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ABSTRACT The use of advanced AR/VR applications may benefit the efficiency of collaborative pub-
lic protection and disaster relief (PPDR) missions by providing better situational awareness and deeper
real-time immersion. The resultant bandwidth-hungry traffic calls for the use of capable millimeter-
wave (mmWave) radio technologies, which are however susceptible to link blockage phenomena. The latter
may significantly reduce the network reliability and thus degrade the performance of PPDR applications.
Efficient mmWave-based mesh topologies need to, therefore, be constructed, which employ advanced
multi-connectivity mechanisms to improve the levels of connectivity. This work conceptualizes predictive
blockage avoidance by leveraging emerging artificial intelligence (AI) capabilities. In particular, AI-aided
blockage prediction permits the mesh network to reconfigure itself by establishing alternative connections
proactively, thus reducing the chances of a harmful link interruption. An illustrative scenario related to a fire
suppression mission is then addressed by demonstrating that the proposed approach dramatically improves
the connection reliability in dynamic mmWave-based deployments.

INDEX TERMS Mesh networks, millimeter wave communication, artificial intelligence (AI), wireless
communication, public protection and disaster relief (PPDR).

I. INTRODUCTION
Wireless communication technologies are an essential
enabler in Public Protection and Disaster Relief (PPDR) sit-
uations [1], [2]. They were historically utilized to provide
sustainable voice communication services for public safety
agencies [3]. Today, the cutting-edge PPDR applications
include a variety of multimedia services [4] complemented
with artificial intelligence (AI) capabilities [5]. This decisive
transformation promises advanced situational and contextual
awareness as well as enables event prediction and preven-
tion in critical missions. The use of AI in PPDR contexts
may lead to an upgrade of mission-critical communication to
mission-critical assistance.

For its efficient operation, AI-based technology requires
real-time information about both the problem and the
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context [6]. Computer vision systems and related video
analytics can be efficiently employed to collect it. For
instance, video information about a specific PPDR event
may be obtained with on-body cameras of the rescue crew
members (police officers, firefighters, ambulance doctors,
etc.) [7], video surveillance cameras deployed across the area
of the PPDR mission [8], or with the aid of robots (e.g.,
unmanned aerial and ground vehicles) [9], [10]. Since data
mining from the video stream requires relatively powerful
computation capabilities, it can be performed in a remote
processing center or in a distributed fashion via edge/fog
computing. Both approaches require high-throughput radio
access networks.

The emerging millimeter-wave (mmWave) technolo-
gies, such as IEEE 802.11ad/ay [11] and 3GPP New
Radio (NR) [12], [13], offer the throughputs on the level
demanded by traffic-hungry PPDR applications [14]. How-
ever, their utilization in PPDR scenarios is hampered by a
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number of challenges. First, there is uncertainty about the
existing communication infrastructure, which can be partially
or completely unavailable. Second, mmWave propagation
is sensitive to atmospheric, weather, and other conditions,
which may eventually cause severe link quality degradation.
These adverse effects may drastically reduce the reliability of
mmWave connectivity.

The PPDR applications are expected to operate in danger-
ous conditions, such as fire, smoke, gas, or water vapor [9],
whichmay affect the propagation of the mmWave signal [15].
Furthermore, certain PPDR situations may inherently dete-
riorate the propagation conditions; for example, substances
applied by firefighters may occlude the direct path between
the communicating nodes. The use of mmWavemesh topolo-
gies can provide diverse paths between a source and a destina-
tion, and thus partially address these challenges by enabling
proximate communication when the network infrastructure is
unavailable.

The problem of link blockage has been identified as one
of the most challenging for mmWave communications. Par-
ticularly, it affects connection reliability in both single-hop
and multi-hop topologies. In recent literature, this issue is
primarily tackled by employing reactive techniques along
with standardized capabilities, such as multi-connectivity
operation [16], when the association point is only changed
when the current links experience outage conditions as the
result of a blockage situation [17]–[20].

Hence, contemporary mmWave solutions rely on inher-
ently reactive techniques to mitigate dynamic link block-
age events [16], [20]. This approach may introduce harm-
ful delays in data transmission, thus hampering the use of
real-time PPDR applications, since it permits radio connec-
tions to become interrupted and then recover later. Alter-
natively, one may use proactive mechanisms by predicting
blockage situations and taking action in advance [21]–[23].
Possible measures may include altering the trajectory of
movement to avoid blockage or utilizing alternative data
routes, e.g., via peers that establish backup links. To effi-
ciently enable this functionality, one has to employ advanced
prediction techniques.

In this work, we analyze the use of AI methods to
enable uninterrupted mmWave mesh connectivity in PPDR
scenarios. Consequently, we contribute a novel approach
to mitigate dynamic link blockage in mmWave mesh sys-
tems. It utilizes AI-aided prediction of blockage situations
and helps establish alternative connections via peer relays
before the blockage has actually occurred. Numerical results
reported in what follows demonstrate the feasibility of our
proposal. Particularly, the outlined approach considerably
reduces the fraction of time when at least one node of
the mmWave mesh in question is disconnected from the
rest.

The remainder of this paper is organized as follows.
In Section II, we discuss the use of mmWave technologies
in PPDR situations. In Section III, we review the use of AI
in the context of mmWave mesh technologies for PPDR.

Our illustrative scenario is then studied in Section IV. The
conclusions are drawn in the last section.

II. MILLIMETER-WAVE TECHNOLOGIES FOR PPDR
In this section, we elaborate on the utilization of mmWave
systems in mission-aware PPDR scenarios. Particularly,
we discuss the technology aspects of mmWave communica-
tions and identify the key challenges of usingmmWave radios
for PPDR.

A. FEATURES OF MILLIMETER-WAVE COMMUNICATIONS
The recent standardization activities behind 5G NR and
WiGig systems are aiming to enable novel technology layout
for real-time heavy-traffic applications, such as ultra-high
definition video streaming [24], augmented and virtual real-
ity (AR/VR) broadcasting [25], and proximate gaming [26],
[27]. These solutions adequately address the bandwidth
demands by utilizing the more abundant mmWave spectrum,
primarily in 28, 60, and 73 GHz bands [28]–[30].

Radio propagation properties at mmWave frequencies are
fundamentally different as compared to microwave setups.
This is primarily due to the effects of link blockage, inherent
directionality, and complex multi-path propagation, where
various obstacles may occlude, reflect, or scatter the narrower
mmWave beams [31]. The latter poses numerous challenges
related to communication reliability and service continuity
that need to be resolved comprehensively [17], [32]. The use
of mmWave communications in indoor environments further
complicates propagation because of multiple obstacles (e.g.,
walls, furniture, people) [33]–[35], which lead to more com-
plex and dynamic propagation. In addition to blockage caused
by other objects, there are self-blockages where a person
blocks own links [36], [37].

The use of mobile access points, such as cells-on-
wheels (CoWs, [38], [39]) and aerial access points (AAPs,
[40], [41]), may enhance the performance of mmWave access
technologies by maintaining line-of-sight (LoS) communi-
cations for users who are currently blocked or outside the
base station coverage. However, these solutions are featured
by relatively long deployment times and require additional
resources, such as maintenance expenses for an unmanned
aerial system. Hence, the use of such access points may not
be suitable in all contexts.

To alleviate the effects of blockage and improve the reli-
ability of mmWave connections, 3GPP has recently outlined
multi-connectivity features [16]. Accordingly, a device may
establish links to multiple access points (APs) in its proximity
and dynamically change the serving AP if the current link
experiences a blockage. Such an approach yields a dramatic
decrease in the outage probability levels [19]. In the absence
of network infrastructure, this concept can be enabled via
device-to-device (D2D) communications [42], [43]. Direct
connectivity between user devices allows for establishing
a mesh network topology [44], which expands the service
area of the mmWave APs. D2D-based mesh topologies natu-
rally offer multi-connectivity opportunities for the partnering
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FIGURE 1. mmWave-enabled PPDR operation with a heavy-traffic application.

devices. Multi-connectivity naturally improves the resilience
of a communications session to blockage because if a single
link is occluded, the device can reroute its traffic via other
connections.

In summary, it is known that link blockage may consid-
erably limit the performance of mmWave-based systems.
However, the situation can be notably improved with mobile
APs arranged in a mesh topology.

B. PUBLIC PROTECTION SCENARIOS
Unexpected natural or human-made disasters require the
safety agencies to always be prepared for PPDR situations
in uncertain environments. The goal of PPDR missions is
to reduce the risk to people’s lives and property damage.
Generally, a PPDR situation can be regarded as a multi-agent
system comprising of intelligent entities, such as human res-
cuers and autonomous robots. Successful accomplishment
of a PPDR mission hinges upon (i) continuous situational
awareness, (ii) fast and reliable analysis of data and subse-
quent decision-making, and (iii) efficient coordination and
cooperation between the rescue team members to eliminate
task conflicts and duplication.

Innovative assisting technologies are extensively utilized
to facilitate various PPDR missions. Computer vision sys-
tems have been proposed to obtain holistic information about
the problem and its context for improved situational aware-
ness [45]. These allow for monitoring the affected area in
order to detect victims, assess damage, and evaluate hazards.
The information analysis and decision-making processes can
then be supported by AI-based applications, which may
operate in a distributed or centralized manner [46]. Finally,
dedicated radio technologies enable the coordination and
cooperation inside the rescue team.

Previously, voice communications featured as the primary
service supported by the PPDR systems. These are now
expected to facilitate multiple additional applications that
integrate voice, data, video, and image transmission as part
of their multimedia capability to enable smooth coordina-
tion [47]. The latter requires more throughput and thus higher
frequency bands where sufficient spectrum is available.
Hence, mmWave communications technologies operating
over the rich amounts of bandwidth can presently be consid-
ered as the key enabler for the emerging multimedia-ready
PPDR applications.

C. APPLYING mmWave TECHNOLOGIES FOR PPDR
In addition to link throughput, there are further specific
requirements pertaining to contemporary PPDR communica-
tions technologies [47]. Notably, those need to provide unin-
terrupted services irrespective of the current availability of the
static network infrastructure. As long as cellular connectivity
remains operational, PPDR applications can also exploit it.

Alternatively, other means of communication have to be
deployed, e.g., in tunnels, inside buildings, or wherever the
network infrastructure has (partially) collapsed [48]. These
may rely on proximity-based D2Dmesh operation, see Fig. 1,
wherein the devices acting in close proximity (within the
reach of a short-range wireless radio) may initialize direct
links instead of utilizing network infrastructure. Therefore,
the load on the cellular network may decrease, the operation
without it might become possible, and better energy effi-
ciency can be achieved. Therefore, the use of proximity-based
direct communications is one of the promising solutions for
beyond-5G connectivity.

Mesh-based mmWave solutions are expected to be utilized
in collaborative PPDRmissions to ensure robust connectivity
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between the rescue team members and enable traffic-hungry
applications even when the cellular infrastructure is unavail-
able [49]. However, the use of advanced mmWave mesh
topologies introduces additional challenges that relate to
complex blockage dynamics [50]. Indeed, PPDR applications
are expected to operate in hazardous environments, which
may affect the propagation of mmWave beams. Furthermore,
the context of the PPDR mission itself may deteriorate the
radio conditions.

As a result, the mmWave mesh system reliability in PPDR
situations depends on the mission type as well as on mul-
tiple environmental factors. Based on that, it is essential
to not only provide high capacity during PPDR operation
but also to develop reliable connectivity mechanisms and
ensure resilience to various environmental conditions in
mmWave-based mesh systems.

III. AI-AIDED MILLIMETER-WAVE MESH SYSTEMS
In this section, we discuss the application of AI methods in
the context ofmmWavemesh operation.We beginwith a brief
introduction and then review the use of AI in self-organizing
mesh systems. Finally, we conceptualize AI-aided blockage
prediction for a mmWave PPDR mesh.

A. DIVERSITY OF AI METHODS
AI techniques have entirely changed human life, from home
appliances to automobiles, where every device or a piece of
machinery is using some sort of an AI method. Since the
beginning of AI evolution, researchers have introduced many
AI practices including knowledge representation, expert
systems, machine learning, neural networks, multi-agent sys-
tems, genetic algorithms, fuzzy logic, neuro-fuzzy, etc. How-
ever, based on the state-of-the-art achievements by machine
learning and neural networks-based methods, most of today’s
AI techniques belong to either of the three major types:
supervised, unsupervised, or reinforcement learning [51].

The former addresses the problems relying on labeled
data (ground truth) or prior knowledge about the expected
output. Typically, these tools are used in the context of
classification and regression. In classification, the output is
acquired in the form of labels or discrete values, whereas in
regression, it is obtained as continuous values. Supervised
learning algorithms include neural networks, convolutional
neural networks, support vector machines, decision trees,
naive Bayes, and linear regression. These techniques are
widely applicable in many areas including object detection,
pattern recognition, speech analysis, human activity recogni-
tion, and bio-informatics [52]–[54].

Unsupervised learning methods deal with the problems
having unlabeled data, i.e., input with no corresponding out-
put [55]. These automatically establish various patterns in the
input data to learn its structure and make decisions based
on similar patterns. Most of the corresponding algorithms
are used for clustering, association rule learning, and data
compression/generation in autoencoders. The typical unsu-
pervised learning algorithms are K -means clustering and

principal component analysis. Unsupervised learning tools
are widely used for image segmentation, anomaly detection,
and association mining.

Reinforcement learning employs reverse dynamics, such
as reward and punishment to ‘‘reinforce’’ the knowledge
for learning [56]. Unlike classical approaches, reinforcement
learning exploits the concept of interacting with the envi-
ronment based on trial and error. In reinforcement learn-
ing, the problem can be solved by performing two types
of tasks, continuous and episodic. Continuous tasks per-
sist (like forex/stock trading), while episodic tasks have the
starting and ending points, which delimit an episode (like
playing a game to complete a mission and move to the next
level). The well-known algorithms of reinforcement learn-
ing are Q-Learning and State-Action-Reward-State-Action
(SARSA, [57]). The reinforcement learning algorithms are
widely utilized in robotics, web system configuration, adver-
tising, and gaming.

B. AI IN SELF-ORGANIZING NETWORKS
‘‘Brains exist because of the distribution of resources neces-
sary for survival and the hazards that threaten survival vary in
space and time’’ [58]. This statement is equally applicable to
AI used in self-organizing networks since the very utilization
of AI aims at efficient management of resources and avoid-
ance of hazards. Here, the role of resources is featured by
connectivity and throughput, whereas blockage, interference,
and technological incompatibility between the nodes of a
mesh can be interpreted as hazards.

The three major sub-functional groups of AI for the emerg-
ing mesh networks are self-configuration, self-optimization,
and self-healing [59]. The former is required to enable net-
work association simplicity regardless of the employed radio
interface or device capabilities. During the configuration
stage, the network needs to invoke an authentication proce-
dure and set up the radio interfaces of its nodes, e.g., transmit
power, data, and control plane protocols. In the context of
self-configuration, the AI can be used for recognizing new
users, configuring wireless interfaces, predicting events when
the current network state changes, etc.

Mesh networks are highly dynamic systems; hence, their
management has to be adaptive, enabled by continuous
self-optimization. This includes monitoring of the network
state and subsequent adjustment of the network and inter-
face parameters to reach high efficiency of resource utiliza-
tion. Self-optimization covers a number of aspects including
power efficiency, mobility of users, quality of links, and traf-
fic dynamics. It may be empowered by the AImethods, which
are utilized for the prediction of user mobility by choosing
reliable connections between the nodes of a mesh, predict-
ing link quality and traffic flow structure based on previous
experience, and tracing network users. Due to AI, the network
may reduce the risk of failures and wastage of resources. As a
result, the quality of user experience becomes higher. Hence,
self-optimization aims to enable low latency, high bandwidth,
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FIGURE 2. Multi-connectivity mmWave mesh setup of interest.

and better connectivity within a mesh network with higher
degrees of temporal and spatial variation in user demands.

Self-healing of a network is related to recovering its func-
tionality after failures.With respect to mesh systems, a failure
can be defined as a state of the network where communica-
tions between two or more nodes is interrupted. A significant
proportion of such failures is caused by a lack of connectivity
between the devices. The AI methods used for self-healing
aim to mitigate the failure events and automatically recover
the network performance [59]. They may include but are
not limited to automatic failure detection and diagnostics,
reconfiguration of nodes in real-time (e.g., increased transmit
power to extend coverage of certain nodes), and rerouting.
In severe cases (e.g., an essential link is faulty), the original
network can split into two or more isolated parts.

C. USING AI FOR BLOCKAGE PREDICTION
Dissimilar static and dynamic objects (e.g., people, buildings,
vehicles) may cause link blockage inmmWavemesh systems,
which are thus characterized by a high degree of temporal
and spatial variability. The objects in question may not only
occlude the direct path but also block the reflected paths by
disrupting communications between the nodes of a mesh for
prohibitive periods of time. As a result, the performance of
PPDR applications utilizing mmWave mesh capabilities may
degrade considerably.

Recent developments in AI techniques are capable of
anticipating the blockage situations in mmWave mesh net-
works. Particularly, AI-based algorithms may employ com-
puter vision and sensory data to acquire the indicators of an
imminent blockage. For example, AI-aided systems can pre-
dict link occlusions caused by people or static objects (such
as trees, buildings, and landscape) by utilizing the data about
(i) their trajectory and speed, (ii) trajectory and speed of the
mmWave mesh nodes, and (iii) location of static obstacles.

The blockage prediction systems are potentially able to
improve the sustainability of a mmWave mesh layout. If the
latter is made aware of a probable blockage, the loss of
the radio connectivity can be prevented by relocating the
nodes or resorting to D2D technologies, such as peer relay-
ing. Moreover, reliance upon blockage prediction mecha-
nisms potentially requires fewer resources as compared to
the use of assisting technologies, such as COWs and AAPs.
Hence, AI-enabled blockage prediction can become an attrac-
tive solution for improving communications reliability in
mmWave mesh systems.

IV. AN ILLUSTRATIVE SCENARIO
In this section, we consider a fire suppression mission as an
illustrative example to assess the gains from the use of the
AI-aided blockage prediction in mmWave mesh systems.

A. FIRE SUPPRESSION MISSIONS
In the addressed scenario, we assume that a fire spreads
dynamically in a particular area of interest, while the involved
firefighters lack awareness about the spots of fire across this
area, see Fig. 2.

To enhance the efficiency of a fire suppression mission,
the collaborating team members may employ AR-based
applications [60] and advanced sensory equipment, which
require high throughput and network availability to sup-
port effective teamwork. The team is also supplemented by
autonomous robots aiming to improve the probability of
mission success. The said devices utilize multiple cameras
and sensors to detect fire and determine their appropriate
locations for serving as relay nodes for communicating with a
potentially blocked device (if such locations exist), and move
in the selected direction. The media-related equipment relies
on 3D HD 360◦ video streaming, which requires approxi-
mately 100 Mbit/s of bandwidth per user [61] for the upload
link (toward the processing server).
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Moreover, about 5 Mbit/s may be demanded by the
advanced sensory systems, including on-body health moni-
toring devices, sensitive smoke analysis sensors (for recog-
nizing which materials are burning), thermal sensors, etc.
Additionally, an AR-based assisting application may require
up to 15 Mbit/s, e.g., for building navigation, environmen-
tal awareness, and command center notifications. In total,
the utilized applications call for about 120 Mbit/s of band-
width per one user. These demands are expected to be satis-
fied by a mmWave proximity-based mesh system. The latter
is maintained between all of the participants of the firefight-
ing team. The information transfer between the remote nodes
and the gateway is multi-hop. To improve the reliability of
this network, each participant supports multi-connectivity of
M simultaneous links to its neighbors, referred to as the
‘‘degree of multi-connectivity’’. Further, if/when all M links
are blocked, the network management layer may employ
robot-based relays to establish alternative data routes.

A characteristic feature of the considered scenario is
dynamic link blockage caused by water vapor from the fire
extinguishing process. Recent AI methods may detect the fire
by using video cameras, e.g., a video surveillance system
deployed in the area and wearable video cameras of the
firefighting teammembers. Knowing the exact location of the
fire, the considered system becomes more aware of the spots
where connectivity disruption chances are high. Using this
information, the mesh network can improve its reliability by
establishing an alternative connection proactively.

B. AI FOR DYNAMIC BLOCKAGE DETECTION
Accidents involving fire directed the attention of researchers
to the development of new fire detection systems [62].
Presently, these follow either of the two general approaches:
traditional and vision-based detection. Traditional fire detec-
tion systems utilize sensors, which rely upon tempera-
ture measurements, particle sampling, smoke analysis, and
relative humidity sampling [63]. However, these sensors
are mostly applicable for indoor environments, and remain
unable to provide required details about the fire (e.g., burning
degree, location, size). Vision-based systems utilize computer
vision techniques and can overcome the limitations of the
traditional systems [64], [65].

Recently, vision-based systems attracted significant
research attention in the field of early fire detection due
to their efficient response. These systems are attractive due
to various advantages including (i) larger covered regions,
(ii) lower costs, (iii) detection of fire without visiting the
scene, (iv) providing the fire details such as location, burning
degree, and size. Due to these features, vision-based systems
may significantly enhance the efficiency of the traditional fire
alarm applications.

The vision-based systems rely on static or adap-
tive (learned) methods for fire recognition purposes. The
methods belonging to the first category use color and shape
features for detecting the flame on an image (e.g., RGB,
HIS, YUV, YUC, and YCbCr models). The main drawback

of these methods is in their high false alarm rate [66].
Several tools based on motion features were developed to
cope with this issue. However, these solutions are limited to
shorter distances. Adaptive methods rely on convolutional
neural networks (CNNs) for efficient fire detection [67].
The CNN-based approach enables fire detection over longer
distances and with higher accuracy.

CNN is one of the essential types of neural networks
initially designed for 2D image data, but presently its vari-
ants can also handle 1D and 3D data. A CNN is typically
composed of convolutional, pooling, activation, and fully
connected layers that are stacked in a hierarchical way. The
convolutional and fully connected layers contain a num-
ber of kernels that are also known as neurons or trainable
parameters, while the pooling and activation layers are func-
tions without trainable parameters [68]. The parameters of
these layers are learned via backpropagation techniques over
numerous iterations to fit a particular task.

The convolution is a linear operation, which convolves
a kernel over the entire image to extract the needed pat-
terns from it. The pooling layer of a CNN is responsible
for reducing the dimensionality of features. The success of
the CNNs is not only in the field of object detection and
image classification, but also in more complex problems,
such as smoke and fire scene analysis [69]–[71], image, and
video retrieval, medical image analysis, action, and activity
recognition [72], scene parsing, and movie analysis [73].
Over the past few years, CNN-basedmethods became popular
for feature extraction from videos as well as the image data.
Moreover, the feature extraction techniques confirmed that
the initial layers of a CNN may extract local image features,
while its deeper layers provide a global representation of the
image data.

In this paper, we focus on the CNNs that demonstrate
state-of-the-art performance in image classification and other
computer vision tasks. CNNs are deep learning frameworks
that are inspired by the mechanism of visual perception of
living creatures [74]. Their application in fire detection sys-
tems will substantially improve the detection accuracy, which
will eventually minimize fire damage while reducing the eco-
logical and social consequences. However, a major concern
related to CNN-based fire detection systems is their imple-
mentation in the real-world surveillance networks due to the
high memory and computation requirements for inference.

We further advocate the use of proactive approaches to
avoid blockage situations in PPDR environments by assum-
ing that AI is utilized to detect fire locations and provide
information about a potential blockage situation that may
occur in the future. When the fire location is detected,
the multi-connectivity mmWave functionality is employed to
avoid link blockage. Two potential situations are considered.
If there are other connections available at a node whose link
is going to be occluded soon, the traffic is rerouted via these
alternative connections. If the node in question does not have
backup connections to other nodes, a robot (if there is one
available) is steered to establish a backup connection for the
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considered node. Otherwise, if the link quality is deteriorated
due to blockage, the subject node becomes disconnected from
the network. We assess these options below.

To this aim, we conduct a performance evaluation cam-
paign based on two datasets. The first one comprises of a
relatively small number of 226 photos, where 119 are with
fire and 107 are without [74]. The second one is more infor-
mative and corresponds to 31 videos captured in both indoor
and outdoor environments, where 14 videos contain fire and
17 videos belong to the non-fire class [70]. These sets were
selected specifically with respect to two scenarios: (i) low-
quality connection (the first set where the frames are deliv-
ered to the CNNwith low rate of around 2 FPS assuming poor
link quality), and (ii) high-throughput connection potentially
provided by the mmWave links (the second set where FPS
equals 25 for any resolution).

We further apply our pre-trained GoogleNet algorithm to
both sets and calculate the false alarm rate (FAR) as well
as the accuracy for both datasets under different resolution
constraints (from 640 × 480 to 4K quality). Our results
indicate that for the small and infrequent frame rate of the
first dataset the accuracy is kept approximately at the level
of 89%, while the FAR value fluctuates around 18% even
when utilizing the CNN.When the overall system is operating
with higher FPS and/or resolution, e.g., utilizing mmWave
connections, the accuracy reaches 98.5% and FAR drops to
near zero.

C. METHODOLOGY AND SIMULATOR DESCRIPTION
Our approach is based on a computationally efficient CNN
implementation inspired by GoogleNet architecture, with
its reasonable computational complexity and suitability for
the intended problem as compared to other computationally
expensive networks, such as AlexNet. It is utilized for fire and
blockage detection, localization, and semantic understanding
of the scene of the fire. This solution is based on a paradigm
that classifies the input video frames into their respective
class, i.e., ‘‘Fire’’ and ‘‘Non-Fire’’.

For the classification of videos, we employ a pre-trained
GoogleNet architecture with further modifications accord-
ing to our target problem. A simplified algorithm for fire
detection utilized in the proposed solution is shown in Fig. 3.
There are several reasons behind preferring this option for the
detection of fire in our illustrative use case. The first one is in
its high performance during fire detection. The second reason
is the small size of the model, which allows for deploying
the system on resource-constrained edge/fog devices. Finally,
the proposed solution outperforms other state-of-the-art CNN
models and fire detection methods in terms of its FAR rate
and accuracy [70].

The proposed system includes two network overlays that
function cooperatively. The first one utilizes mmWave radio
technology for enabling high throughput among the users,
which is required for the heavy traffic of media-centric appli-
cations. The second overlay relies upon a long-distance wire-
less technology (IEEE 802.11ah nicknamed Wi-Fi HaLow),

FIGURE 3. Simplified algorithm for efficient fire detection.

which provides reliable albeit low throughput connections
among all the nodes of a network [75]. These low throughput
connections carry signaling for managing the mmWave mesh
operation.

The proposed system operation comprises of continu-
ously repeating cycles as shown in Fig. 4. Repeating the
cycle allows for timely updates of the information about the
mmWave mesh status. The frequency of updates depends on
the operation dynamics as regulated by the command center.
Such dynamics includes the number and density of nodes in
the network, the intensity of blockage situations, etc. Scenar-
ios with higher levels of dynamics require a higher frequency
of updates. Every update cycle starts by determining the
current topology of the mmWave mesh.

FIGURE 4. System operation cycle.
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For this purpose, every node sends its coordinates
and mmWave link-state advertisements (LSAs) via the
long-range HaLow connections. Using LSAs, a processing
unit located in the command center acquires the current
mmWave mesh topology. At the same time, the command
center recognizes the fire zones and updates their locations
by utilizing the available media and sensory information
obtained from the fire suppression team members via the
mmWave mesh. At the next step, the system provides a
mapping of the fire locations, the building plan, and the
mesh topology to predict the potential blockages as illustrated
in Fig. 5. Finally, using the information about the potential
blockages, the system estimates where to move the robot
relays for reducing the risk of disconnectingmesh nodes from
the gateway.

FIGURE 5. Blockage prediction scenario: top view.

For the numerical assessment, we employ our advanced
‘‘large-scale’’ system-level simulator (SLS), which takes into
account all of the relevant details of the mmWave sys-
tem operation and has been thoroughly calibrated in our
past publications [20], [76]–[81]. This SLS tool is capable
of mimicking large-scale environments together with the
underlying wireless technologies, such as LTE, WiFi, and
mmWave-based RATs: IEEE 802.11ad and 3GPP NR.

The tool is based on a flexible event-driven architecture,
which allows decreasing the computation time in the low-load
scenarios. For all the considered technologies, PHY and
MAC layers are implemented in detail, based on the appro-
priate IEEE and 3GPP specifications, whereas the higher
layers are generally simplified to abstract away the traffic
models represented by analytical approximations. Regard-
ing the environment generation, our SLS tool supports 3D
geographical models, which take into account time- and
location-based interference, antenna configurations, and UE
mobility models.

With respect to mmWave communications, the SLS imple-
ments the propagation models specified by 3GPP in [82],
with dynamic blockage extensions from [80], [81] and fur-
ther advanced functions, such as multi-connectivity [16]. The
D2D andmulti-hop functionalities in mmWave bands are cur-
rently under specification by both IEEE and 3GPP for WiGig
and NR technologies (under IEEE 802.11ay and 5G NR
standards, respectively). Hence, to assess the performance of

multi-hop relaying solutions, we rely on the current work-in-
progress 3GPP documents (R1-1812199, R1-1812982, and
R1-1813418), along with the NR relaying capabilities dis-
cussed in TR 38.874 – initially planned for Rel. 15 and now
continued with the focus on Rel. 16. An open-source version
of our SLS is made available at [83].

D. RELIABILITY ASSESSMENT OF AI-AIDED MESH
We consider an area of 100 × 100 m with 10 fire crew
members, each equipped with mmWave-based radios for
communications and cameras for video streaming. The crew
is accompanied by K autonomous robots also supplied with
mmWave radios and cameras suitable for 4K video transmis-
sion. A mesh network is constructed between the firefighting
crew members to enable uninterrupted video delivery to the
remote cloud. In order to capture the dynamics of the fire
suppression process, we employ a spatially-temporal Poisson
process [84] that is built on three parameters: (i) the temporal
intensity of fire locations, (ii) themean duration of evaporated
water after the fire suppression, and (iii) the radius of the
evaporated water. As confirmed by the measurements in [85],
attenuation caused by water is sufficient to occlude the prop-
agation of mmWave signals.

To improve the system performance in dynamic
blockage-prone environments, devices carried by the crew
members implement multi-connectivity functionality; hence,
they establish multiple links to the neighboring nodes and
switch over to non-blocked connections whenever the cur-
rent link is disrupted. The considered mmWave technol-
ogy is IEEE 802.11ay operating in the 60 GHz band [11].
To approximate the coverage of a single mmWave radio,
we utilize the InH propagation model and 0.2 W of trans-
mit power [82]. Other system parameters are summarized
in Table 1. We specifically note that as compared to

TABLE 1. Default system parameters.
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microwave technology, user devices greatly benefit from
operating in the mmWave band. In particular, having 16×16
linear antenna arrays leads to approximately 6.5◦ half-power
beamwidth (HBPW) at both the transmit and the receive ends.

Further, we evaluate and compare two representative sce-
narios. In the baseline setup, no fire detection assistance is
provided, and the firefighting crew members move randomly
across the area of interest at the speed of v in their search of a
fire location for suppression. Note that the baseline scenario
includes the state-of-the-art blockage avoidance techniques,
such as multi-connectivity [86] – the devices are allowed to
support multiple links to improve network connectivity. In the
AI-aided scenario, fire detection capabilities are used to guide
the firefighters toward the actual fire locations. To improve
the levels of connectivity, in addition to supporting multiple
simultaneous links, devicesmay rely on a fleet of autonomous
robots moving in the environment with the speed of vR. The
AI algorithms not only allow to detect the locations of fire but
also employ cameras for predicting the blockage situations.
If a blockage is expected to occur, the respective crew mem-
ber connects to an autonomous robot, whose aim is to support
additional relay links to maintain uninterrupted connectivity.

For the baseline and the AI-aided scenarios, we consider
the following performance metrics related to mmWave sys-
tem reliability in dynamic blockage environments: (i) frac-
tion of time when a randomly chosen node in the mesh
is disconnected, (ii) probability that a certain number of
nodes are disconnected at a randomly chosen instant of
time, (iii) intensity of node disconnections from the mesh,
and (iv) data rate at the access gateway. Note that these
parameters depend on the considered setup, e.g., the num-
ber of nodes, the degree of multi-connectivity, the use of
AI-based proactive blockage detection, and the number of
autonomous robots. A system-level performance assessment
is then conducted within our simulation environment that
integrates the main functionality of the mmWave system and
extends it to support the multi-connectivity operation. The
core of this modeler is based on a discrete-even simulation
framework. The statistics were collected via the method of
replications in the steady-state period. The beginning of this
period was determined with an exponentially-weighted mov-
ing average (EWMA) filter [87].

First, in Fig. 6 we study the fraction of time an arbitrarily
chosen node is disconnected from the network for both sce-
narios of interest as a function of the temporal intensity of
fire locations. Analyzing these results, one may observe that
the spatial diversity made available via multi-connectivity
allows to drastically reduce the parameter under investiga-
tion over the entire range of considered intensities. However,
the use of AI for fire detection and autonomous robot relaying
results in even more profound positive effects. Particularly,
the system with the multi-connectivity degree of 3 and no AI
support performs worse than the system with AI assistance
and M = 1. The use of multi-connectivity and AI together
allows to dramatically improve the performance by efficiently
avoiding blockage even in extremely dynamic conditions

FIGURE 6. Fraction of disconnect time from a mesh.

where the fire location intensity reaches significant values of
0.4− 0.5 events/s.
Another parameter of interest that characterizes the reli-

ability of a mesh is the number of disconnected nodes at
an arbitrarily chosen instant of time. Recall that this value
characterizes the ability of the network to support the ongoing
mission. Here, the more nodes are disconnected, the less
information is available for coordinating a mission, which
may eventually lead to additional nodes disconnecting from
the network. Fig. 7 illustrates this behavior for the degree of
multi-connectivity M = 3 and the temporal intensity of fire
locations of 0.1 events/s as a function of the mean water vapor
duration in the suppressed fire locations for both scenarios.
As one may observe, the effect of AI assistance is visible
across the entire considered range of the mean durations
of the suppressed fire location. For M = 3 and K = 6,

FIGURE 7. Mean number of disconnected nodes.
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the mean number of disconnected nodes remains close to zero
for up to the duration of approximately 150 s. However, as the
mean duration increases, the system is no longer capable of
maintaining uninterrupted mesh connectivity even with the
autonomous robot relays, and the mean number of discon-
nected nodes increases.

We further characterize time-dependent performance – the
intensity of node disconnections from a mesh in Fig. 8 as
a function of the degree of multi-connectivity, M , the num-
ber of autonomous robot relays, K , and the mean water
vapor duration in suppressed fire locations, 1/θ . As we learn,
the response of the system is qualitatively similar for both the
baseline and the AI-aided scenarios. An initial increase in the
intensity of node disconnections is explained by the fact that
the temporal intensity of node locations adds to the blockage
dynamics as moving firefighters begin to experience link
interruptions more frequently. However, when the intensity
of dynamic blockers exceeds a certain value that generally
depends on the type of the scenario and the selected system
parameters, the intensity of node disconnections begins to
decrease. The reason is that in this regime the number of
static and dynamic blockers becomes so high that individual
blockage periods merge into the longer ones, thus forcing a
node to spend more time in the disconnected state, see Fig. 6.

FIGURE 8. Intensity of node disconnections from a mesh.

Finally, in Fig. 9 we assess the maximum aggregate data
rate of the mesh network at the access gateway for M = 3
and K = 3. Observe that an upper bound on the radio access
level data rate is provided by a zero intensity of fire locations,
which results in approximately 5.4, 3.7, and 2.0 Gbps for
N = 50, N = 20, and N = 10, respectively. These
values can be used for choosing the appropriate mmWave
technology in the overlay. Particularly, the IEEE 802.11ad
solution theoretically provides up to 6 Gbps and may thus
support the fire suppression crews of up to 50 persons. For
higher values of N , the emerging IEEE 802.11ay technology
can be preferred.

FIGURE 9. Data rate at the access gateway.

One may also notice that for all the values of N , the data
rate decreases as the temporal intensity of fire locations
grows. The reason is that the time fraction when a node is
disconnected from the network rapidly increases, as shown
in Fig. 6, which reduces the number of nodes delivering their
traffic to the gateway. This process is characterized by an
avalanche-like trend, since a lower fraction of the delivered
data leads to fewer fire locations detected, which, in its turn,
increases the fraction of disconnect time. Hence, for all the
values of N , the data rate drops to zero. In this regime,
the system no longer maintains its intended functionality,
and additional robot relays are needed for improved mesh
operation.

V. CONCLUSION
The contemporary PPDR requirements go far beyond conven-
tional voice services. The use of advanced applications like
AR/VR may drastically improve the efficiency of collabora-
tive PPDR missions by providing real-time 3D information
about the environmental conditions. These new requirements
naturally call for the use of mmWave radio technologies that
offer extensive bandwidths at the air interface. To maintain
uninterrupted connectivity of mmWave-based mesh layouts
in challenging environments with both natural and artifi-
cial obstacles, one has to rely upon advanced techniques
to intelligently predict the potential blockage situations and
effectively mitigate them in real-time.

In this work, we considered the use of AI-aided tech-
niques to improve the performance of the mmWave-based
mesh systems in the representative firefighting scenar-
ios. We employed computer vision to detect the areas
with potential blockage situations and further predict the
chances of losing connectivity in dynamic self-organizing
mmWave deployments. In this case, either the user itself
or a remote control center may take preventive measures to
avoid potential node disconnects by, e.g., utilizing proximate
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robot-based relaying. Our numerical results indicate that the
proposed approach significantly enhances the reliability of
the mmWave mesh operation by substantially reducing the
fraction of disconnect time.

The results of this study are relevant beyond the considered
fire suppression scenarios. Particularly, AI-based solutions
can be utilized for predicting blockage situations in 5G NR
systems by improving link reliability and thus augmenting
session continuity.
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