
TIP-20788-2019.R1 1 

  
Abstract— We present a fast and accurate method for dense 

depth reconstruction, which is specifically tailored to process 
sparse, wide-baseline light field data captured with camera arrays. 
In our method, the source images are over-segmented into non-
overlapping compact superpixels. We model superpixel as planar 
patches in the image space and use them as basic primitives for 
depth estimation. Such superpixel-based representation yields 
desired reduction in both memory and computation requirements 
while preserving image geometry with respect to the object 
contours. The initial depth maps, obtained by plane-sweeping 
independently for each view, are jointly refined via iterative belief-
propagation-like optimization in superpixel domain. During the 
optimization, smoothness between the neighboring superpixels 
and geometric consistency between the views are enforced. To 
ensure rapid information propagation into textureless and 
occluded regions, together with the immediate superpixel 
neighbors, candidates from larger neighborhoods are sampled. 
Additionally, in order to make full use of the parallel graphics 
hardware a synchronous message update schedule is employed 
allowing to process all the superpixels of all the images at once. 
This way, the distribution of the scene geometry becomes 
distinctive already after the first iterations, facilitating stability 
and fast convergence of the refinement procedure. We 
demonstrate that a few refinement iterations result in globally 
consistent dense depth maps even in the presence of wide 
textureless regions and occlusions. The experiments show that 
while the depth reconstruction takes about a second per full high-
definition view, the accuracy of the obtained depth maps is 
comparable with the state-of-the-art results, which otherwise 
require much longer processing time. 
 

Index Terms—3D reconstruction, depth map, light-field video, 
multi-view stereo (MVS), superpixel segmentation 
 

I. INTRODUCTION 
HE notion of light field [1] is employed to describe full 
visual information of a scene in terms of individual light 

rays reflected or emitted by the objects. In the recent years, a 
number of different light field acquisition techniques have been 
proposed [2]. Robotic arms, gantries and handheld cameras [1], 
[3], [4], for example, are used to obtain large collections of 
multi-view data, providing high-resolution sampling in both 
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spatial and angular domains. However, due to sequential nature 
of capture with a single camera, the applicability of these 
techniques is limited to static scenes. Alternatively, new 
plenoptic technologies [5], [6] using a single high-resolution 
imaging sensor are capable to capture multiple sub-aperture 
images of a scene in a single shot. Inevitably, this creates a 
trade-off: providing comparatively good angular resolution, 
such cameras suffer from low spatial resolution. In contrast, 
systems based on camera arrays [7], [8], [9], [10] give the 
opportunity to record dynamic light-field videos with good 
spatial resolution. Light field video production is particularly 
beneficial for many practical applications, e.g. 3D television, 
free-view television, teleconferencing, virtual and augmented 
reality. However, using dense camera arrays for direct light 
field sampling is often restricted on practice due to vast amount 
of data and associated bandwidth problems. Therefore, the 
required amount of light field samples has to be rendered from 
the limited set of available camera views. 

Rendering based on reduced number of light field samples 
requires knowledge of the scene geometry in order to avoid 
rendering artifacts [11]. The lesser the amount of the available 
visual information, the more rendering quality depends on the 
accuracy of the provided geometry. Naturally, fast and accurate 
3D reconstruction techniques from a sparse set of light field 
samples are in great demand.  For many years, dense depth 
estimation has been an active research topic in the context of 
multi-view 3D reconstruction. Nevertheless, automatic 
recovery of high-quality dense geometry remains a challenging 
problem. Whilst many existing 3D reconstruction methods 
concentrate on accuracy, efficiency in terms of runtime and 
memory consumption is often undermined, limiting their 
applicability in cases where real-time processing is required and 
bandwidth is limited. Such applications include light field 
teleconferencing enabling eye contact, VR/AR interacting with 
remote scenes, and light field streaming [12], [13], [14] 

In this paper, we address the challenging task of dense depth 
reconstruction from sparse light field data. As oppose to 
angularly dense (the disparity is of the order of one pixel) light 
fields, obtained e.g. by plenoptic cameras, the proposed method 
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is specifically tailored to process wide-baseline light field data 
captured with camera arrays (see, e.g. Fig. 1 in [10]) . ‘Sparse’ 
in this context refers to the minimum disparity between 
adjustment views, which is considerably higher than one pixel. 
Our goal is to balance the two key performance aspects, namely 
efficiency and quality. Efficiency is addressed in terms of the 
required density of the light field sampling, processing time, 
and memory consumption. Quality is addressed in terms of 
accuracy, completeness, and robustness of recovered geometry. 
To achieve this goal, we use superpixels, which represent 
regular and compact image regions of homogeneous color, as 
the basic units for depth estimation. Elevating the 
representation from raw image pixels to superpixels brings a 
number of important advantages. First of all, the computational 
efficiency is improved as the number of the elements to be 
processed is significantly reduced, while, at the same time, 
underlying image structures are preserved, allowing for 
accurate handling of depth discontinuities. Moreover, 
combining similarly colored pixels leads to improved 
robustness against noise and intensity bias, and mitigates the 
ambiguity associated with textureless and occluded regions. We 
demonstrate that our method, while being faster and simpler 
than many previous methods, can nevertheless provide very 
accurate reconstruction results. 

The rest of the paper is organized as follows. In Section II, 
we briefly present the related work and our contributions. 
Details of our method are provided in Section III. In Section IV, 
we demonstrate experimental results, and we conclude our 
work in Section V. 

II. RELATION WITH PRIOR ART 

A. Related work 
Typically, light-field depth estimation methods rely on 

densely sampled narrow-baseline input that exhibits certain 
structural properties: points at different depths form lines with 
different slopes in so-called epipolar-plane image (EPI). To 
infer scene geometry, the EPI lines can be identified, e.g. by 

applying structure tensor [15] or defocus cue [16]. Usually, 
such local techniques fail due to noise, occlusions or 
ambiguities caused by textureless regions (just as stereo 
methods). Therefore, various methods utilize computationally 
expensive global optimization techniques to refine the initial 
depth estimates [15], [17]. Several more efficient methods that 
avoid global optimization were proposed in [18], [19], [20]. 
However, while still relying on redundancy and coherence of 
densely sampled input, the performance of these methods 
degrades substantially when the disparities between 
neighboring views grow too large, as in case of sparse light 
fields, c.f. Fig. 1(b) [21]. Detailed description of different 
strategies of dense light-field depth estimation is presented in 
the taxonomy [22]. More recently, several works have been 
proposed that address: occlusions handling [23], [24], [25], 
noisy input [24], [26], and reconstruction from sparser set of 
light field views [27], [28], [29].     

For sparse wide-baseline light fields, depth can be estimated 
using multi-view stereo (MVS) methods [30], [31]. Plane 
sweeping [32], [33] is the seminal MVS approach, where for 
each pixel in each view, multiple depth hypotheses are tested 
and the one that maximizes photo-consistency between the 
input views is chosen. Although optimization of multi-view 
photo-consistency provides satisfactory results, it is challenged 
by the presence of occlusions and textureless image regions, 
which may lead to ambiguities. To cope with outliers resulting 
from ambiguous matching, explicit smoothness constraint 
(based on the assumption that adjacent pixels should have 
similar depth) is usually imposed on the depth estimates. In 
order to simultaneously refine smoothness and photo-
consistency terms, top-ranked MVS methods utilize global 
optimization techniques, such as graph cuts [34], [35] and belief 
propagation [36], [37], [38]. Further, instead of performing 
optimization for each view independently, some MVS methods 
utilize so-called bundle optimization, where photo-consistency 
is combined with visibility or multi-view geometric coherence 
constraints [37], [39]. Relating depth estimates from different 
views allows reducing ambiguities and handling occlusions. 

 
(a) (b) (c) (d) (e) 
 

Fig. 1. Example depth estimation results on sparse multi-view datasets ‘Ballet’ and ‘Breakdance’ [44]. (a) One of the input views. (b) Depth estimation result by 
the epipolar image analysis [19] as provided in [21]. (c) Depth estimation result by segmentation-based multi-view stereo as provided by [44]. (d) Depth estimation 
result by multi-view PatchMatch stereo obtained by us using the publicly available code provided by [49]. (e) Depth maps obtained with the proposed method. 
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However, recovery of textureless regions is still problematic; 
the optimization procedure in such regions often converges to 
sub-optimal local solutions as the local pixel-wise smoothness 
constraints are usually too ‘soft’ to prevent it. Moreover, while 
concentrating on accuracy, global MVS methods are memory 
and time consuming, which leads to bad scalability and low 
runtime performance and restricts their usage in practical 
applications. 

Using a more rigid form of smoothness constraint, namely a 
planarity constraint, helps to improve the depth estimation 
within poorly textured areas. Planarity constraint enforces 
parametrical relation between pixels that belong to the same 
planar region. Piecewise planar geometry can be recovered, for 
example, by fitting planes to a sparse set of 3D feature points 
and line segments [40], [41]. Alternatively, assuming that depth 
discontinuities coincide with color boundaries, images are 
segmented into homogeneous color regions and each segment 
is modelled as a 3D plane [42], [43]. Although faster and more 
scalable compared to global MVS, planarity-based methods 
typically consider man-made environments (such as buildings) 
and mainly find application in urban scene reconstruction.  

To alleviate piecewise planarity assumption, depth 
estimation method based on over-segmentation was proposed 
in [44]. A scene is represented as a collection of small fronto-
parallel planar segments that do not correspond to semantically 
meaningful parts of the scene. The depth values are computed 
for entire segments rather than individual pixels using segment-
based loopy belief propagation. This method makes no 
assumption about content planarity (i.e. it is not restricted to 
man-made environments) and is applicable for general scenes 
(e.g. containing irregular objects such as people, vegetation, 
etc.), c.f. Fig. 1(c). However, inaccurate estimation results may 
occur due to initial segmentation errors and violation of the 
assumption of constant depth within each segment (e.g. in 
presence of slanted or curved surfaces). To reduce these 
problems, segmentation prior is used less rigidly: while depth 
values within a segment are parametrized by a single surface, 
optimization is performed in a pixel-wise manner [37], [45]. 

PatchMatch Stereo method [46] demonstrates an effective 
way to handle slanted planes. Disparity map is over-
parametrized by assigning each pixel to a planar surface 
specified by three parameters. The PatchMatch optimization 
strategy relies on random search and nearest-neighbor 
propagation. A random candidate plane is assigned to each 
pixel, and good guesses are propagated iteratively to the 
neighborhood maximizing a unary plane-induced photo-
consistency term between the views. This allows to quickly find 
a good solution in the continuous disparity space, while 
evaluating the pixel-wise matching cost many fewer times than 
traditional plane-sweeping would require.  

While being very efficient in terms of speed and memory, 
PatchMatch model demonstrates its ability to handle very 
challenging cases. Therefore, it has become a recent trend 
among sub-pixel accurate stereo methods. To further improve 
on speed efficiency, a number of modified propagation schemes 
that facilitate GPU-based implementation were proposed 
recently [47], [48], [49]. In [49], original PatchMatch is 

extended to a multi-view version that is coupled with a GPU-
efficient diffusion-like propagation scheme. Although a 
relatively fast processing time is reported in [49] (~2.7 seconds 
per depth map), similar to other local stereo methods, 
PatchMatch methods tend to fail in the presence of textureless 
areas, Fig. 1(d). Consequently, PatchMatch Stereo was further 
developed into global models that explicitly incorporate pair-
wise smoothness constraints to regularize the local 
neighborhood of disparity planes [47], [50]. Further, 
superpixel-based PatchMatch strategy was proposed in [51] that 
incorporates ‘soft’ segmentation prior: while the optimal plane 
for each pixel is estimated independently using unary matching 
cost, superpixels are used to facilitate random neighbor 
sampling and efficient collaborative cost aggregation allowing 
for an extended propagation range and computational speedup. 

Several works propose to utilize the coarse-to-fine 
hierarchical strategy [9], [10], [52] in order to reduce the 
computational burden of dense depth reconstruction and cope 
with textureless regions and occlusions. Typically, initial dense 
depth estimates are calculated for low-resolution down-
sampled images. Depth estimates at finer scales are initialized 
using up-scaled results from the lower resolutions and then 
refined. Such multi-scale approaches are able to produce denser 
reconstructions at reduced costs and, usually, large textureless 
regions can be handled correctly. However, the fine details and 
small objects are often lost at low resolution levels, and the 
sharp edges of the object boundaries can be compromised.  

B. Contributions 
In this work, we combine advantages of superpixel-based 

segmentation prior and multi-view PatchMatch stereo in order 
to develop a fast and accurate method that reconstructs dense 
depth maps simultaneously for all the views of a sparse light 
field. Namely: 
1) We adopt superpixels as the basic primitives for depth 
estimation. Instead of assigning a depth value to each image 
pixel, we exploit the beneficial properties of superpixel 
segmentation and PatchMatch parametrization and model each 
superpixel as a planar patch in the image space that can be 
defined by a single depth value at the superpixel centroid and a 
vector orthogonal to the plane surface. Such representation 
scales well with the data size, thus facilitating GPU-based 
implementation. Based on the estimated plane parameters, 
pixels within the superpixel area are associated with smoothly 
varying continuous depth values. This improves reconstruction 
accuracy compared to constant depth quantization. 
2) We formulate superpixel-specific smoothness and 
consistency terms that allow us to refine the plane assignments 
in superpixel domain. The major advantage of the superpixel-
based optimization is that the number of the parameters to be 
optimized is much smaller than in pixel-wise labeling tasks. 
Another advantage is that the local smoothness term between 
superpixels imposes long-range spatial constraints in the pixel 
domain, thus improving the depth reconstruction robustness, 
especially in textureless and occluded regions. 
3) We refine the plane assignments by propagating plane 
candidates from the superpixel neighbors and updating the 
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current plane parameters whenever the energy function value is 
improved. To ensure rapid diffusion of the plane candidates 
across the image, together with the immediate superpixel 
neighbors, we sample additional plane candidates from more 
distant neighborhoods. In addition, we employ synchronous 
update schedule that allows processing of all the superpixels of 
all the images at once making full use of the parallel graphics 
hardware. This way, the distribution of the scene geometry 
becomes distinctive already after the first iterations, facilitating 
stability and fast convergence of the optimization procedure. 

As a result, high-accuracy consistent and dense depth maps 
are obtained for each input view even in the presence of wide 
textureless regions and occlusions, c.f. Fig. 1(e).  

III. PROPOSED METHOD 

A. Overview 
The workflow of our method and the effects of each 

processing stage are illustrated in Fig. 2. The input is a set of 
views from a calibrated camera system, and the output is a set 
of the corresponding depth maps. The input views are first over-
segmented into a relatively high number of regions of 
homogeneous colors, called superpixels, c.f. Fig. 2(b). The 
assumption is that depth discontinuities coincide with the color 
boundaries and pixels within a superpixel area are likely to 
belong to the same object. The objective is to approximate the 
depth variation inside each superpixel by a planar patch. 

We define a planar patch at each superpixel using ‘point-
normal’ form of planar surface equation, as follows: 

 
𝑎𝑎(𝑢𝑢 − 𝑢𝑢0) + 𝑏𝑏(𝑣𝑣 − 𝑣𝑣0) + 𝑐𝑐(𝑑𝑑 − 𝑑𝑑0) = 0, (1) 

 
where (𝑢𝑢0,𝑣𝑣0) are the image coordinates of the superpixel 
centroid and 𝑑𝑑0 is its depth estimate, 𝑛𝑛� = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]𝑇𝑇 is a vector 
orthogonal to the plane surface (the normal vector). To obtain 
the initial depth estimates at the superpixel centroids, plane-
sweeping across the depth range of the scene is performed for 
each superpixel independently. The initial depth estimates 
contain many outliers mainly due to occlusions, ambiguous 
matching or shading variations, c.f. Fig. 2(c). In order to 
produce dense globally consistent depth maps, we iteratively 
refine plane parameters by rotating the planes around 
superpixel centroids and propagating best fitting planes across 
the image, so that smoothness between neighboring superpixels 

and cross-view consistency are maximized, c.f. Fig. 2(d). 
Superpixels are used as basic data units for the optimization, 
allowing for the desired speedup. Subsequently, we apply pixel-
wise depth fusion in order to relax the planarity assumption and 
reduce the depth inconsistencies, which may occur e.g. due to 
initial segmentation errors, c.f. Fig. 2(e). 

We assume that unrectified input images captured with a 
camera rig are provided along with reliable estimates of the 
camera calibration parameters, e.g. obtained with a typical 
structure from motion system such as VisualSFM [53]. For a 
set of rectified images, our method can be used likewise to 
estimate a set of corresponding disparity maps. The disparity 
value 𝑑𝑑𝑥𝑥 and depth value 𝑧𝑧𝑥𝑥 of pixel 𝑥𝑥 are inversely 
proportional as follows: 𝑑𝑑𝑥𝑥 = 𝑓𝑓 · 𝑏𝑏 𝑧𝑧𝑥𝑥⁄ , where 𝑓𝑓 is the camera’s 
focal length and 𝑏𝑏 is the baseline between the cameras. Due to 
this relation, we use the terms ‘depth’ and ‘disparity’ 
interchangeably in the following sections. It should be noted 
that in general different planar models would be recovered 
depending on whether the optimization is performed in depth or 
disparity space. However, the optimization procedure itself 
stays unchanged. The only difference is how the projection is 
performed: in case of disparity – via horizontal shifting, and in 
case of depth – via 3D warping using calibration parameters. 

B. Initial Depth Estimation 
Typically, matching algorithms require a large amount of 

memory, due to maintaining a cost volume associated with 
every possible disparity value. For high-resolution wide-
baseline data, the disparity range can become prohibitively 
large in memory-constrained environments, including 
implementation on GPU. PatchMatch initialization strategy 
[46] is independent of the disparity range. Each pixel is 
initialized with a random depth value within the allowed 
continuous depth range. The assumption is that among a vast 
amount of depth samples, randomly drawn for each image 
pixel, there are likely to be good guesses that can be propagated 
to the neighboring pixels. However, the transition to superpixel-
based image representation, where each superpixel is associated 
with a single depth value, greatly reduces the probability to 
sample correct depth, as the number of depth samples that can 
be tested and propagated is much lower compared to pixel-
based representation. This motivates us to use a different, more 
data-driven, strategy in order to assign a potentially good initial 
depth value to each superpixel rather than follow the fully 

 
(a) (b) (c) (d) (e) 

 
Fig. 2. Fig. 2. Algorithm workflow diagram. (a) Input images. The main stages of the algorithm are: (b) over-segmentation of the input images into superpixels 
(Section III.A), (c) initial depth estimation for each superpixel by plane sweeping (Section III.B), (d) iterative depth refinement for all the views simultaneously 
(Section III.C), and (e) final stability-based depth fusion to remove inconsistencies between the recovered depth maps (Section III.D)  
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randomized approach. Hence, unlike [46], we suggest a ‘partly 
randomized’ plane-sweeping strategy.  

Evaluating multi-view photo-consistency for a large number 
of depth hypotheses is computationally expensive, therefore we 
aim at keeping the number of depth tests at each individual 
superpixel relatively low. On the other hand, the variety of the 
depth samples collectively tested across the whole image 
should be high for more accurate depth reconstruction. 
Therefore, instead of a dense vector of fixed quantized depths 
in the range [𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥], a sparser vector of random values is 
tested at each superpixel, where each random value is drawn 
uniformly from the corresponding quantization interval. This 
way, we can alleviate the computational burden of the depth 
initialization without losing too much reconstruction accuracy, 
c.f. Fig. 3. 

To find the best depth value in terms of multi-view photo-
consistency, a plane is swept through the randomized vector of 
depth hypothesis for each superpixel independently. Pixels 
within the superpixel area are mapped to the neighboring views 
via plane-induced homography defined by the candidate depth 
d and the normal vector 𝑛𝑛� = [0, 0, 1]𝑇𝑇 (we consider fronto-
parallel planes during the initialization). The visual 
dissimilarity between the pixels is measured using truncated 
squared difference of the intensities at corresponding pixel 
locations. Truncated cost is applied to limit the influence of 
outliers due to image noise, occlusions, and non-diffuse 
surfaces. The intensity differences are accumulated over the 
superpixel area and across the views, a depth candidate that 
yields the smallest cumulative photo-consistency cost is chosen 
as the initial depth estimate: 

 
𝑑𝑑𝛺𝛺 =  argmin

𝑑𝑑
�∑ ∑ min �𝑇𝑇, �𝑝𝑝 − 𝑝𝑝𝑚𝑚(𝑑𝑑,𝑛𝑛�)�2�𝑝𝑝∈𝛺𝛺

𝑁𝑁
𝑚𝑚=1 � , (2) 

 
where 𝑑𝑑𝛺𝛺 is the depth estimate for the superpixel 𝛺𝛺, 𝑁𝑁 is the 
number of neighboring views used for the photo-consistency 
check, 𝑝𝑝 is one of the pixels assigned to the superpixel 𝛺𝛺 and 
𝑝𝑝𝑚𝑚(𝑑𝑑,𝑛𝑛�) is its corresponding projection in the 𝑖𝑖th view induced 
by the plane (𝑑𝑑,𝑛𝑛�), 𝑇𝑇 is the threshold. 

Our choice of starting with fronto-parallel planes, (assuming 
all pixels within each segment having a constant depth value), 

is driven by computational efficiency aim. However, the 
constant depth assumption is valid as long as the size of 
segments is relatively small. As the segment size increases, this 
assumption may be violated, especially for slanted surfaces, c.f. 
Fig. 1(c). We thus further estimate plane orientation for each 
superpixel during the depth refinement stage, where the depth 
estimates in the local neighborhood of the superpixel can be 
utilized to better guess possible normal vector candidates (see 
Section III.C). 

C. Iterative Refinement 
Since the initial depth maps are computed independently for 

each view, statistical correlation between the depth maps of 
different views is not exploited. In addition, whereas 
smoothness is implicitly enforced between the pixels belonging 
to the same superpixel via the segmentation prior, smoothness 
between neighboring superpixels that belong to the same object 
is not considered. In this step, the initial depth maps are jointly 
refined via iterative optimization, in belief-propagation fashion, 
in order to maximize depth consistency between the views and 
enforce smoothness between the neighboring superpixels. The 
effect of the iterative refinement is illustrated in Fig.5. 

Optimization of smoothness and consistency constraints is 
commonly applied in piece-wise planar scene reconstruction. 
Examples include [40], where a set of dominant scene planes is 
defined based on plane-fitting to sparse 3D points and line 
segments, [42], where only three orthogonal scene directions 
are considered, and [44], where the scene is modelled as a 
collection of fronto-parallel planar segments. In our approach, 
the optimization is not limited to a set of predefined plane 
candidates. Instead, at each iteration additional plane candidates 
are detected for each superpixel based on depth estimates of 
neighboring superpixels. This is different from the PatchMatch 
methods [46], [49], [50] that rely on random plane generation 
for initialization and plane refinement. 

Each view is modeled as an undirected graph 𝐺𝐺 whose nodes 
correspond to the superpixels and the state of each node holds 
the plane parameters assigned to the respective superpixel, 
namely, depth 𝑑𝑑 at the superpixel centroid and the plane normal 
vector 𝑛𝑛� = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]𝑇𝑇, and corresponding smoothness and 
consistency values. We measure the quality of the plane 
assignment at a superpixel using the following energy function: 

 
Fig. 3. Effect of plane-sweeping randomization. Top row results obtained 
using systematic depth hypothesis during initialization; bottom row - 
randomized depth hypothesis. The percentage of bad pixels for T=1/T=0.5 is 
marked at the image corners. 
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Fig. 4. (a) Candidate normal vectors are formed based on the depth estimates 
of the neighboring superpixels. (b) The propagation kernel structure. 
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𝐸𝐸(𝑑𝑑,𝑛𝑛�) = 𝐸𝐸𝑐𝑐(𝑑𝑑,𝑛𝑛�) 𝐸𝐸𝑠𝑠(𝑑𝑑,𝑛𝑛�), (3) 

 
where 𝐸𝐸𝑐𝑐(𝑑𝑑,𝑛𝑛�) is a consistency term and 𝐸𝐸𝑠𝑠(𝑑𝑑,𝑛𝑛�) is a 
smoothness term. Here, the multiplication of the energy terms 
forces a plane estimate to meet both conditions simultaneously. 

At each iteration, two update steps are performed: plane 
propagation and plane refinement. During the propagation step, 
the plane estimates are propagated across the image in a 
diffusion-like manner. The candidate plane estimates coming 
from the neighboring nodes are used to evaluate the energy 
function at the superpixel location. The current state is updated 
whenever using candidate plane parameters improves the 
energy score, 𝐸𝐸(𝑑𝑑,𝑛𝑛�) < 𝐸𝐸(𝑑𝑑(𝑑𝑑′,𝑛𝑛�′),𝑛𝑛�′), where 𝑑𝑑 and 𝑛𝑛� are the 
current plane parameters, and 𝑑𝑑′ and 𝑛𝑛�′ are the parameters of 
the candidate plane. Here, 𝑑𝑑(𝑑𝑑′,𝑛𝑛�′) is a new depth value at the 
superpixel centroid given by the candidate plane equation.  

During the plane refinement step, the superpixels are rotated 
around their centroids in order to introduce slanted planes into 
the propagation process and mitigate the fronto-parallel bias of 
the initial setting. For each superpixel we check eight candidate 
normal vectors. Each vector is defined as a normal vector to a 
triangle formed by three vertices, including centroid of the 
reference superpixel and centroids of its two adjacent nearest 
neighbors, as illustrated in Fig. 4(a). The current normal vector 
is updated if a candidate vector improves the energy 
score, 𝐸𝐸(𝑑𝑑,𝑛𝑛�) < 𝐸𝐸(𝑑𝑑,𝑛𝑛�′), where 𝑛𝑛� is the current and 𝑛𝑛�′ is the 
candidate normal vectors. Compared to the PatchMatch 
strategy [46], this approach is more efficient in finding possible 
plane candidates.  

 

1) Propagation kernel 
The lack of visual cues in textureless regions may lead to 

ambiguous matching no matter how many images are utilized 
for depth estimation. Therefore, it is important to ensure rapid 
plane propagation over wide textureless regions in order to 
avoid locally optimal solutions corresponding to false depth 
estimations, c.f. Fig. 6(b). To accelerate the diffusion process, 
we look beyond the immediate neighbors of the superpixel and 
sample additional plane candidates from a larger neighborhood. 
The superpixel nearest neighbors together with more distant 
candidates form a propagation kernel as depicted in Fig. 4(b). 
We define the propagation kernel by two parameters: ‘kernel 
size’ and number of ‘kernel steps’. ‘Kernel size’ defines the size 
of the image region (in pixels) in the vicinity of the reference 
superpixel from where additional superpixel neighbors are 
sampled for propagation. ‘Kernel steps’ defines the number of 
additional superpixels to be sampled in each direction from that 
region. Fig. 4(b) depicts the topology of the propagation kernel 
schematically to show that: (a) the samples are taken in four 
directions (up, down, left, right); (b) the nearest 8 superpixels 
are always considered; and (c) the furthest sample is taken at 
the edge of the chosen vicinity. Thanks to a larger 
neighborhood, the distribution of the scene geometry becomes 
distinctive already after the first few iterations, facilitating 
stability and fast convergence of the refinement procedure, see 
Fig. 6(c). 

It is beneficial to use a bigger propagation kernel in the 
presence of wide textureless regions; however, this requires 
more computational time as more candidates are checked 
during the propagation step. In order to balance between 
computational cost and diffusion rate, the extents of the 

 
(a) (b) (c) (d) (e) (f) (g) 

 
Fig. 5. Refinement effect. Disparity estimation results for Middlebury ‘Teddy’ and ‘Cones’ overlaid with the error map (threshold T = 1.0), the percentage of bad 
pixels is marked at the image corners. (a) One of the input images. (b) Initial disparity estimation by plane sweeping and (c)–(g) after first five refinement iterations. 
 

 
(a) (b) (c) (d)  

 
Fig. 6. Propagation kernel. (a) One of the input views. (b) Estimation result when only nearest neighbor superpixels are used for propagation. (c) Estimation result 
when the propagation kernel with constant size is applied. (d) Estimation result when propagation kernel is shrinking at each iteration. The corresponding runtime 
of the refinement step in ms/view is marked at the image corner. Note, the resulting depth map when using the shrinking kernel is very similar to the depth map 
produced when the constant size kernel is applied, whereas the runtime is much faster. 
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propagation kernel are ‘shrinked’ at each iteration as follows: 
 

𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝐼𝐼 =   𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 𝐼𝐼 ⁄  
𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝐼𝐼 =   𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 𝐼𝐼⁄ , (4) 

 
where 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 are initial kernel parameters, 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝐼𝐼 
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝐼𝐼 are the modified parameters defining the 
propagation kernel at the 𝐼𝐼th iteration. The idea is to start with a 
rather extended kernel that allows to diffuse the information far 
enough already at the first iteration. Subsequently, kernel size 
and number of samples are decreased linearly at each iteration, 
and eventually, only candidates from the nearest neighborhood 
are sampled. This provides a good compromise between the 
average cost of each iteration and the number of iterations 
required for refinement procedure to converge, c.f. Fig. 6(d). 
 
2) Smoothness Term  

The smoothness term is used to enforce spatial smoothness 
of the depth maps by penalizing inconsistencies between 
neighboring superpixels with a similar color (superpixel color 
is defined as mean color of pixels assigned to a superpixel). In 
order to enforce superpixel-based smoothness, we measure how 
well the plane assignment of a superpixel fits the point cloud 
formed by the centroids of the neighboring superpixels. The 
current plane assignment of a superpixel is used to evaluate a 
depth value at the image coordinates of each neighboring 
centroid and the difference between the evaluated depth and the 
current depth assignment at the neighboring centroid is 
penalized. The smoothness term is computed as a sum of 
pairwise consistency measurements between the superpixel and 
its neighbors weighted based on the color similarity, as follows: 
 

𝐸𝐸𝑠𝑠(𝑑𝑑,𝑛𝑛�) = 1
∑ 𝜔𝜔(𝜇𝜇𝛺𝛺,𝜇𝜇𝑖𝑖)𝑀𝑀
𝑖𝑖=1

∑ 𝜔𝜔(𝜇𝜇𝛺𝛺,𝜇𝜇𝑚𝑚) 𝑆𝑆𝑚𝑚(𝑑𝑑𝑚𝑚 ,𝑑𝑑𝑚𝑚(𝑑𝑑,𝑛𝑛�)) 𝑀𝑀
𝑚𝑚=1  (5) 

𝜔𝜔(𝜇𝜇𝛺𝛺, 𝜇𝜇𝑚𝑚) = 𝑆𝑆−(𝜇𝜇𝑖𝑖− 𝜇𝜇𝛺𝛺)2 2𝛼𝛼2⁄  (6) 
𝑆𝑆𝑚𝑚�𝑑𝑑𝑚𝑚 ,𝑑𝑑𝑚𝑚(𝑑𝑑,𝑛𝑛�)� = 𝑆𝑆−�𝑑𝑑𝑖𝑖− 𝑑𝑑𝑖𝑖(𝑑𝑑,𝑚𝑚�)�2 2𝜎𝜎2� , (7) 

 
where 𝑀𝑀 is the number of superpixel neighbors,  𝜔𝜔(𝜇𝜇𝛺𝛺,𝜇𝜇𝑚𝑚) is 
the similarity weight between the superpixel color 𝜇𝜇𝛺𝛺 and the 
color of its 𝑖𝑖th neighbor 𝜇𝜇𝑚𝑚, and 𝑆𝑆𝑚𝑚�𝑑𝑑𝑚𝑚 ,𝑑𝑑𝑚𝑚(𝑑𝑑,𝑛𝑛�)� is the 
consistency measurement between the current estimated depth 
𝑑𝑑𝑚𝑚 at the centroid of the 𝑖𝑖th neighbor  and the value 𝑑𝑑𝑚𝑚(𝑑𝑑,𝑛𝑛�) 
obtained at the centroid of the 𝑖𝑖th neighbor given the current 
plane assignment of the superpixel. Color similarity  𝜔𝜔(𝜇𝜇𝛺𝛺,𝜇𝜇𝑚𝑚)  
is evaluated in the form of a Gaussian function, where 𝛼𝛼 denotes 
the standard deviation and controls the influence of the color 
difference between superpixels. The similarity weight, thus, 
varies from zero to one and is equal one when the two colors 
are the same. Likewise, the consistency measurement 
𝑆𝑆𝑚𝑚�𝑑𝑑𝑚𝑚 ,𝑑𝑑𝑚𝑚(𝑑𝑑,𝑛𝑛�)� is evaluated using a Gaussian function. 

Compared to the local pixel-wise smoothness constraints 
[50], a superpixel neighborhood covers a larger image area 
imposing a more rigid spatial constraint. This helps to improve 
the depth reconstruction robustness in presence of wide 
textureless and occluded regions. 

 

3) Consistency Term 
The consistency term enforces cross-view consistency of the 

depth maps based on the projection relationships between the 
input views. In case of pixel-wise depth estimation, the 
consistency value is usually accumulated over a small patch of 
pixels surrounding the reference pixel in order to limit the 
influence of the outliers and image noise. For a superpixel-
based representation, it is reasonable to exploit a superpixel 
itself as a patch since it naturally integrates pixels that likely 
correspond to the same surface and, therefore, facilitates more 
accurate handling of depth discontinuities. Thus, we define the 
consistency term of a superpixel as the sum of the consistency 
measurements for the pixels in the superpixel.  

Given the current plane estimates of the superpixels, for each 
pixel, the corresponding projection in the other view is found 
via plane-induced homography. To enforce the geometric 
consistency, the difference between the depth that is used to 
project the pixel and the depth value at the corresponding 
projection location is penalized. This reflects the fact that if the 
point is visible in multiple images, it should have the same 
depth value assigned in the respective depth maps. However, 
due to occlusions, the visibility assumption does not always 
hold true. Some pixels with correctly recovered depths may be 
projected onto an occluding surface, which results in an undue 
penalty. Similar to [44], to reduce the influence of occlusions, 
we explicitly account for possible occluded regions and 
formulate the consistency term as a sum of two terms: 

 
𝐸𝐸𝑐𝑐(𝑑𝑑,𝑛𝑛�) = 1

𝑁𝑁
∑ �𝑉𝑉𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) + 𝑂𝑂𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�)� 𝑁𝑁
𝑚𝑚=1 , (8) 

 
where 𝑁𝑁 is the number of neighboring views, 𝛺𝛺 is the 
superpixel area, 𝑉𝑉𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) is the visibility term that accounts 
for the matching of visible pixels, and 𝑂𝑂𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) is the 
occlusion term that accounts for possible occlusions.  

If a superpixel from the reference view is visible in the 𝑖𝑖th 
neighboring view, both intensity similarity and geometric 
consistency constraints should be satisfied simultaneously. 
Thus, we define the visibility term as follows: 

 
𝑉𝑉𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) = 𝑆𝑆𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) 𝐶𝐶𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�), (9) 

 
where 𝑆𝑆𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) is the intensity similarity between the 
superpixel color and the corresponding projection area in the 𝑖𝑖th 
view, and  𝐶𝐶𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) is the geometric consistency between 
visible pixels. We estimate the intensity similarity as follows: 

 
𝑆𝑆𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) = 1

|𝛺𝛺|
∑ 𝜔𝜔 �𝜇𝜇𝛺𝛺,𝜇𝜇𝛺𝛺→𝑚𝑚� 𝑝𝑝𝑚𝑚(𝑑𝑑,𝑛𝑛�)�� ,𝑝𝑝∈𝛺𝛺  (10) 

 
where |𝛺𝛺| is the number of pixels in the superpixel, 
 𝜔𝜔(𝜇𝜇𝛺𝛺, 𝜇𝜇𝛺𝛺→𝑚𝑚) is defined as in (6) and represents the similarity 
weight between the reference superpixel color 𝜇𝜇𝛺𝛺 and the 
corresponding superpixel color 𝜇𝜇𝛺𝛺→𝑚𝑚 in the 𝑖𝑖th view, which is 
defined by the projection  𝑝𝑝𝑚𝑚(𝑑𝑑,𝑛𝑛�) of the pixel 𝑝𝑝. 

Let 𝑑𝑑𝑝𝑝 be the depth value at the pixel 𝑝𝑝 in the reference view, 
𝑃𝑃 be the 3D point corresponding to the pixel 𝑝𝑝, and 𝑑𝑑𝑝𝑝→𝑚𝑚 be the 
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depth value of the corresponding projection of 𝑃𝑃 to the 𝑖𝑖th view. 
If 𝑑𝑑𝑝𝑝 ≤ 𝑑𝑑𝑝𝑝→𝑚𝑚, point 𝑃𝑃 observed by the reference camera is 
closer than the corresponding point in the 𝑖𝑖th view, thus 𝑃𝑃 should 
be also visible in the 𝑖𝑖th view and the difference between the two 
depth values should be penalized to enforce the geometric 
consistency. Denoting  𝑋𝑋 = �𝑝𝑝 ∈ 𝛺𝛺� 𝑑𝑑𝑝𝑝 ≤ 𝑑𝑑𝑝𝑝→𝑚𝑚�, a set of pixels 
that should be visible in the 𝑖𝑖th view, we estimate the geometric 
consistency as follows: 
  

𝐶𝐶𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) =  1
|𝑋𝑋|
∑ 𝑆𝑆−�𝑑𝑑𝑝𝑝−𝑑𝑑𝑝𝑝→𝑖𝑖�

2 2𝜎𝜎2�
𝑝𝑝∈𝑋𝑋 , (11) 

 
where |𝑋𝑋| is the number of pixels that should be visible in the 
𝑖𝑖th view, 𝜎𝜎 is the standard deviation of the Gaussian function. 

If  𝑑𝑑𝑝𝑝 > 𝑑𝑑𝑝𝑝→𝑚𝑚, i.e. point 𝑃𝑃 observed by the reference camera 
is behind the corresponding point in the 𝑖𝑖th view, it can either 
indicate that the current depth estimate 𝑑𝑑𝑝𝑝 is inconsistent 
between the two views or that point 𝑃𝑃 is occluded in the 𝑖𝑖th view.  

To account for the occlusion case, we estimate the likelihood 
of a superpixel to be occluded in the other views and increase 
the consistency term accordingly. Since occlusions usually 
occur due to depth discontinuities, we utilize the local color 
gradient of superpixels to identify those superpixels that might 
be located at object boundaries and, thus, are more likely to be 
occluded in other views. Denoting  𝑌𝑌 = �𝑝𝑝 ∈ 𝛺𝛺� 𝑑𝑑𝑝𝑝 > 𝑑𝑑𝑝𝑝→𝑚𝑚�, a 
set of possibly occluded pixels, and using 𝜂𝜂 = 0.5 as a constant 
regularizer, we define occlusion term as follows: 

 

𝑂𝑂𝛺𝛺→𝑚𝑚(𝑑𝑑,𝑛𝑛�) = �𝜂𝜂 �1 − min
0≤i≤M

𝜔𝜔(𝜇𝜇𝛺𝛺, 𝜇𝜇𝑚𝑚)� , 𝑌𝑌 ≠ Ø
  0                       , 𝑌𝑌 = Ø,

 (12) 

 
where 𝑀𝑀 is the number of neighboring superpixels, 𝜔𝜔(𝜇𝜇𝛺𝛺, 𝜇𝜇𝑚𝑚) 
is defined as in (6) and represents the similarity weight between 
the superpixel 𝛺𝛺 and its 𝑖𝑖th  neighbor. 

D. Depth Fusion 
After the depth refinement step, the recovered depth maps 

may still contain some inconsistencies. Inconsistent estimates 
mainly occur e.g. due to initial segmentation errors, violation of 
the planarity assumption, or regions with a view-dependent 
appearance, such as shadows and reflections. Accumulating 
evidences from multiple views allows to detect and fix most of 
these cases. Thus, we apply pixel-wise depth fusion in order to 
further reduce the depth inconsistencies and relax the planarity 
constraint. As the geometric consistency between the views is 
properly exploited during the refinement stage, a rather simple 
fusion scheme can be applied to merge the depth maps into a 
consistent 3D point cloud. We use a stability-based fusion 
method proposed in [54]. Each image in turn is declared as a 
reference view. Pixels from the rest of the views are projected 
to the reference camera viewport. As a result, each pixel of the 
reference view is associated with one or more depth candidates. 
For each non-zero depth candidate, a stability value is obtained 
by counting the number of depth candidates that agree with the 
current candidate (increasing stability value) and the number of 
those that do not (decreasing stability). In the end, the closest 

depth with non-negative stability is retained, c.f. Fig. 2(e). 

E. Implementation Details 
The inherent parallelism of our method as well as linear 

storage requirements enable its efficient and scalable GPU-
based implementation. To segment the images, we use Simple 
Linear Iterative Clustering (SLIC) algorithm proposed in [55]. 
In particular, we use the GPU-based SLIC version provided by 
[56], which we also have re-implemented using GLSL. SLIC 
segmentation begins with sampling K regularly spaced cluster 
centers that form a regular 2D grid. After a few clustering 
iterations, compact and roughly equally-sized superpixels are 
produced thanks to compactness constraint. We observe that the 
final superpixel grid stays fairly regular in superpixel domain, 
i.e. in most cases a superpixel has eight adjacent neighbor 
segments corresponding to the adjacent seeds. However, such 
regularity is not guaranteed and there are regions (e.g. 
containing structure/texture) where default neighbor 
connectivity is not preserved. In [51] an adjacency graph is 
created to determine superpixel connectivity. In contrast to this, 
in our approach, we ignore the fact that the initial regularity of 
superpixel grid might have changed and utilize the initial 2D 
indices to fetch the samples during the propagation stage. This 
way, each superpixel is associated with a unique 2D index 
corresponding to its seed, which prevents any indexing error. 
The price is that superpixels with adjacent indices might not 
always be spatially adjacent. Consequently, the shape of the 
propagation kernel, c.f. Fig. 4(b), might be slightly distorted in 
some places. This, however, does not dramatically affect the 
reconstruction results, whereas such simplification allows us to 
avoid creating and storing superpixel adjacency graph, which is 
especially beneficial in case of GPU-based implementation. 

In addition to SLIC, there are other segmentation algorithms, 
which might provide certain preferable properties over SLIC 
superpixels. The method proposed in [57] guarantees regularity 
of the produced superpixel grid. According to the benchmark 
study [58], it provides the best quantitative results among 28 
state-of-the-art superpixel algorithms. Furthermore, its CPU-
based implementation is fast [57]. However, it relies on priority 
queue formulation, which impedes its implementation on a 
GPU. The superray segmentation algorithm proposed in [59] is 
specifically tailored for light field processing. It is the 
counterpart of SLIC segmentation for light fields. Its major 
advance is that perceptually similar and corresponding pixels 
are grouped across several views. To perform such grouping, 
depth estimates for the superray centroids are utilized. Further 
clustering steps substantially rely on the accuracy of the initial 
depth estimates. In general, sparse accurate depth estimates are 
hard to acquire due to e.g. wide baseline, occlusions or 
textureless regions. Although cross-view correspondence of the 
segments would be beneficial for dense depth estimation, in our 
case, utilizing this segmentation approach would result in a 
‘Chicken and Egg’ problem: segmentation is needed for 
accurate depth estimation, while accurate depth estimates are 
needed to perform segmentation. Therefore, we opted using 
SLIC segmentation as it suits our task best. Furthermore, the 
accurate depth estimates produced by our method can be 
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utilized to perform superray segmentation for further light field 
processing.  

All the steps that have been introduced in the previous 
subsections are implemented on GPU using GLSL compute 
shaders and texture arrays. The initial plane-sweeping is 
performed in parallel for all superpixels in all views. The 
refinement step is designed as a single compute render pass, 
which is called in a loop for a specified number of iterations. A 
diffusion-like propagation scheme, where half of the image 
pixels are updated simultaneously, was proposed in [49]. 
Instead, we employ synchronous update schedule in order to 
fully parallelize the message passing during the plane 
propagation. At the first iteration, a read-only texture holds the 
initial depth and normal estimates for each superpixel. During 
the refinement step, an additional write-only texture is allocated 
to hold the updated parameters, whereas the energy function is 
evaluated according to the initial plane estimates. After each 
iteration, these two textures are interchanged in a ‘ping-pong’ 
manner: the output texture holding updated estimates from the 
previous iteration is used as the input read-only texture for the 
current iteration, while the texture holding old parameters is 
overwritten by the new estimates of the current iteration. This 
way, at each iteration all the superpixels in all the images are 
refined independently in parallel. Thus, the computation time 
of the refinement step is linear with respect to the total number 
of superpixels and number of refinement iterations, and 
inversely proportional to the number of parallel GPU threads. 
Finally, the depth maps fusion consists of two compute render 
passes, which are executed for each view in turn. The first pass 
performs the projection, whereas the second pass performs the 
stability computation. 

IV. EXPERIMENTAL RESULTS 
To evaluate the efficiency of the proposed depth 

reconstruction method, we have performed experiments on 
several publicly available light field and multi-view datasets:  
1) Middlebury multi-view ‘Teddy’ and ‘Cones’, c.f. Fig. 4, 
each containing 9 rectified views [60], [61]; 
2) Stanford light fields ‘Truck’, ‘Bracelet’, and ‘Jelly Beans’, 
c.f. Fig. 11, each containing 17×17 rectified views [62]; 
3) ULB ‘Unicorn’, c.f. Fig. 12, containing 5×5 views from a 
calibrated camera array [63]; 
4) Fraunhofer ‘Bar’ and ‘Beer Garden’, c.f. Fig. 15, containing 
dynamic light field video sequences taken with 3×5 and 3×3 
camera array respectively [9]. 

Some specifications of the test datasets, such as number of 
views and spatial resolution, are summarized in Table I. 

A. Parameter Settings 
Several parameters in the proposed method allow tuning of 

the time/accuracy trade-off for a particular application. In order 
to assess the sensitivity of the reconstruction results to 
parameter variations, we run multiple tests on the ‘Teddy’ and 
‘Cones’ datasets. As a quality measurement, we use the 
percentage of bad pixels with the error threshold 𝑇𝑇 = 1.0. For 
various parameter settings, the time/accuracy trade-off results 
are shown in Fig.7.  

Fig. 7(a) illustrates the convergence of the refinement 
process with an increasing number of iterations. It can be 
observed that the error rate quickly drops after a few iterations. 
The biggest drop occurs already after the first iteration and 
continue decreasing steadily as the iterations go on. After 3-4 
iterations, the changes are marginal. This also holds true for 

 
(a) (b) (c) (d) 

 
Fig. 7. Sensitivity to parameter settings as time/accuracy trade-off. Each plot depicts the error rate (blue and green) and the corresponding computation time (red): 
(a) the number of iterations; (b) varying superpixel size; (c) initial size of the propagation kernel; and (d) initial number of kernel steps. 

TABLE I 
DATASETS, SETTINGS AND TIMINGS MEASURED ON NVIDIA QUADRO M1000M GRAPHICS CARD (TIME IN MILLISECONDS/VIEW) 

Dataset 
Number 

of 
Views 

View 
Resolution 

Disparity 
Quantization 

Levels 

Superpixel 
Size 

Segmentation 
Time 

(ms/view) 

Plane Sweeping 
Time (ms/view) 

Refinement 
Time 

(ms/view) 

Fusion 
Time 

(ms/view) 

Total 
Time 

(ms/view) 
          

Teddy/Cones 9 1800×1500 80 10 168 350 652 99 1265 
Truck 3×3 1280×960 80 8 77 104 368 39 588 

Bracelet 3×3 1024×640 70 8 49 39 178 21 278 
Jelly Beans 3×3 1024×512 55 10 49 32 107 16 204 

Unicorn 5×5 1920×1080 150 8 153 154 812 465 1584 
Bar 3×5 1920×1080 45 8 120 102 673 148 1023 

Beer Garden 3×3 1920×1080 30 8 127 112 614 80 933 
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other datasets tested in this section. Fast convergence rate, 
especially at the first iteration, indicates that our improved 
propagation strategy (Section III-C.1) ensures rapid plane 
propagation over the textureless and occluded regions and 
facilitates reconstruction of true scene geometry. 

For a fixed number of iterations, the influence of increasing 
superpixel size is shown in Fig. 7(b). Based on the error rate 
curves, we can conclude that, in general, a smaller superpixel 
size corresponds to a better accuracy due to the improved 
adherence to object boundaries and approximation of curved 
surfaces. However, very small superpixels may be easily 
influenced by noise (see a slight error rate increase for 
superpixel size smaller than 7×7) and are associated with a 
longer runtime due to increased number of primitives. 
However, with increasing superpixel size the increase in error 
rate is rather slow. 

We further study how the shape of the propagation kernel 
affects the reconstruction results. Parameter ‘kernel steps’ 
define the number of candidate planes that are sampled in each 
propagation direction (sampling density), whereas the ‘kernel 
size’ defines the spatial extent of the sampling area. For a fixed 
sampling density (samples are taken at every five superpixels), 
the effect of expanding propagation kernel is shown in Fig. 7(c). 
As can be observed, correlation between the reconstruction 
accuracy and the kernel size exhibit different behavior 
depending on a dataset. While increasing kernel size has little 
effect for ‘Cones’ dataset, bigger propagation kernel noticeably 
improves accuracy in case of ‘Teddy’ dataset. With increasing 
size of the propagation kernel, the information is propagated 
faster and further which hinders the optimization procedure 
from converging to a false locally optimal solutions. This is 
especially important in presence of low-textured areas, such as 
in ‘Teddy’ scene. Whereas for cluttered and highly textured 
scenes, such as ‘Cones’, a smaller propagation range is enough.  

Finally, we examine the influence of the increasing number 
of kernel steps on the reconstruction quality. Intuitively, the 
more candidates that are checked during each iteration, the 
higher the chances are to find a good match. However, as can 
be seen in Fig. 7(d), even few additional samples in each 
propagation direction already yield good reconstruction results 
due to fast diffusion rate of the parallel execution. While denser 
sampling does not result in a substantial gain in accuracy, it 
comes at a price of a longer runtime per iteration. 

To summarize, we can conclude that the performance of our 
method is rather stable; different parameter settings in 
reasonable ranges do not drastically worsen the reconstruction 
accuracy. The selection of all parameters can be based on the 
following rules of thumb. Our algorithm converges within 3-4 
refinement iterations. Therefore, we use five iterations in all our 
further experiments. The superpixel size is driven by two 
factors: performance and speed. A size within the range of 7-16 
pixels provides good depth reconstruction results. In our 
experiments, we use size of 8-10 to achieve the target accuracy 
level in a reasonable time. When the time constraint is more 
important, one can use a bigger superpixel size and still obtain 
quite accurate reconstruction. For example, using superpixel 
size 18 for the Middlebury datasets, the depth reconstruction is 

performed in less than 0.5 second per view (for full size 
1800×1500), while the bad pixel percentage rate stays under 
3%. The size of the propagation kernel is sensitive to the image 
size and content of the scene. We suggest adopting a big kernel 
to ensure a good propagation rate at the first iteration. In all our 
experiments, we set ‘kernel size’ equal to the smallest 
dimension of the input image and ‘kernel steps’ such that 
samples are taken every five superpixels. This is a 
‘conservative’ setting from a speed perspective, and still 
provides a good time/accuracy trade-off: as the kernel size and 
the number of kernel steps are decreasing linearly at each 
iteration, the runtime is affected only moderately. 

B. Performance 
All our experiments were conducted on a laptop equipped 

with an Intel Core i7 2.6 GHz CPU and an Nvidia Quadro 
M1000M graphics card. As shown in Table I and Fig.7, the 
runtime of our algorithm depends on the number and resolution 
of the input views and the following parameter settings: number 
of refinement iterations, superpixel size, and number of kernel 
steps. These parameters were set following the discussion in the 
previous subsection and are summarized in Table I along with 
the runtime of each processing step. To generate depth maps for 
a multi-view frame containing 15 full HD views (1920×1080), 
it takes about 15.5 seconds, i.e. about 1 second per 2 megapixel 
view. To generate depth maps for 9 views (1024×512), it takes 
about 1.3 seconds, or about 0.15 seconds per 0.5 megapixel 
view. For comparison, in [48], the authors evaluated the 
performance of several GPU-based PatchMatch methods 
(results were obtained with Nvidia GTX 280). As reported, the 
best runtime was achieved by a GPU-based version of the 
original PatchMatch stereo method, which takes 1.8, 2.4, and 
3.5 seconds to process 0.1, 0.2, and 0.3 megapixel data 
respectively. To produce a 2 megapixel depth map the GPU-
based multi-view PatchMatch method proposed in [49] takes 
about 50 seconds with the settings tuned for accuracy and about 
2.7 seconds with the settings tuned for speed (using an Nvidia 
GTX 980 graphics card). Different settings for our algorithm 
allow the estimation of high-resolution depth maps in less than 
a second. For example, as can be seen in Fig.7(b), using 
superpixel size 18, the depth maps are estimated in about 0.5 
seconds per view while the error rate stays low (within 3%). 

C. Energy Function Analysis 
To evaluate the impact of the energy function terms on the 

reconstruction accuracy, we obtain the depth reconstruction 
results by omitting a single term from the energy function 
formulation, (3) and (8). First, the smoothness term is omitted 
and only the consistency measurement between the views is 
optimized, c.f. Fig. 8(a). Without the smoothness term, the 
refinement process fails to resolve the matching ambiguities 
and converges to a local sub-optimal solution, leading to a 
significant degradation in the depth reconstruction quality. 
Second, the consistency term is left out and refinement is 
performed purely based on the spatial smoothness term, c.f. Fig. 
8(b). The resulting disparity maps are of much better quality, 
but not as good as that obtained by the full energy optimization. 
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This shows that the smoothness term is very effective in 
resolving the difficulties associated with textureless regions and 
repetitive patterns; however, it cannot fully eliminate the errors 
in the occluded areas near object edges and image boundaries. 
In these cases, incorporating the geometric consistency term 
can help to pinpoint the right solution by exploiting depth-
matching cues from multiple views, leading to improved 
accuracy, c.f. Fig. 8(c). Finally, the occlusion term further 
improves the overall accuracy of result by balancing out undue 
consistency penalty at the objects boundaries, c.f. Fig. 8(d).  
D. Reconstruction Accuracy  

We evaluate the reconstruction accuracy against the ground 
truth disparity maps of the Middlebury stereo benchmark [60], 
[61]. The quantitative results are summarized in Table II, 
providing percentage of bad pixels over non-occluded pixels 
(‘nocc’), all pixels (‘all’), and pixels near discontinuities 
(‘disc’). The reconstructed disparity maps overlaid with the 
error maps are shown in Fig. 9(b). To emphasize the accuracy 
of our results, we also created 3D point clouds, Fig. 9(c): both 
planar and curved surfaces are recovered faithfully; the depth 
discontinuities are well aligned with the object boundaries.  

As opposed to stereo PatchMatch methods, where only two 
views are used for disparity estimation, our method is designed 
for fast and accurate multi-view reconstruction (sparse light 
field data). We use all 9 views as an input, and 9 depth maps are 
produced as an output. Nevertheless, we use PatchMatch stereo 
methods as a reference due to their high accuracy. Specifically 
designed to tackle slanted surfaces with sub-pixel precision, 
these methods provide the state-of-the-art reconstruction results 
on the sub-pixel accuracy level. For the error threshold 𝑇𝑇 = 1.0, 
our method achieves the disparity accuracy better than the 
reference methods in all cases. Moreover, for the sub-pixel 
accuracy level, 𝑇𝑇 = 0.5, our results are comparable to or better 
than the reference results. Since more views are used as an 
input, our method is able to recover the occluded areas and, 
thus, significantly outperform the PatchMatch methods on ‘all’ 
measurement. This demonstrates that the multi-view 
information is successfully utilized to handle occlusions. 

E. Baseline Effect 
We use the Stanford light field dataset [62], providing a 

number of dense light fields of 17×17 views, to test the effect 
of increasing baseline between the views on the performance of 

our algorithm. In our experiment, we sub-sample the 17×17 
image array by skipping 1, 3, and 5 views in horizontal and 
vertical directions, obtaining 9×9, 5×5, and 3×3 image arrays 
respectively, and compute three sets of disparity maps with 
increasingly wider baselines between the views, c.f. Fig. 10.  

As the ground truth disparity is not available, we evaluate the 
reconstruction quality by comparing synthesized virtual views 
with unused intermediate views. Namely, we use the positions 
of every second view of the central row of the original dense 
light field, i.e. 8 views overall. We synthesize virtual views by 
projecting all the input views of the dataset onto the target 
image plane. At each pixel of the target image, a simple 
blending procedure of samples is performed. We use the 
distance between the views to derive blending weights and the 
reconstructed disparity maps to resolve the occlusions. Fig. 11 
shows the rendering results for the 7th view of the central row.  

The synthesized views are compared to the corresponding 
original views using structural similarity index (SSIM) [64]. 
Table III provides average SSIM scores over the 8 synthesized 
views. For comparison, we also provide the average SSIM score 
over the 8 views that were synthesized without disparity (i.e. all 
disparities were set to zero). As can be seen, utilizing disparity 

 
(a) (b) (c) (d) 

 
Fig. 8. Impact of the energy function terms. Omitting a single term from the 
energy function: (a) without smoothness; (b) without consistency; (c) without 
occlusion term; (d) proposed energy function, where all terms are included. 
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Fig. 9. Qualitative evaluation on the Middlebury Teddy and Cones datasets. 
(a) Ground-truth disparity map. (b) Our result overlaid with the error map 
(threshold T = 1.0). (c) Colored 3D point cloud. 
  

TABLE II 
PERCENTAGE OF BAD PIXELS RESULTS ON THE MIDDLEBURY DATASET 

THRESHOLD T = 1.0 

Method Teddy Cones 
nocc all disc nocc all disc 

PM Stereo [37] 2.99 8.16 9.62 2.47 7.80 7.11 
PMBP [41] 2.88 8.57 8.99 2.22 6.64 6.48 
PMF [42] 2.52 5.87 8.30 2.13 6.80 6.32 

PM-Huber [38] 3.38 5.56 10.70 2.15 6.69 6.40 
PM-PM [39] 3.00 8.27 9.88 2.18 6.43 6.73 

Ours 1.96 2.56 6.55 1.93 2.72 5.61 
 

 

THRESHOLD T = 0.5 

Method Teddy Cones 
nocc all disc nocc all disc 

PM Stereo [37] 5.66 11.80 16.50 3.80 10.2 10.2 
PMBP [41] 5.60 12.00 15.50 3.48 8.88 9.41 
PMF [42] 4.45 9.44 13.70 2.89 8.31 8.22 

PM-Huber [38] 5.53 9.36 15.90 2.70 7.90 7.77 
PM-PM [39] 5.21 11.90 15.90 3.51 8.86 9.58 

Ours 4.49 5.33 12.77 3.09 4.62 7.89 
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data significantly improves the rendering quality, especially in 
the case of the sparse 3×3 image array. When disparity maps 
are used, the SSIM values obtained using sparser (5×5 and 3×3) 
image arrays are fairly high and very close to those obtained 
using 9×9 image array. This demonstrates accuracy of the 
reconstructed disparities as well as the robustness of our method 
against the varying baseline of the input data.  
F. Comparison with Other Methods 

We compare the proposed method against several established 
depth reconstruction approaches, including the MPEG depth 
estimation reference software (DERS) [65], a state-of-the-art 
semi-global-matching based method (SGM) [66], and an 
efficient multi-scale correspondence algorithm proposed in [9].  

 
1) Comparison with Reference Software  

We first compare our results with DERS version 6.1. DERS 
is the state-of-the-art depth estimation technique based on 
Graph Cut optimization. We assess the depth reconstruction 
quality trough virtual view synthesis. We use the ULB 
‘Unicorn’ light field dataset that contains views from a 5x5 
camera array with additional intermediate views between each 
pair of cameras. The intermediate views are used as ground 
truths for the view synthesis quality evaluation. We estimate 
DERS depth maps using the general reconstruction mode with 
quarter-pixel precision. Examples of the depth maps generated 
using DERS and our method are given in Fig. 12. Subjectively, 
the depth maps reconstructed by our method look more accurate 
and detailed, and even when DERS fails to find correct solution 
(e.g. the regions where the objects and the background have 
very similar colors), our method can produce reasonable results.  

With the depth maps obtained by DERS and by our method, 
virtual views are rendered at the intermediate positions of each 
row of the camera array (20 views overall). We use view 
synthesis reference software (VSRS) [67] version 4.2., where 
two reference views, left and right, and two corresponding 
reference depth maps are used to synthesize a virtual view. We 
synthesize virtual views in the general synthesis mode, applying 
quarter-pixel precision and boundary noise removal. Magnified 

details of the synthesized views at two viewpoints can be seen 
in Fig. 13 for subjective evaluation. Comparing them reveals 
that the synthesized views generated with our depth maps have 
a competitive visual quality with those generated with DERS 
depth maps. We also measure the objective quality of 
synthesized views in terms of peak signal-to-noise ratio (PSNR) 
and SSIM (Fig. 13 right side of each subfigure) with respect to 
the original camera views. The plots with the PSNR and SSIM 
results corresponding to each synthesized view are depicted in 
Fig.14. As can be seen, our method exhibits a more stable 
performance over the views whereas DERS performs better or 
worse depending on the view, Fig. 14(a). In general, structural 
similarity results of our method are slightly better than DERS, 
Fig 14(b), due to more accurate depth reconstruction. However, 
our results exhibit more boundary artifacts that mainly occur 
due to violation of the assumption that similar pixels belong to 
the same object, e.g. the edges of the board and cubes in the 
scene, c.f. Fig.13(c). Here, the thin boundary of the object has 
a very different color from the rest of the object, while similar 
colors are present in the background. Thus, due to the 
superpixel segmentation prior, some boundary pixels are 
assigned to semantically wrong areas, which leads to errors in 
depth maps and, as a result, to rendering artifacts. The average 
PSNR results over all synthesized views are 32.33dB for our 
method and 32.17dB for DERS. The average SSIM results are 
almost the same, around 0.97.  

 
2) Evaluation on Sparse Light Field Videos  

 We conduct more tests using sparse light field videos ‘Bar’ 
and ‘Beer Garden’ [9] in order to evaluate the performance of 
our method in a more practical setting. These light field videos 
provide scenes containing static and dynamic objects (e.g. 
humans). Apart from the sparsity of the light field data, there 
are multiple challenging aspects present in the scenes, such as 

 
(a) (b) (c) 

 
Fig. 10. Baseline effect experiment on the Stanford 4D light field dataset. 
Disparity map of the central view obtained using (a) 9×9, (b) 5×5 and (c) 3×3 
image array. 
  

 
(a) (b) (c) (d) 

 
Fig. 11. View synthesis results. (a) Reference image. (b) Selected magnified 
detail. View synthesis results with underlying depth maps obtained using (c) 
5×5 image array, and (d) using 3×3 image array. 
 

TABLE III 
SSIM IMAGE SIMILARITY FOR DIFFERENT LIGHT FIELD SAMPLING DENSITY 

Scene Number of Views 
9×9 (d = 0) 5×5 (d = 0) 3×3 (d = 0) 

Truck 0.980 (0.949) 0.978 (0.924) 0.975 (0.888) 
Bracelet 0.985 (0.866) 0.980 (0.810) 0.974 (0.763) 

Jelly Beans 0.985 (0.969) 0.985 (0.956) 0.982 (0.942) 
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transparent and reflective objects, big regions with repetitive 
textures, wide-baseline occlusions, and motion blur. These 
aspects, however, are frequently encountered in real-world 
data. We compare our method with the state-of-the-art stereo 
method (SGM) [66] and an efficient multi-scale method for 
sparse light field correspondence proposed in [9] (further 
referred as ‘FH’). In case of SGM, to obtain disparity maps for 
every view we run this algorithm on each horizontally adjacent 
stereo pair independently (e.g. for 3×3 setup we consider six 
stereo pairs). Fig. 15 presents the comparative results for the 
disparity maps generated by SGM, FH (disparity maps are 
provided by the authors) and our method. Despite the above-
mentioned challenges present in the test datasets, our method 
demonstrates robustness. By incorporating smoothness and 
geometric consistency constraints in the propagation process, 
textured and textureless regions, occlusions and moderate 
reflections can be handled. As can be seen, our reconstructed 
disparity maps are denser and visibly more accurate than the 
results obtained by the reference methods. Some inaccuracies, 

however, are present, e.g. in ‘Bar’ sequence due to non-
Lambertian surfaces (transparent bottle and reflective table). 

In case of video synthesis, depth inconsistencies between the 
frames may lead to uncomfortable flickering artifacts in the 
static regions of the scene. Currently, we do not explicitly 
enforce the temporal consistency in our method, and each frame 
of the video sequences is processed independently. However, 
as the cross-view geometric consistency is properly exploited 
during the refinement stage, our recovered depth maps are not 
only consistent across the views but also rather consistent 
across the frames. We provide evaluation of temporal 
consistency for video synthesis in the supplementary materials.  

V. CONCLUSION 
We have presented a GPU-based method for fast and 

accurate depth maps reconstruction from sparse light fields. Our 
method compares favorably against several state-of-the-art 
methods in terms of both runtime and accuracy. Whereas the 
reconstruction time is about one second per full HD view, we 
are able to obtain accurate and dense depth maps comparable to 
the reference methods results even on sub-pixel level. We have 
experimentally demonstrated the potential of our approach in 
application for sparse light field depth reconstruction and show 
that our method can successfully and robustly handle difficult 
wide-baseline video sequences. There are cases, however, when 
the assumptions of our method do not hold (e.g. non-
Lambertian surfaces and violation of segmentation prior) 
leading to erroneous results. We believe that a greater accuracy 
can be achieved by applying advanced post-processing methods 
and incorporating more complex occlusion handling schemes. 
We are also interested in improving the speed of our method to 
possibly work at interactive or even real-time frame rates.  

 
(a)          (b)          (c)      (d) 
 

Fig. 12. Comparison with DERS on ‘Unicorn’ dataset. (a) Central view. (b) DERS depth map. (c) Depth map obtained with our method. (d) Magnified detail. 
 

 
(a) (b) (c) (d) 

 
Fig. 13. View synthesis results: magnified details along with the scaled SSIM maps. (a) and (c) results obtained using our depth maps. (b) and (d) results obtained 
using DERS depth maps.  
 

 
(a) (b) 

 
Fig. 14. (a) PSNR and (b) SSIM distribution for ‘Unicorn’ dataset using depth 
maps obtained by reference software (DERS+VSRS) and by our method 
(OURS+VSRS). 
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