (H) and deviated 
less than 2 mm and 1 deg for (I). The results for E/MEG 
were visually more focal than the ones obtained with EEG 
(Fig. 10).

In the three additional tests performed with the param-
eter setting (I), the increased 5% noise level led to 5 mm 
and 3 deg lower positioning and orientation accuracy for 
the deep source, and a smaller 1 mm and 1 deg deviation 
for the superficial one. In the case of the coarse-level MAP 
iteration with 3% noise, 2 mm and 1 deg position and orien-
tation improvement was observed for the deep source. For 
the superficial one, there was a 2 mm deviation in the posi-
tion, while the orientation accuracy remained unchanged. 
The coarse-level estimate was visually less focal compared 
to the ones obtained with multiple resolution levels. MNE 
detected only the superficial source for which 1 mm position 
deflection and 3 deg orientation improvement were obtained 
compared to the basic case (I).

In (J), simultaneous localization of the simulated radial 
thalamic and tangential somatosensory component was 
found to be feasible with the realistic PHM model (Fig. 11). 
Similar to the spherical case, the deep activity had a lower 
amplitude than the superficial one. In the somatosensory 
area, with the physiological normal constraint, i.e., the 
assumption that the primary current is oriented along the 
inward surface normal, the activity was localized in the pos-
terior wall of the central sulcus similar to the synthetic P20/
N20 component used in generating the data.

The results concerning the computing times have been 
included in Table 4. Those show that a superior perfor-
mance was obtained with GPU processing which provided 

Fig. 8  The additional deep source localization results obtained in the 
case (I) for the deep source

Fig. 9  The additional superficial source localization results obtained 
in the case (I) for the superficial source
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the randomized set of decompositions and a reconstruction 
in 1/5 to 1/4 of the time required by the laptop CPU.

Discussion

The present numerical results suggest that via the proposed 
randomized multiresolution scanning (RAMUS) technique 
one can obtain a robust and accurate MAP estimate for the 
primary current density in both superficial and deep parts of 
the brain. RAMUS was observed to enhance the visibility 
of deep components and also marginalizing the effect of 
the discretization without a remarkable computation cost. 
The noise-robustness of RAMUS was shown for 3% and 
5% noise levels. As expected, the effect of the noise was 
observed to be the most obvious with respect to the deep 
source.

Utilizing a multiresolution approach was found to be 
crucial per se for the reconstruction quality, since maximal 
achievable accuracy for the deep components is significantly 
lower than for the superficial one. Detecting the deep source 
necessitated the presence of a coarse resolution level in the 
MAP estimation process, i.e., a sparsity factor s larger than 
one. The superior results were obtained with s = 8 . Decreas-
ing the value of s, i.e., increasing the source count, quickly 
diminished the detectability of the deep component which 
can be observed based on the results obtained for s = 5 . 
The distinguishability of the deep source in the final esti-
mate was determined by the number of the source positions 
at the coarsest level which, in this study, was observed to 
be around 100–400 roughly matching the sparsity factors 
between s = 8 and s = 5 . Investigating this interval was 
motivated by the fact that the maximal number of the detect-
able sources in the numerical system is determined by the 
number of the data entries (“Coarse-to-Fine Optimization” 
section) which is 102 for EEG and 204 for E/MEG, i.e., 
roughly of the same magnitude. In practice, the optimal 
size of the coarse system should also take the physiological 
modeling aspects into account and might be, therefore, also 
considerably larger than the present choice. For example, if 
the neural activity is limited to a priori known ROIs a larger 
number might be well-motivated. A comparison between the 

Fig. 10  Examples of the reconstructions obtained in the numerical 
experiments (A–I) in the spherical domain (Table 3). In each image, 
the actual source and the center of mass of the reconstruction w.r.t. a 
ROI centered at the actual source position, are marked by the red and 
purple arrow, respectively. The case (I), was studied using the follow-
ing three alternative approaches in addition to the basic multiresolu-
tion scheme. MNE: only single IAS MAP iteration was performed 
on each reconstruction level, meaning that the estimate obtained 
coincided with MNE. Noise 5%: the noise level was increased to 5%. 
Coarse-level MAP: only the coarse resolution level was applied in the 
MAP estimation process with otherwise unchanged parameters

▸
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single (coarse-level) and multiple resolution results showed 
that the refinement of the resolution during the reconstruc-
tion process improves the focality of the reconstruction 
and its accuracy in the superficial areas. Nevertheless, the 

coarse-level reconstruction was marginally superior in the 
deep part, emphasizing that here the finer resolution levels 
slightly affected the coarser level outcome, which is here 
presumably optimal for the weakly distinguishable deep 

Fig. 11  The reconstruction (I) 
of the primary current density 
for the numerically modeled 
deep (thalamic P14/N14) and 
superficial (somatosensory P20/
N20) activity obtained using the 
population head model (PHM). 
On each row, the left column 
shows the amplitude and the 
right one the normal component 
in the direction of the surface 
normal. On 3rd and 4th row, the 
normal activity has been con-
strained into the outward direc-
tion. In each image, the actual 
source and the center of mass of 
the reconstruction w.r.t. a ROI 
centered at the actual source 
position, are marked by the red 
and purple arrow, respectively
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activity. Thus, it is important to adjust the decomposition 
parameters appropriately. The marginalization of the dis-
cretization errors via random scanning was perceived to be 
vital in order to optimize the robustness of the reconstruc-
tion which was observed to grow along the number of the 
multiresolution decompositions utilized.

When coupled with the iterative alternating sequential 
(IAS) algorithm, RAMUS constitutes essentially a repetitive 
MAP optimization process for HBM (O’Hagan and Forster 
2004; Calvetti et al. 2009). Marginalizing the result over 
a given number of random multiresolution decompositions 
can be associated with computing an equal number of MAP 
estimates. Since the computational cost of the IAS algo-
rithm is largely determined by the product between the lead 
field matrix and a candidate solution which is parallelized 
effectively in both CPU and GPU processors. Here, the lat-
ter option was found to achieve the fastest performance with 
the total computation time for a single reconstruction being 
14 seconds which would be feasible in processing a larger 
dataset. Overall, the computational effort of evaluating the 
MAP via the RAMUS technique can be regarded as moder-
ate compared to a full MCMC sampling based conditional 
mean (CM) estimate for the posterior density which has been 
evaluated in (Calvetti et al. 2009) within a ROI. Namely, 
achieving a full convergence of MCMC would require thou-
sands of iterations (Liu 2001) and the effort of one iteration 
step is comparable to a single step of IAS. Thus, MCMC 
would be a slower option. Even though an optimization 
method, RAMUS can be also interpreted as a surrogate 
for CM, as it, on one hand, increases the robustness of the 
source reconstruction via sampling, but, on the other hand, 
does not provide as extensive information about the posterior 
density itself as an actual Bayesian sampler does.

The results obtained suggest that the IG hyperprior 
(O’Hagan and Forster 2004) is necessary in conjunction 
with IAS, when it is coupled with RAMUS, as the deep 
activity was not detected with G. Since here the cases of the 
G hyperprior and single-step MAP can be associated with 
the 1-norm regularized MCE and MNE (Uutela et al. 1999; 
Hämäläinen et al. 1993) (“Hierarchical Bayesian Model” 
section), respectively, it also seems that RAMUS would not 
enable correcting a depth bias related to either of these esti-
mates. Previously, in (Calvetti et al. 2009), IG was found 
to perform well for the deep part, when a region of interest 
was used. Based on the present results, RAMUS provides 
the means to utilize the advantage of the IG within the whole 
brain and with a high imaging resolution, while maintaining 
the computational cost on an appropriate level.

We emphasize that the present conditionally Gaussian 
prior, in its current formulation, is depth, resolution and 
decomposition invariant. That is, additional physiological 
or operator based weighting or prior conditioning (Homa 
et al. 2013; Calvetti et al. 2015, 2018) is not necessary in 

order to balance the depth performance of the MAP esti-
mate. Our interpretation for this is that RAMUS can cor-
rect the depth localization inaccuracies that are otherwise 
found with MAP estimates, as it, via the multiresolution 
approach, decomposes the source space into a set of a vis-
ible and invisible fluctuations, explores both sets, and also 
helps to marginalize the random numerical discretization 
and optimization errors out of the final estimate. Central 
here are the visibility of the deep activity at low resolution 
levels (Pascual-Marqui 1999), the concept of the sensitivity 
decomposition (Liu et al. 1995) and forming such through 
projections and multiresolution decompositions which have 
been investigated in the context of other inverse problems, 
e.g., in (Piana and Bertero 1997a; Pursiainen 2008).

In addition to the investigated properties, the choice for 
the scale parameter was also observed to be important in 
order to guarantee proper function of RAMUS. In each MAP 
estimation process, the present value 1E−10 was found to 
work well in detecting activity for both the spherical and 
realistic head model. The workable range for the scale 
parameter was observed to be from 1E−10 to 1E−08 simi-
lar to the previous findings (Calvetti et al. 2009). Outside 
this interval the deep activity was not found appropriately 
or the orientation accuracy of the estimates was lost. In the 
latter case, the estimate was locked into the direction of a 
Cartesian coordinate axis, meaning that, due to overly strong 
focality condition, only single component in the estimate 
differed from zero in the end of the iteration. Locking was 
also observed for MAP optimization sequences consider-
ably longer than 10 iteration steps. With a sufficiently large 
scale parameter there was no locking, but the reconstructions 
obtained were also less focal.

The results of this article concern only the present numer-
ical framework in which a deep and superficial source were 
detected simultaneously. Future work will include testing 
and analyzing the performance of the RAMUS approach 
with real experimental SEP/F data with the goal to distin-
guish cortical and sub-cortical activity, e.g., the P14/N14 
(deep) and P20/N20 (superficial) components occuring in 
the stimulation of the median nerve. A comparison with 
other inverse methods capable of deep localization, such as 
LORETA and Beamforming (Pascual-Marqui et al. 2002, 
1999; Jonmohamadi et al. 2014), will also be important. 
Further method development topics will include a deeper 
investigation on the inverse effects of the hyperprior and 
decomposition parameters as well as finding alternative 
strategies to update the initial guess for the IAS MAP esti-
mation technique. In the latter case, for instance, an averaged 
initial guess obtained with respect to several multiresolution 
decompositions might provide a potential alternative for the 
current approach which relies on a single decomposition. 
To make the random scanning computationally more effi-
cient a solver based on parallel scanning processes might be 
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developed. We also emphasize that RAMUS with its cur-
rent formulation, the proposed algorithm can be applied to 
reduce discretization errors not only with the present IAS 
MAP method but potentially for a variety of source recon-
struction techniques.
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Appendix

A IAS MAP Estimation

The IAS algorithm finds a MAP estimate for the posterior 
p(�,� ∣ �) as follows: 

1. Set k = 0 and �(0) = (�0, �0,… , �0).
2. Set �(k) = ��

1∕2
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 where � denotes the standard deviation of the likelihood.
4. Update the hyperparameter based on the hypermodel.

– If the hypermodel is G, set 

 with � = � − 3∕2 , i = 1, 2,… , n.
– Else, if the hypermodel is IG, set 
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5. Set k = k + 1 and go back to 2., if k is less than the total 
number of iterations defined by the user.
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