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Unitary transformations are the fundamental building blocks of gates and operations in quantum information process-
ing, allowing the complete manipulation of quantum systems in a coherent manner. In the case of photons, optical
elements that can perform unitary transformations are readily available only for some degrees of freedom, e.g., wave
plates for polarization. However, for high-dimensional states encoded in the transverse spatial modes of light, per-
forming arbitrary unitary transformations remains a challenging task for both theoretical proposals and actual
implementations. Following the idea of multi-plane light conversion, we show that it is possible to perform a broad
variety of unitary operations at high quality by using only a few phase modulation planes. More importantly, we experi-
mentally implement several high-dimensional quantum gates for up to five-dimensional states encoded in the full-field
mode structure of photons. In particular, we realize cyclic and quantum Fourier transformations, known as Pauli
X̂ -gates and Hadamard Ĥ-gates, respectively, with an average visibility of more than 90%. In addition, we demon-
strate near-perfect “unitarity” by means of quantum process tomography, unveiling a process purity of 99%. Last, we
demonstrate the benefit of the two independent spatial degrees of freedom, i.e., azimuthal and radial, and implement
a two-qubit controlled-NOT quantum operation on a single photon. Thus, our demonstrations open up new paths to
implement high-dimensional quantum operations, which can be applied to various tasks in quantum communication,
computation, and sensing schemes.
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1. INTRODUCTION

In times when optical quantum information processing tasks
slowly enter the realm of everyday technical applications [1–4],
reliable and efficient control of the Hilbert space of a quantum
system becomes increasingly important. There are many optical
elements known that perform unitary transformations [acting on
different degrees of freedom (DOFs)] on certain input modes in
order to achieve a desired mode content of the output. For instance,
in polarization space, elements such as wave plates that make use
of birefringence can be used to convert the photon’s polarization
states in a unitary fashion. The existence of such simple and effi-
cient elements is one of the main reasons that this DOF has been
used in a myriad of quantum experiments in both fundamental
studies [2,5,6] as well as in applications [7,8]. However, it is known
that high-dimensional systems, so-called qudits, offer access to
several advantages such as an increase in channel capacity as well
as an improved resistance to noise in communication protocols
[9–11] with feasible experimental effort [12].

One very popular candidate for the implementation of high-
dimensional information processing protocols that has gained
a lot of attention in recent years is the transverse spatial DOF. A
convenient and very popular discretization of two-dimensional
transverse space can be done by using the Laguerre–Gauss (LG)
modes [13,14], which form a complete, orthonormal basis. LG
modes are characterized by a twisted helical wavefront of the form
e i`φ , whereφ is the azimuthal coordinate, and ` corresponds to the
quantized orbital angular momentum (OAM) value [15], which
can take on values as large as 10,010 [16]. In addition, LG modes
are characterized by a second quantum number associated with the
radial structure, which is often labeled p and has attracted notable
attention only recently [17–20].

While there are infinitely many ways to decompose the con-
tinuous spatial DOF into orthogonal modes, LG modes with their
OAM value are naturally conserved in down-conversion processes,
which are the workhorse of experiments in photonic quantum
information processing. This makes them a natural Schmidt basis
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for analyzing entanglement and implementing quantum com-
munication protocols. The family of LG modes has thus been the
central matter of interest in various fields of experimental quantum
information demonstrations using high-dimensional quantum
states [21–27].

Here, the advances in technology to shape and detect the trans-
verse structure of light with high precision has played a key role.
In addition, the advantage of having multiple quantum states
co-propagating along one optical axis, eases the implementation
of more complex experimental arrangements due to intrinsic rel-
ative phase stability without the need for interferometric setups
[28,29]. While the accessible Hilbert space is in principle infinite-
dimensional, technical hurdles such as the aperture of the optical
system or the resolution of cameras and tools for the manipulation
of wavefronts limit the number of modes that can be harnessed in
practical applications.

Nonetheless, experimental implementations already manage
to access multiple modes with high fidelity. Indeed, for state gen-
eration, different optical techniques such as computer generated
holograms [30,31] or direct modulation of the transverse phase
[32,33] have been used. Measuring the spatial mode of single pho-
tons can also be considered a mature technology, with approaches
ranging from mode sorting with the help of phase elements and
free-space propagation [34–42] to mode filtering using phase-
and intensity-flattening techniques along with single-mode-fiber
coupling [21,43].

To truly harness the potential of this high-dimensional space,
however, the ability to reversibly implement any transformation
in the subspace spanned by a finite number of selected modes is
crucial. And indeed, while the generation and measurement of
transverse spatial modes have been investigated extensively, only a
few unitary mode transformations have been realized despite their
utmost importance for quantum information science. Early on, it
was realized that cylindrical lenses arranged properly can transform
a set of LG modes into Hermite–Gauss modes and vice versa [44].
More recently, a complex arrangement of bulk optical elements
has been implemented to realize a universal gate on spin-orbit
four-dimensional states [45], and a four-dimensional version of the
X̂ -gate, i.e., a cyclic permutation of the input modes [46,47]. It has
also been shown how to extend this to arbitrary dimensions using
only linear optical elements arranged in complex interferometric
setups and free-space propagation [48]. Thus, together with a
mode-dependent phase operation (simply performed by a Dove
prism), any unitary operation on the OAM subspace could be
performed, at least theoretically.

A device that is able to perform any unitary operation within
a given high-dimensional state space is often termed multiport
and has been realized for path encoding [4,49] and similarly for
the time–frequency domain [3,50]. For the transverse spatial
DOF, only one experiment so far has demonstrated a single-mode
conversion using multi-plane phase modulation implemented by
a deformable mirror [51]. While the latter nicely demonstrates
the potential of the technique, to the best of our knowledge, no
experiment so far has demonstrated the implementation of a device
that is able to perform any unitary operation between a set of input
modes and a set of output modes of the full transverse spatial DOF
of light.

Here, we present an experiment where we use a wavefront
matching (WFM) technique [52,53] to implement a fully pro-
grammable multiport for transverse spatial modes of light in a

multi-plane light-conversion (MPLC) setting. In contrast to ear-
lier demonstrations of sorting, multiplexing, and beam steering
[39,52,54,55], as well as single-mode conversions [51], we per-
form key quantum operations such as Pauli X̂ -gates and Hadamard
Ĥ-gates for multiple input and output modes taking into account
both azimuthal and radial DOFs. We furthermore exploit the pos-
sibility of addressing all superposition states as inputs and outputs
and perform full quantum process tomography. We find a process
purity of 99% for cyclic transformations, which demonstrates the
“unitarity” of the performed operation, a key measure for the qual-
ity of quantum information processing tasks. Finally, we perform
a quantum operation on a single photon by taking advantage of
the two “independent” transverse DOFs. In particular, we perform
a controlled-NOT (CNOT) operation using both the radial and
the azimuthal DOF of single photons, thereby highlighting the
benefits of the ability to control the full-field structure of single
quantum systems.

2. UNITARY TRANSFORMATIONS USING MPLC

The key task is to realize an experimental implementation of a so-
called multiport that is able to perform any unitary operation Û on
a given set of d -dimensional input states ρi , i.e., in our case, a set of
LG spatial modes, that converts them into a well-defined set of d -
dimensional output statesρ f :

ρ f = ÛρiÛ †. (1)

The main idea behind our experimental realization of the
unitary transformation Û is that we use a multi-plane phase modu-
lation technique to build a multiport, which shares similarities to
some earlier work [51,52,54]. In this process, the device acts on
all input modes at the same time; thus, no splitting of the modes
or a separate phase-stable modulation is required. Instead of a
stochastic optimization algorithm used earlier [51], we adapt the
technique of WFM, which we outline below.

A. Wavefront Matching

The WFM technique is known from waveguide design [53] and
has been used recently to perform LG mode sorting using multiple
phase modulations [39]. During WFM optimization, all d input
modes fr are propagated forward through an optical system con-
taining n phase elements 8t with some free-space propagation in
between. At each modulation plane, t = 1, . . . , n, the complex
amplitudes of all modes fr (x , y , t) are recorded. Note that we
do not perform a full Fourier transform between the phase mod-
ulations but use a split-step technique to propagate through the
system. Subsequently, all final output or target modes bs are propa-
gated backwards, first to the last phase modulation plane (t = n)
to obtain bs (x , y , n). Now all input–output mode pairs, i.e., fr

and bs , where r = s , are “compared” to find the best single phase
modulation that matches all wavefronts at the same time. For this,
a field overlap between each input–output mode pair is calculated
according to o rst(x , y )= bs (x , y , t) fr (x , y , t)e i8t (x ,y ), includ-
ing a transverse phase modulation 8t(x , y ), which is set to zero
in the first iteration round but will be updated during the WFM
process. Subsequently, the required phase patterns for the plane t
can be obtained through
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18t(x , y )=− arg

(∑
r=s

o rst(x , y )e−iφrst

)
, (2)

where φrst is the average phase of the calculated overlap for each
mode pair. The resulting phase modulation for the last plane
8n(x , y ) is then imprinted on each backwards propagating mode
bs , which is then propagated to the (n − 1)th modulation plane.
Note that due to the free-space propagation between two phase
modulations, the amplitude is slowly adjusted to match the input
and output modes. At plane (n − 1), the overlaps between all
input–output mode pairs are calculated again and the required
phase change 18n−1(x , y ) is obtained through the formula
given in Eq. (2) and imprinted on all backwards propagating
modes. Then, this procedure of propagating, comparing, and
phase matching is repeated until the very first plane. During
the subsequent propagation and modulation, the wavefronts of
the backwards propagating modes approach the input modes
with respect to their phase and amplitude until they are perfectly
matching in the case of a very large number of phase elements n.
If the number of phase modulations is limited, one iteration often
leads to only a weak resemblance of the input–output mode pairs.
However, the whole procedure can be repeated as many times as
necessary until a certain fidelity is reached. We found that for all
our calculations, we required only a maximum of 50 iterations,
after which the mode overlaps between input and output modes
did not improve anymore, while numerical errors slowly deterio-
rated the result. While the WFM technique has been used in
different settings before [39,52,53], we use it as a powerful tool in
our experiment to achieve the goals outlined above and presented
below. As the input and output modes can be chosen freely, we
now establish a procedure to implement any unitary operation
between these modes, hence realizing a multiport using only a
limited number of phase elements placed along the optical axis.

Before investigating how many phase elements are required
to obtain reasonably good results, we briefly discuss a few
important unitary operations that play a key role as important
quantum gates in the field of quantum computation and quantum
communication.

B. High-Dimensional Quantum Gates

Some of the most important unitary operations Û in terms
of high-dimensional quantum gates are the Pauli X̂ -gates,
Hadamard Ĥ-gates, as well as controlled-Pauli cX̂ -gates. The
first two operations are single qudit operations and correspond
to a cyclic transformation and a quantum Fourier transform,
respectively. The third gate is a two-qudit operation, where one
high-dimensional quantum system controls the cyclic operation
on another high-dimensional quantum state. Note that for the
latter, the two-qubit version is also known as a controlled-NOT
operation.

1. X̂ -Gate

The effect of a high-dimensional X̂ -gate (i.e., cyclic trans-
formation) on a certain d -dimensional quantum state can be
mathematically expressed as

X̂ m
|l〉 = |(l +m)mod(d)〉, (3)

which simply corresponds to a cyclic operation where each mode
gets transformed to its m-th nearest-neighbor mode, modulo the
number of modes d . Interestingly, it was shown only recently and
only for the OAM DOF that this operation can be implemented
for arbitrary dimensions using a complex arrangement of linear
optical elements and free-space propagation [48]. For full-field
modes, i.e., including both azimuthal and radial modes, no imple-
mentation of cyclic transformations is known. Examples of matrix
representations of these gates for dimension three, i.e., qutrits, can
be found in Supplement 1.

2. HadamardGate

The high-dimensional quantum Fourier transform operation is
also known as a high-dimensional Hadamard Ĥ-gate due to its
relation to the well-known Hadamard gate for qubits. Its math-
ematical representation for prime dimensions (larger than two) can
be formulated as

Ĥm |9l 〉 =
1
√

d

d−1∑
k=0

ω
(lk+(m−1)k2)
d |k〉, (4)

where ωd = e i2π/d , m = 1, . . . , d , and Ĥ0 is the identity. This
operation transforms any given input state of a basis into a coherent
superposition of all the modes of that basis with different well-
defined phases. The different configurations of the Hadamard gate
Ĥm can be seen as a simple change between mutually unbiased
bases (MUBs). While the switching among all possible MUBs
is important for various quantum tasks, e.g., for quantum state
tomography and cryptography [56], there is one basis that is intu-
itively simple to understand for LG modes with p = 0 and OAM
values symmetrically distributed around l = 0, because it corre-
sponds to a transformation into angular coordinates. Again, we
note that there is no bulk optics realizations known for such opera-
tions. For the four different Hadamard transformation matrices for
qutrits, we refer to Supplement 1.

3. Controlled X̂ -Gate

The final quantum operation we discuss here and implement in
our experiment below is a gate requiring two high-dimensional
quantum states, where one is used to control the other, i.e., a
controlled-X̂ -gate or cX̂ -gate. Its mathematical representation can
be formulated as follows:

cX̂ (|p〉|l〉)= ( Î ⊗ X̂ p)|p〉|l〉 = |p〉|(l + p)mod(d)〉. (5)

The commonly known qubit version is the so-called CNOT
gate, where one qubit acts as a control qubit for a second target
qubit, on which a NOT operation is performed if and only if the
control qubit is |1〉 and leaves it unchanged if it is |0〉. Generalized
to arbitrary dimensions for both the control and target qudits, the
operation acts as a cyclic operation on the target qudit, where the
state is shifted by the value of the control qudit. In our case, one
qudit, e.g., the control qudit, can be realized by the radial DOF of
light, while the target qudit corresponds to the OAM value. Thus,
if the input photon has a radial structure of p , the OAM value l is
shifted by p modulo the dimension of l . In Supplement 1, we give
the transformation matrix of a two-dimensional CNOT gate as an
example.

https://doi.org/10.6084/m9.figshare.11441013
https://doi.org/10.6084/m9.figshare.11441013
https://doi.org/10.6084/m9.figshare.11441013
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C. Implementation Using MPLC

We now turn to the investigation of how many planes are required
to realize the above-discussed d -dimensional quantum gates using
multi-plane phase conversion. First, we calculate the phase mod-
ulations using two, three, five, and eight phase elements for two,
three, four, five, seven, and 11 OAM modes for the X̂ 1-gates and
Ĥd -gates using the WFM method. As an example of one simulated
unitary operation, we show the scheme of a qutrit X̂ 1-gate for the
LG modes with p = 0 and l = 0,±1 using three planes of phase
modulation in Fig. 1(a). Similar to Refs. [51,52], we find that if the
number of modes exceeds the number of planes, the quality of the
transformation decreases significantly. As a measure of the quality
of the transformation, we use the visibility V , which we obtain
from the crosstalk measurements between the input and output
modes in one basis, i.e., the initially defined computational basis,
according to

V =
∑

i

Cii/
∑

ij

Cij, (6)

where Cij corresponds to the probability entries in the diagonal
crosstalk matrix, and Cii signifies the probability of the input mode
being transformed into the desired output mode. We observe
very low crosstalk, i.e., a visibility V in excess of 96%, when the
number of modes is equal to the number of planes and only up to
five modes are used [see Fig. 1(b)]. Since simple crosstalk matrices
measured in one basis cannot directly reveal information about the
unitarity of the mode transformation, we also perform a full high-
dimensional quantum process tomography [57] on the simulated
three-dimensional X̂ 1-gate.

Quantum process tomography is based on a set of information-
ally complete measurements for a given set of input states, leading
to a complete characterization of the corresponding quantum
channel. The channel can then be represented by a completely

positive mapE , whereρ f = E(ρi ). Using a fixed set of operators,E
can be expressed as

E (ρ)=
∑
i, j

χi, j σ̂iρσ̂
†
j , (7)

where χ is a d2
× d2 dimensional matrix known as the proc-

ess matrix, and σ̂ are the Gell–Mann matrices, also known as
Pauli matrices for d = 2. Hence, this representation of quantum
processes can describe more general processes, e.g., decoherence
of the input state, than for the case of unitary transformations
(rank(χ)= 1). Note that besides our approach of quantum proc-
ess tomography for the complete characterization of the system
(transformation), various equally valid classical analogs can be used
to obtain the complex transformation matrix [58]. The unitarity
of the transformation can be assessed by taking advantage of the
Choi–Jamiolokowski isomorphism, which implies that E can be
represented by an operatorρE , known as the Choi matrix, given by

ρE =
(

Î ⊗ E
)
|9〉〈9|, (8)

where |9〉 is a d -dimensional maximally entangled state. Thus, the
process purity, Tr[ρ2

E ], is a measure of the extent to which the purity
of the input states is maintained throughout the quantum process
[59]. As expected, we find almost perfect process purity in simula-
tion, irrespective of the number of phase elements [see Fig. 1(b)].
In order to perform process tomography, we propagate all states of
all MUBs through the device and compare the simulated outcome
with the targeted modes to obtain a correlation matrix. From this
matrix, one can also deduce key figures of merit, such as the trans-
formation efficiency, which is a measure of how much light remains
within the utilized subset of modes. Again, we find that already
three planes are sufficient to get very good results of more than 80%
transformation efficiency for three modes [see Fig. 1(b)].

(a)

(b)

Fig. 1. Presentation of the multi-plane light-conversion (MPLC) technique. (a) Simulated evolution of the input modes at different stages of the MPLC
setup is shown for the case of three phase elements. We note that the input modes are all co-propagating and therefore experience the same three phase
manipulations. (b) Simulated visibility, transformation efficiency, and process purity of the cyclic transformation are shown as a function of the number of
phase elements for different numbers of OAM modes.
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Having shown that only a few phase planes are enough to enable
a broad range of quantum gates in simulations, we now implement
a simple experimental realization of a quantum gate.

3. EXPERIMENTAL RESULTS

A. X-Gate Using Three Phase Modulations and OAM
Qutrits

As a first experimental test and benchmark of a multiport realized
by MPLC, we implement the three-dimensional X̂ 1-gate for LG
modes {|l =−1〉, |l = 0〉, |l = 1〉} and p = 0 by using only three
modulation planes. We start with a low number of modes and
phase modulations to investigate a best-possible implementation
in terms of efficiency, resolution, and modulation ability. We
further use only LG modes with no radial structure to minimize
errors introduced by the detection system [43]. A sketch of the
experimental setup can be seen in Fig. 2(a). At first, we imprint
the required LG mode structures on a spatially cleaned 808 nm
laser beam with a strongly enlarged Gaussian mode and carve out
the required LG mode by modulating the phase and amplitude
of the light using a single spatial light modulator (SLM-A) [60].
We then implement the multiport by another SLM (SLM-B) in
combination with a mirror opposing it. The laser is sent through
this arrangement such that it bounces off the SLM three times,
which enables three separate phase modulations. Each of the
three phase modulations covers a large area of 630× 630 pixels
on the SLM to reduce errors introduced by the finite resolution
of the holograms. We further reduce errors introduced by slight
(pixel-sized) misalignments by using a beam waist of around 1 mm,
which is much larger than the pixel pitch (8µm). The propagation
distance between each phase modulation, i.e., each reflection on
the SLM, is set to 800 mm, thus ensuring sufficient propagation for
phase-induced amplitude modulation and a proper functioning of
the mode conversion. The utilized phase modulations are the ones

presented in Fig. 1. We note that in our experiment, we addition-
ally imprint a diffraction grating and use only the first diffraction
order, thereby filtering out the unmodulated light remaining
in the zeroth order. We additionally decrease the beam waist of
the modes during the transformation by a factor of two (imple-
mented by the WFM code), to have a smaller beam impinging on
the third SLM (SLM-C) in order to improve the measurement,
which uses phase and intensity flattening of the beam to ensure,
although lossy, near-perfect spatial mode projections [43]. With
this configuration, we achieve a three-dimensional X 1-gate with
a visibility V of (98.4± 0.7)% between all 144 input–output
mode combinations of all four MUBs [see full crosstalk matrix in
Fig. 2(c)]. This result is close to the one expected from simulation
of 99.6% [Fig. 2(b)] and shows the near-perfect functioning of the
experimental implementation of our multiport. Furthermore, we
perform high-dimensional quantum process tomography of the
experimental three-dimensional X̂ 1-gate, for which the theoretical
process matrix can be seen in Figs. 3(a) and 3(b). The experimen-
tally reconstructed process matrix is shown in Figs. 3(c)–3(d).
We find a process purity of 99.3%, which is in perfect agreement
with the simulated prediction. Moreover, the process purity shows
nicely that the transformation is fully coherent and as such, a
powerful tool in quantum information schemes.

B. High-Dimensional Gates for OAM Modes

As we have shown earlier, a larger number of phase modulations
allows unitary operations on a larger mode set and as such, a larger
dimension of the quantum state. To test the limitations in terms
of simplicity of the experimental implementation and maximum
number of phase modulations, we now realize a setup with a
multiport consisting of eight phase modulations, as well as the
generation and detection on the same SLM screen, i.e., a setup
where the beam bounces off the SLM 10 times in total. In contrast
to the experimental setup shown in Fig. 2(a), we now implement

Output modes

SLM-B

SLM-A

SLM-C

M

M

M
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Fig. 2. Experimental implementation of the three-dimensional cyclic transformation. (a) Simplified experimental setup showing the implementation of
the three-dimensional X̂ -gate using three phase elements. Photons from the source are spatially filtered to the fundamental Gaussian mode using a single-
mode fiber (black wire). The beam is then made incident on SLM-A, where both the phase and amplitude are manipulated in order to generate the appropri-
ate LG mode. These modes are then fed into the MPLC system consisting of SLM-B, displaying three phase patterns, and a mirror (M). The beam bounces
off between the SLM and the mirror three times before it exits the system and is detected using SLM-C with the intensity-flattening technique introduced
only recently in Ref. [43]. (b) Theoretical prediction of a tomographically complete set of measurements for the theoretical three-dimensional X̂ -gate. The
input and output states are chosen from the three-dimensional MUBs labeled here by I, II, III, and IV. (c) Experimental correlation matrix for different
MUBs obtained from the MPLC system described in (a).
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(a) (b)

(d)(c)

Fig. 3. Quantum process tomography of the three-dimensional cyclic
transformation. The real (a) and imaginary (b) parts of the theoretical
process matrix, χth, for the three-dimensional X̂ -gate are shown in the
Gell–Mann matrix basis. The real (c) and imaginary (d) parts of the
experimentally reconstructed process matrix, χexp, for the experimental
implementation of the three-dimensional X̂ -gate using three phase ele-
ments and OAM modes `=−1, 0, 1 are shown in the Gell–Mann matrix
basis.

five reflections on the upper half of the SLM, each phase modula-
tion being 160× 160 pixels in size. Here, we use a beam of around
0.5 mm waist, and we propagate it only 100 mm between each
phase modulation (50 mm between mirror and SLM), to keep
the whole setup more compact. After the fifth reflection, we insert
another slightly tilted mirror into the setup, which sends the light
back onto the lower part of the SLM, where the beam bounces off
the SLM another five times before it can leave the MPLC arrange-
ment. Since we have to redirect the light from the upper to the
lower half of the SLM, we compensate this vertical redirection of
the beam by displaying additional horizontal grating structures on
the five holograms displayed on the lower half of the SLM. For the
generation (done by the first hologram) and the detection of the
modes (last hologram), we again use amplitude and phase modu-
lation [60] as well as phase and intensity flattening [43]. As there
are now 10 relatively small holograms in total, a misalignment of
only one pixel for each hologram leads to a significant reduction in
the quality of the mode transformation. Moreover, when a larger
number of modes is involved, the phase modulations calculated by
the WFM tend to get more complicated, which makes the align-
ment even harder. Due to this fact, we make use of an automated
alignment procedure based on a genetic algorithm [61], where each
member of the population defines the positions of all holograms,
and the feedback signal is given by the visibility V of the crosstalk
measurements of the transformation as defined in Eq. (6). With
this programmable and fully automated multiport, we are now able
to test various transformations and single-qudit gates for different
modes and dimensions.

In a first set of measurements, we use only LG modes with radial
index p = 0. For a three-dimensional state space spanned by the
three lowest OAM modes, i.e., the set {|l =−1〉, |l = 0〉, |l = 1〉},
we experimentally obtain an average visibility of (92.7± 3.8)% for

(a) (b)

(c) (d)

Fig. 4. Experimental results for the OAM transformations using a sin-
gle SLM for generation, manipulation (eight phase planes), and detection.
Crosstalk matrices are shown for a three-dimensional Hadamard gate
(Ĥ1), converting input beams from the computational basis to another
mutually unbiased basis (here, the angle basis) (a) and a Pauli X̂ 1-gate
in dimension five (c). We further realize combined X̂ Ĥ operations per-
forming a cyclic operation on a set of input modes that is transformed to
another MUB in dimension three (X̂ 2 Ĥ2-gate) (b) and dimension five
(X̂ 1 Ĥ2-gate) (d). Note that the quality for measurements of complex
superposition modes in large Hilbert spaces as in (d) decreases due to
limited resolution of the holograms for the single-SLM implementation.

all three possible X̂ -gates in the computational basis (MUB I). We
further measure an average visibility of (92.0± 3.0)% for basis-
change transformations, i.e., a Hadamard Ĥ-gate, followed by a
cyclic operation of the states in the new basis, i.e., a Pauli X̂ -gate,
which corresponds to the unitary transformation Û = X̂ Ĥ. The
exact results of all recorded correlation matrices for this as well as
for all following measurements can be found in Supplement 1.

We then increased the dimension to d = 5 by including second-
order OAM modes, i.e., |l =−2〉 and |l = 2〉. We obtained an
average visibility over all X̂ -gates in the computational basis of
(91.9± 3.2)%. However, for the modes of the other MUBs,
the obtained visibility of the crosstalk matrix does not reach the
theoretical value but is found to be only 76.5% [see Fig. 4(d)]. We
relate this decrease in transformation quality to the finite resolu-
tion of our SLM, i.e., to be of only technical nature, the reason
being that the complexity of the spatial structure of higher-order
superposition modes (the states of the other MUBs), i.e., the field
gradients, is comparable in size to the pixels of the SLM. This
means that a misalignment of one pixel already has a significant
effect on the quality of the transformation. In contrast, if the phase
gradient is smooth and small—as is the case for states in the com-
putational basis—slight misalignments do not have a big effect.
Examples of several recorded correlation matrices for different
OAM transformations can be seen in Fig. 4.

https://doi.org/10.6084/m9.figshare.11441013
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(a) (b)

(c) (d)

Fig. 5. Experimental results of different p-mode transformations,
again using only one SLM for generation, manipulation, and detection. A
cyclic transformation X̂ 1 on p-only modes in the computational basis is
shown for dimension two in (a) and dimension three in (b). In addition,
we implement also combined X̂ Ĥ-gates in dimension three, in particular,
a X̂ 1 Ĥ2-gate shown in (c) and a X̂ 1 Ĥ†

1 -gate shown in (d). Note that
measuring p-modes properly in different mutually unbiased bases has
become possible only recently [43].

C. High-Dimensional Gates for Radial Modes

While the OAM transformations performed above can be (at least
in theory) realized using bulk optical elements [48], we now turn
to mode transformations of radial modes, i.e., p-modes, a task
for which no other implementation is known so far and there-
fore represents another novelty of our work. In particular, this
experimental demonstration is now possible due to the recently
developed measurement technique, known as intensity flattening
[43], which enables the detection of p-modes in all MUBs and thus
makes it possible to measure perfectly the full-field structure of LG
beams with only a minor experimental trade-off, i.e., additional
loss. We performed X̂ -gates in the p-only space of LG beams
(l = 0) for qubits and qutrits using the set {|p = 0〉, |p = 1〉}
and {|p = 0〉, |p = 1〉, |p = 2〉}, respectively. Additionally, we
performed Ĥ-gates and combined X̂ Ĥ-gates for the same mode
set (see Fig. 5 for examples). The average visibility obtained over all
transformations performed is (92.4± 3.4)%, which shows nicely
that our experimentally implemented multiport is able to perform
not only OAM transformations but also operations on full-field
modes, including both azimuthal and radial DOFs, an advantage
that we harness in the following section.

D. Single-Photon Controlled-X Gate

As a final test, we perform the controlled-X̂ operation, i.e., the cX̂ -
gate, introduced earlier. In contrast to the usual implementation

Fig. 6. Single-photon CNOT gate using the radial modes |p〉 as a con-
trol qubit for the manipulation of the azimuthal modes |`〉. Experimental
crosstalk matrix with input and output modes labeled by the states |p, `〉.
A visibility of 94.6% is achieved for the single-photon CNOT gate with
a MPLC system consisting of a generation SLM, an SLM used for the
manipulation (consisting of three phase planes), and one SLM as the
detection SLM. The quantum circuit diagram of a CNOT gate as used
frequently in quantum information science is also shown in the top right
corner.

using two quantum systems, we use two spatial DOFs of a sin-
gle quantum system. In order to perform this task on an actual
quantum system, we exchange the laser with a heralded single-
photon source. The single photons are generated by a photon
pair source realized by a type II parametric down-conversion
process (periodically poled potassium titanyl phosphate non-
linear crystal) pumped by a 405 nm laser source. One of
the two photons acts as a trigger signal to herald the exist-
ence of the single photon on which the quantum operation
is performed.

In our demonstration, we perform the two-dimensional ver-
sion of this gate, which is one of the most important quantum
operations, i.e., the CNOT gate. The control qubit is encoded
in the radial structure of the photon {|p = 0〉, |p = 1〉}, while
the target qubit corresponds to the OAM quantum number
{|l =−1〉, |l = 1〉}. To put it into simple terms: the CNOT
operation performs a cyclic transformation on the OAM value,
depending on the radial quantum number. For efficiency rea-
sons, we realize this single-photon quantum gate with the first
configuration of the multiport, i.e., using only three phase mod-
ulations on the manipulation SLM (SLM-B) and performing
the generation and detection on two additional, separate SLMs
(SLM-A and SLM-C). According to simulations, three phase
modulation planes already allow a visibility of 96% and, more
importantly, increase the efficiency approximately by a factor of
five due to a reduced number of reflections on the SLM. The result-
ing correlation matrix is shown in Fig. 6, which corresponds to a
visibility of (94.7± 1.4)%, which is very close to the theoretical
prediction.
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4. CONCLUSION AND OUTLOOK

In conclusion, we have proposed and experimentally demonstrated
an easy to implement, versatile scheme that can perform in prin-
ciple arbitrary unitary transformations on spatial modes of light.
Our method has the advantage of being simple and straightforward
to implement, therefore making it a novel experimental tool for
future experiments, especially in the field of quantum information
processing. In order to demonstrate the versatility of our tech-
nique, we demonstrated applications of different quantum gates
on three- and five-dimensional LG modes, taking into account
both the radial as well as the azimuthal quantum number. Besides
the conventional high-dimensional versions of the Pauli X̂ -gate
and the Hadamard Ĥ-gate, as well as combinations thereof, we
also implemented a single-photon CNOT gate, harnessing one
transverse coordinate to control the other one. Moreover, we
performed quantum process tomography on one particular trans-
formation, unveiling the “unitarity” of the operation. While the
demonstrated X̂ - and Ĥ-gates are fundamental building blocks
for high-dimensional quantum information processing tasks,
Hadamard Ĥ-gates can also be highly valuable as a switch between
different MUBs in quantum cryptography applications. Moreover,
the CNOT gate performed on a single photon, demonstrates
nicely additional opportunities offered by having access to the
two independent DOFs when using transverse spatial structures
such as high-dimensional quantum states. We hope that this might
trigger research in less explored avenues of quantum information
processing, e.g., in simplifying quantum gates [62].

A central challenge that will have to be addressed in the future
is the limited single-photon efficiency, due to losses incurred
by every reflection upon the SLM, in our case, a loss of around
25%. For fixed quantum information protocols (e.g., quantum
key distribution, where only a few bases, fixed by the protocol
are required) or fundamental tests, this downside can be over-
come by physically designing phase plates corresponding to the
individual phase modulations, e.g., as has been shown in multi-
plexing tasks [54]. This would lead to high-fidelity and low-loss
arbitrary unitary transformations, but would sacrifice the flexi-
bility to program any transformation and requires a pre-designed
piece of equipment for every basis. A solution that is still flexi-
ble and can be used as a re-programmable multiport can be the
implementation using deformable mirrors. They usually have
very high reflection efficiencies, however, can become very costly
when high spatial resolutions of the modulation are required.
Nevertheless, our implementation adds another important tool
for high-dimensional quantum information experiments using
spatial modes of light and shows the potential that this set of modes
offers, especially if both radial and azimuthal DOFs are taken into
account.
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