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OPTIMAL ENERGY DECAY FOR THE WAVE-HEAT SYSTEM ON A
RECTANGULAR DOMAIN\ast 
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Abstract. We study the rate of energy decay for solutions of a coupled wave-heat system on a
rectangular domain. Using techniques from the theory of C0-semigroups, and in particular a well-
known result due to Borichev and Tomilov, we prove that the energy of classical solutions decays
like t - 2/3 as t \rightarrow \infty . This rate is moreover shown to be sharp. Our result implies in particular that
a general estimate in the literature, which predicts at least logarithmic decay and is known to be
best possible in general, is suboptimal in the special case under consideration here. Our strategy of
proof involves direct estimates based on separation of variables and a refined version of the technique
developed in our earlier paper for a one-dimensional wave-heat system.
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1. Introduction. In this paper we study the rate of energy decay for solutions
of a coupled wave-heat system on a rectangular domain. Let \Omega  - = ( - 1, 0) \times (0, 1)
and \Omega + = (0, 1)\times (0, 1). We consider the following model:\left\{                                         

utt(x, y, t) = \Delta u(x, y, t), (x, y) \in \Omega  - , t > 0,

wt(x, y, t) = \Delta w(x, y, t), (x, y) \in \Omega +, t > 0,

u( - 1, y, t) = w(1, y, t) = 0, y \in (0, 1), t > 0,

u(x, 0, t) = u(x, 1, t) = 0, x \in ( - 1, 0), t > 0,

w(x, 0, t) = w(x, 1, t) = 0, x \in (0, 1), t > 0,

ut(0, y, t) = w(0, y, t), y \in (0, 1), t > 0,

ux(0, y, t) = wx(0, y, t), y \in (0, 1), t > 0,

u(x, y, 0) = u0(x, y), (x, y) \in \Omega  - ,

ut(x, y, 0) = v0(x, y), (x, y) \in \Omega  - ,

w(x, y, 0) = w0(x, y), (x, y) \in \Omega +,

(1.1)

for suitable initial data u0, v0 defined on \Omega  - and w0 defined on \Omega +. Given an ini-
tial vector z0 = (u0, v0, w0) of initial data, the energy Ez0(t) at time t \geq 0 of the
corresponding solution is defined as

Ez0(t) =
1

2

\int 
\Omega 

\Bigl( 
| \nabla u(x, y, t)| 2 + | ut(x, y, t)| 2 + | w(x, y, t)| 2

\Bigr) 
d(x, y), t \geq 0,
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where u and w have been extended by zero to \Omega = ( - 1, 1) \times (0, 1). For sufficiently
regular solutions we see by a direct calculation that

\.Ez0(t) =  - 
\int 
\Omega +

| \nabla w(x, y, t)| 2 d(x, y), t \geq 0,

so the energy is non-increasing in time. The aim in this paper is to establish a sharp
estimate for the rate at which the energy of sufficiently regular solutions decays to
zero as t \rightarrow \infty .

Questions of this type, often for more general domains, have received a consid-
erable amount of attention over the last decade or so, going back at least to [16].
The underlying motivation is to understand the physical phenomenon of structure-
fluid interaction, for which the wave-heat model serves as a linear, and hence more
tractable, approximate model retaining many of the key features of more realistic
models. Some of the most general results in this area are obtained in [12, 19], and
they show in particular that the rate of energy decay one can expect depends crucially
on the geometry of the wave and heat domains. In fact, as is customary in the theory
of damped wave equations, one may consider billiard ball trajectories beginning at
points in the wave domain and reflecting according to the laws of optics along the
Dirichlet part of the boundary. According to [12, 19], if there exist so-called trapped
rays, that is to say, trajectories which never enter the heat domain, then one obtains
a logarithmic rate of energy decay for classical solutions, and for general geometries
this result is sharp. On the other hand, if every trajectory eventually enters the heat
domain, then for classical solutions one obtains Ez0(t) = o(t - (2 - \varepsilon )) as t \rightarrow \infty for
every \varepsilon > 0. In fact, it was shown recently in [5] using a delicate microlocal argument
that if the heat domain completely surrounds the wave domain one may even take
\varepsilon = 0, which gives the best possible estimate; see also [6]. Our main objective in the
present paper is to obtain a sharp estimate for the rate of energy decay of classical
solutions to our wave-heat system (1.1). Our result in particular illustrates that the
theoretical logarithmic estimate for the rate of energy decay is in general not optimal
in the case where, as in (1.1), we have a rectangular domain with trapped rays. Our
main results concern the rate of energy decay of so-called classical solutions of (1.1),
to be introduced formally in section 2 below, and may be summarized as follows.

Theorem 1.1. For classical solutions of the system (1.1) with initial data vector
z0 the energy satisfies Ez0(t) = o(t - 2/3) as t \rightarrow \infty , and moreover this rate is sharp.

Our approach is based on the theory of C0-semigroups, and in particular on the
a result due to Borichev and Tomilov [10], which reduces the problem of determining
the rate of energy decay to estimating the norm of the resolvent operator along the
imaginary axis; see also [5, 6, 9]. Our argument divides naturally into three steps.
First, in section 2, we show that the system in (1.1) is well posed in the sense of
C0-semigroups and we describe the spectrum \sigma (A) of the corresponding infinitesimal
generator A, showing in particular that \sigma (A) is contained in the open left-half plane.
Then in section 3 we turn to estimating the resolvent of A along the imaginary axis.
We first obtain an upper bound on the growth of the resolvent in Theorem 3.1 and
then we prove in Theorem 3.3 that our upper bound is sharp. Finally, in section 4
we put together the pieces and apply the Borichev--Tomilov theorem to obtain a
suitable form of Theorem 1.1. Throughout sections 2 and 3 we take advantage of
the special rectangular geometry of our domain, which allows us to obtain optimal
bounds by means of direct estimates as opposed, for instance, to indirect microlocal
arguments. More specifically, we use separation of variables, thus decomposing the
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two-dimensional problem into a family of one-dimensional problems which can be
dealt with using techniques akin to those developed in our earlier paper [9]; see also
[11, 18] for similar arguments in the context of damped wave equations.

Our notation is standard throughout. Given a closed operator A on a Hilbert
space, which will always be assumed to be complex, we denote its domain byD(A) and
its kernel by Ker(A). The spectrum of A is denoted by \sigma (A), and given \lambda \in \BbbC \setminus \sigma (A)
we write R(\lambda ,A) for the resolvent operator (\lambda  - A) - 1. For real-valued quantities p and
q, we use the notation p \lesssim q to indicate that p \leq Cq for some constant C > 0 which is
independent of all the parameters that are free to vary in a given situation. We write
p \asymp q if p \lesssim q and q \lesssim p. Furthermore, we make use where convenient of standard
asymptotic notation such as ``big O,"" ``little o,"" and \sim . We let \BbbN = \{ 1, 2, 3, . . . \} and
write \BbbC  - for the open left half-plane \{ \lambda \in \BbbC : Re\lambda < 0\} .

2. Well-posedness. Our approach to studying (1.1) is based on the theory
of C0-semigroups, so we first recast our system in the form of an abstract Cauchy
problem. Let \Gamma = \partial \Omega  - \cap \partial \Omega +, which is simply the vertical line segment \{ (0, y) : 0 \leq 
y \leq 1\} , and let H1

\Gamma (\Omega \mp ) denote the set of functions in H1(\Omega \mp ) whose trace vanishes on
\partial \Omega \mp \setminus \Gamma , endowed with the equivalent Poincar\'e norm \| u\| = \| \nabla u\| L2 , u \in H1

\Gamma (\Omega \mp ). We
let Z denote the Hilbert space H1

\Gamma (\Omega  - )\times L2(\Omega  - )\times L2(\Omega +), endowed with its natural
inner product, and let Z0 denote the subspace of Z consisting of all (u, v, w) \in Z
such that \Delta u \in L2(\Omega  - ), v \in H1

\Gamma (\Omega  - ), w \in H1
\Gamma (\Omega +), and \Delta w \in L2(\Omega +). Define the

operator A by A(u, v, w) = (v,\Delta u,\Delta w) for (u, v, w) in the domain

D(A) =
\bigl\{ 
(u, v, w) \in Z0 : v| \Gamma = w| \Gamma and ux| \Gamma = wx| \Gamma 

\bigr\} 
of A, where the coupling conditions along \Gamma appearing in the definition of D(A) are
to be understood in the sense of traces. Then A is a closed and densely defined
operator on Z but does not have compact resolvent; see [19, Theorem 2]. Letting
z(t) = (u(\cdot , t), ut(\cdot , t), w(\cdot , t)), t \geq 0, we may rewrite the wave-heat system (1.1) as\Biggl\{ 

\.z(t) = Az(t), t \geq 0,

z(0) = z0,
(2.1)

where z0 \in Z. Our first result, Theorem 2.1 below, establishes among other things
that the operator A is the infinitesimal generator of a C0-semigroup (T (t))t\geq 0 of
contractions on Z. It follows that the unique solution of (2.1) is given by z(t) = T (t)z0,
t \geq 0. This solution in general satisfies (2.1) only in the so-called mild sense, but it
is a solution in the classical sense if, and in fact only if, z0 \in D(A); see, for instance,
[4] for details on the theory of C0-semigroups. It is for such classical solutions that
we shall establish, in section 4 below, a sharp estimate on the rate of energy decay in
the sense described in section 1. In what follows we choose the square root function
with a branch cut along the negative real axis.

Theorem 2.1. The operator A generates a C0-semigroup (T (t))t\geq 0 of contrac-
tions on Z and \sigma (A) \subseteq \BbbC  - . Moreover, if we let pk(\lambda ) = (k2\pi 2 + \lambda 2)1/2 and
qk(\lambda ) = (k2\pi 2 + \lambda )1/2 for k \in \BbbN and \lambda \in \BbbC , then the point spectrum of A satis-
fies \sigma p(A) =

\bigcup 
k\in \BbbN \Sigma k, where, for k \in \BbbN ,

\Sigma k =

\biggl\{ 
\lambda \in \BbbC  - : pk(\lambda ), qk(\lambda ) \not = 0 and \lambda 

tanh pk(\lambda )

pk(\lambda )
+

tanh qk(\lambda )

qk(\lambda )
= 0

\biggr\} 
.
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Proof. For z0 = (u, v, w) \in D(A) a simple calculation using Green's theorem on
each of the regions \Omega  - and \Omega + shows that

Re\langle Az0, z0\rangle =  - 
\int 
\Omega +

| \nabla w(x, y)| 2 d(x, y) \leq 0,(2.2)

so the operator A is dissipative. Moreover, proceeding as in the proof of [19, Theo-
rem 1] we see that A is invertible. Since the resolvent set is open we may find \lambda > 0
such that \lambda \not \in \sigma (A), so that \lambda  - A is invertible and in particular surjective. Hence A
generates a C0-semigroup (T (t))t\geq 0 of contractions on Z by the Lumer--Phillips theo-
rem, and it follows from standard semigroup theory that \sigma (A) \subseteq \{ \lambda \in \BbbC : Re\lambda \leq 0\} .
In order to see that \sigma (A) contains no purely imaginary points let s \in \BbbR . We wish
to show that for every z0 = (f, g, h) \in Z there exists (u, v, w) \in D(A) such that
(is  - A)(u, v, w) = z0 and \| (u, v, w)\| \leq C\| z0\| for some C > 0 which is independent
of z0. Let ek(y) =

\surd 
2 sin(k\pi y) for k \in \BbbN and y \in (0, 1), recalling that \{ ek : k \in \BbbN \} is

an orthonormal basis for L2(0, 1). We may expand u into a series of the form

u(x, y) =

\infty \sum 
k=1

uk(x)ek(y), (x, y) \in \Omega  - ,

with convergence in the norm of L2(\Omega  - ), and we may similarly decompose v, w, f, g,
and h. This gives rise to functions uk \in H2( - 1, 0) \cap H1

 - ( - 1, 0), vk \in H1
 - ( - 1, 0),

wk \in H2(0, 1) \cap H1
+(0, 1), fk \in H1

 - ( - 1, 0), gk \in L2( - 1, 0), and hk \in L2(0, 1), k \in \BbbN ,
where H1

 - ( - 1, 0) = \{ u0 \in H1( - 1, 0) : u0( - 1) = 0\} and H1
+(0, 1) = \{ w0 \in H1(0, 1) :

w0(1) = 0\} . Using orthonormality of the set \{ ek : k \in \BbbN \} , our problem turns into the
system of one-dimensional equations\left\{     

vk(x) = is uk(x) - fk(x), x \in ( - 1, 0),

u\prime \prime 
k(x) = (k2\pi 2  - s2)uk(x) - is fk(x) - gk(s), x \in ( - 1, 0),

w\prime \prime 
k(x) = (k2\pi 2 + is)wk(x) - hk(x), x \in (0, 1),

(2.3)

with the boundary conditions uk( - 1) = wk(1) = 0, vk(0) = wk(0), and u\prime 
k(0) = w\prime 

k(0),
k \in \BbbN . These equations can be solved for each k \in \BbbN , and in fact we shall do so
explicitly in the proof of Theorem 3.1 below. In order to show that \| (u, v, w)\| \leq C\| z0\| 
for some C > 0 we note first that

\| z0\| 2 =

\infty \sum 
k=1

\Bigl( 
k2\pi 2\| fk\| 2L2 + \| f \prime 

k\| 2L2 + \| gk\| 2L2 + \| hk\| 2L2

\Bigr) 
,

and we obtain an analogous expression for the norm of (u, v, w). Let us write zk =
(fk, gk, hk) and

\| zk\| =
\bigl( 
k2\pi 2\| fk\| 2L2 + \| f \prime 

k\| 2L2 + \| gk\| 2L2 + \| hk\| 2L2

\bigr) 1/2
, k \in \BbbN .

It suffices to show that

k\| uk\| L2 , \| u\prime 
k\| L2 , \| vk\| L2 , \| wk\| L2 \lesssim \| zk\| , k \in \BbbN ,(2.4)

where the implicit constant is independent of z0 and k. Since we know that the
resolvent set contains a neighborhood of zero we may assume that | s| \geq s0 for some
s0 > 0. We omit this argument here, since a more careful version of it is presented
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in the proof of Theorem 3.1 below, where we moreover keep track of how the implicit
constant in (2.4) depends on | s| .

It remains to describe the point spectrum \sigma p(A) of A. Let \lambda \in \BbbC  - and suppose
that z0 = (u, v, w) \in Ker(\lambda  - A). Expanding the components of z0 as above we obtain
the system \left\{     

vk(x) = \lambda uk(x), x \in ( - 1, 0),

u\prime \prime 
k(x) = (k2\pi 2 + \lambda 2)uk(x), x \in ( - 1, 0),

w\prime \prime 
k(x) = (k2\pi 2 + \lambda )wk(x), x \in (0, 1),

(2.5)

together with the boundary conditions uk( - 1) = wk(1) = 0, vk(0) = wk(0), and
u\prime 
k(0) = w\prime 

k(0), k \in \BbbN . Since \lambda \in \BbbC  - we have pk(\lambda ) \not = 0 for all k \in \BbbN . Let us assume
for the moment that we also have qk(\lambda ) \not = 0, k \in \BbbN . It is then straightforward to show
that the ordinary differential equations in (2.5) together with the boundary conditions
at x = \pm 1 imply

uk(x) = ak(\lambda ) sinh(pk(\lambda )(1 + x)), x \in ( - 1, 0),

wk(x) = bk(\lambda ) sinh(qk(\lambda )(1 - x)), x \in (0, 1),

for some constants ak(\lambda ), bk(\lambda ) \in \BbbC , k \in \BbbN , and now the coupling conditions at x = 0
can be formulated as\biggl( 

\lambda sinh pk(\lambda )  - sinh qk(\lambda )
pk(\lambda ) cosh pk(\lambda ) qk(\lambda ) cosh qk(\lambda )

\biggr) \biggl( 
ak(\lambda )
bk(\lambda )

\biggr) 
=

\biggl( 
0
0

\biggr) 
, k \in \BbbN .(2.6)

Writing Mk(\lambda ) for the 2 \times 2 matrix appearing in this equation we see that z0 \not = 0 if
and only if detMk(\lambda ) = 0 for some k \in \BbbN . On the other hand, if qk(\lambda ) = 0 for some
k \in \BbbN , then wk(x) = bk(\lambda )(x  - 1), x \in (0, 1), for some constant bk(\lambda ) \in \BbbC , and it is
straightforward to verify that the coupling conditions at x = 0 imply ak(\lambda ) = bk(\lambda ) =
0. The result now follows.

3. Resolvent estimates. We now study the growth behavior of the resolvent
norms \| R(is, A)\| as | s| \rightarrow \infty . First, in section 3.1 we obtain an upper bound for the
resolvent norms, which we then prove to be optimal in section 3.2. These results will
eventually allow us to obtain a sharp estimate on the rate of energy decay for classical
solutions, which is done in section 4 below.

3.1. An upper bound. We establish the following result.

Theorem 3.1. We have \| R(is, A)\| = O(| s| 3) as | s| \rightarrow \infty .

Proof. We use the notation introduced in section 2. Fix z0 \in Z and s \in \BbbR with
| s| \geq s0, where s0 > 0 is to be chosen in due course. Let us write z0 = (f, g, h)
and R(is, A)z0 = (u, v, w), so that z0 = (is  - A)(u, v, w). We may decompose each
of the entries of z0 and R(is, A)z0 as in the proof of Theorem 2.1 to obtain the
system (2.3) with the boundary conditions listed there. Using the same notation as
in the proof of Theorem 2.1 but dropping the subscript L2 from now on, we have
\| vk\| \lesssim | s| \| uk\| + \| zk\| , so our objective is to show that

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| , \| wk\| \lesssim | s| 3\| zk\| , k \in \BbbN ,

where the implicit constant is independent of z0, s, and k. Our approach depends
crucially on the relationship between the parameters s and k, and we distinguish
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between two main cases. In what follows we write pk(s) for pk(\lambda ) when \lambda = is, and
similarly for qk.

Case 1. s2 \leq k2\pi 2 + 1. We begin with some preliminary maneuvers. Taking the
inner product in L2( - 1, 0) of the second equation of (2.3) with vk and integrating by
parts we obtain

\langle u\prime 
k, v

\prime 
k\rangle  - u\prime 

k(0)vk(0) = \langle is fk + gk  - pk(s)
2uk, vk\rangle .(3.1)

Similarly, taking the inner product in L2(0, 1) of the third equation of (2.3) with wk

and integrating by parts we obtain

\| w\prime 
k\| 2 + w\prime 

k(0)wk(0) = \langle hk  - qk(s)
2wk, wk\rangle .(3.2)

Adding (3.1) and (3.2) we find, after using the boundary conditions, that

\langle u\prime 
k, v

\prime 
k\rangle + \| w\prime 

k\| 2 = \langle is fk + gk  - pk(s)
2uk, vk\rangle + \langle hk  - qk(s)

2wk, wk\rangle .(3.3)

Expanding this equation using the identity vk = is uk  - fk and then taking real parts
we find, after some crude estimates, that

\| wk\| 2 \lesssim \| u\prime 
k\| \| zk\| + \| zk\| 2.(3.4)

Here we have used that \| uk\| \leq 2
\pi \| u

\prime 
k\| by the Poincar\'e inequality and also that | s| \lesssim k.

Similarly, if we take imaginary parts in (3.3) and make use of (3.4), then after some
standard estimates we obtain

\| u\prime 
k\| 2 + pk(s)

2\| uk\| 2 \lesssim \| u\prime 
k\| \| zk\| + \| zk\| 2.(3.5)

Here we have used that | s| \geq s0 for some s0 > 0. From the Poincar\'e inequality and
the fact that pk(s)

2 \geq  - 1 we see that \| u\prime 
k\| 2 \lesssim \| u\prime 

k\| 2 + pk(s)
2\| uk\| 2, so by (3.5) we

may find a constant C > 0 such that

\| u\prime 
k\| 2  - C\| u\prime 

k\| \| zk\|  - C2\| zk\| 2 \leq 0.

By computing the roots of the polynomial t \mapsto \rightarrow t2  - C\| zk\| t  - C2\| zk\| 2 it follows
easily that \| u\prime 

k\| \lesssim \| zk\| . By (3.4) we also have \| wk\| \lesssim \| zk\| . Next we estimate
k\| uk\| . Supposing for the moment that pk(s)

2 \geq k2 we have k\| uk\| \lesssim \| zk\| from
(3.5) and the estimate for \| u\prime 

k\| . On the other hand, if pk(s)
2 < k2, then k \lesssim | s| 

and hence by the Poincar\'e inequality k\| uk\| \lesssim | s| \| u\prime 
k\| \lesssim | s| \| zk\| . Finally, we have

| s| \| uk\| \lesssim k\| uk\| \lesssim | s| \| zk\| .
Case 2. s2 > k2\pi 2 + 1. Note that subject to the boundary conditions at x = \pm 1

the solutions uk, wk of (2.3) are given by

uk(x) = ak(s) sinh(pk(s)(x+ 1)) + Uk,s(x), x \in ( - 1, 0),

wk(x) = bk(s) sinh(qk(s)(1 - x)) +Wk,s(x), x \in (0, 1),
(3.6)

where ak(s), bk(s) \in \BbbC , k \in \BbbN , are constants and

Uk,s(x) =  - 1

pk(s)

\int x

 - 1

sinh(pk(s)(x - r))Hk,s(r) dr, x \in ( - 1, 0),

Wk,s(x) =  - 1

qk(s)

\int 1

x

sinh(qk(s)(r  - x))hk(r) dr, x \in (0, 1),
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with Hk,s(x) = is fk(x) + gk(x), x \in ( - 1, 0). If we denote the 2\times 2 matrix appearing
in (2.6) by Mk(s) when \lambda = is, then we may write the coupling conditions at x = 0
in the form

Mk(s)

\biggl( 
ak(s)
bk(s)

\biggr) 
=

\biggl( 
fk(0) - is Uk,s(0) +Wk,s(0)

W \prime 
k,s(0) - U \prime 

k,s(0)

\biggr) 
, k \in \BbbN .

Hence the solutions uk and wk, k \in \BbbN , may be written, after some elementary but
tedious manipulations, in the form

uk(x) =
is qk(s) cosh qk(s)

pk(s) detMk(s)

\biggl( 
pk(s)

is
sinh(pk(s)(x+ 1))fk(0)

 - sinh(pk(s)x)

\int x

 - 1

sinh(pk(s)(1 + r))Hk,s(r) dr

 - sinh(pk(s)(1 + x))

\int 0

x

sinh(pk(s)r)Hk,s(r) dr

\biggr) 
+

sinh qk(s)

detMk(s)

\biggl( 
cosh(pk(s)x)

\int x

 - 1

sinh(pk(s)(1 + r))Hk,s(r) dr

+ sinh(pk(s)(1 + x))

\int 0

x

cosh(pk(s)r)Hk,s(r) dr

\biggr) 
+

1

detMk(s)
sinh(pk(s)(x+ 1))

\int 1

0

sinh(qk(s)(1 - r))hk(r) dr

for x \in ( - 1, 0) and

wk(x) =
pk(s) cosh pk(s)

qk(s) detMk(s)

\biggl( 
 - qk(s) sinh(qk(s)(1 - x))fk(0)

+ sinh(qk(s)(1 - x))

\int x

0

sinh(qk(s)r)hk(r) dr

+ sinh(qk(s)x)

\int 1

x

sinh(qk(s)(1 - r))hk(r) dr

\biggr) 
+

is sinh pk(s)

detMk(s)

\biggl( 
sinh(qk(s)(1 - x))

\int x

0

cosh(qk(s)r)hk(r) dr

+ cosh(qk(s)x)

\int 1

x

sinh(qk(s)(1 - r))hk(r) dr

\biggr) 
+

is

detMk(s)
sinh(qk(s)(1 - x))

\int 0

 - 1

sinh(pk(s)(1 + r))Hk,s(r) dr

for x \in (0, 1). Though somewhat laborious to derive, these formulas can be readily
verified simply by substituting them into (2.3). Since s2 > k2\pi 2 + 1, we have k \lesssim | s| 
and hence 1 \leq | pk(s)| \lesssim | s| and | s| 1/2 \lesssim | qk(s)| \lesssim | s| . Moreover, pk(s) is purely
imaginary. Hence if we differentiate the expression for uk and estimate the L2-norms
crudely, and in particular insert a factor of | s| /k for later convenience, we obtain

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| \lesssim 

s4eRe qk(s)

k| pk(s)| | detMk(s)| 
\| zk\| 

and \| wk\| \lesssim 
s2eRe qk(s)

k| detMk(s)| 
\| zk\| .

(3.7)
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Note that Re qk(s) > 0. Next we seek to bound the term e - Re qk(s)| detMk(s)| from
below. A straightforward calculation yields

2
| detMk(s)| 
eRe qk(s)

\geq 
\bigm| \bigm| sqk(s) sin | pk(s)|  - i| pk(s)| cos | pk(s)| 

\bigm| \bigm| 
 - e - 2Re qk(s)

\bigm| \bigm| sqk(s) sin | pk(s)| + i| pk(s)| cos | pk(s)| 
\bigm| \bigm| ,(3.8)

and squaring the modulus of first term on the right-hand side we obtain

s2(Re qk(s))
2 sin2 | pk(s)| +

\bigl( 
s Im qk(s) sin | pk(s)|  - | pk(s)| cos | pk(s)| 

\bigr) 2
.

If the first summand in this expression is less than 1/8, then

| pk(s)| 2 cos2 | pk(s)| \geq 1 - 1

8s2(Re qk(s))2
\geq 1

2

because | s| Re qk(s) \geq 1/2, and since | Im qk(s)| \leq Re qk(s) it follows easily that
the second summand in the expression must be at least 1/8. Hence the first term
on the right-hand side of (3.8) is bounded from below by 1/2

\surd 
2. The second term on

the right-hand side of (3.8) converges to zero uniformly in k as | s| \rightarrow \infty , so if we choose
the lower bound s0 \geq 1 for | s| to be sufficiently large we see that e - Re qk(s)| detMk(s)| 
is uniformly bounded away from zero. Thus (3.7) becomes

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| \lesssim 

s4

k| pk(s)| 
\| zk\| and \| wk\| \lesssim 

s2

k
\| zk\| .

Now if s2 \leq 2k2\pi 2, then | s| \lesssim k and hence

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| \lesssim | s| 3\| zk\| and \| wk\| \lesssim | s| \| zk\| .

On the other hand, if s2 > 2k2\pi 2, then | s| \lesssim | pk(s)| and therefore

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| \lesssim | s| 3\| zk\| and \| wk\| \lesssim s2\| zk\| .(3.9)

This completes the proof.

Remark 3.2. (a) The explicit solutions to (2.3) given in the proof work for all
s \in \BbbR \setminus \{ 0\} . Hence in proving Theorem 2.1, where we only need to show that the
inverse of is - A is a bounded operator for each fixed s \in \BbbR \setminus \{ 0\} , we may use these
explicit solutions to obtain crude bounds for all k \in \BbbN such that k2\pi 2 + 1 < s2

and then obtain (2.4) by using only Case 1 of the above proof, which crucially
does not require the lower bound s0 for | s| to be large.

(b) In the above proof we have not attempted to obtain the best possible growth
estimate in each of the subcases. For instance, a more careful analysis would
show that for s2 > 2k2\pi 2 one can improve (3.9) to

k\| uk\| , | s| \| uk\| , \| u\prime 
k\| \lesssim s2\| zk\| and \| wk\| \lesssim | s| \| zk\| .

As we shall see now, however, the overall growth rate of | s| 3 is sharp. This suggests
that the largest contributions come from terms for which k \asymp | s| ; see Remark 3.4
below.
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3.2. Optimality of the upper bound. We now show that the upper bound
obtained in Theorem 3.1 is sharp by proving that A has eigenvalues which approach
the imaginary axis at a suitable rate at infinity.

Theorem 3.3. There exist sequences (\lambda \pm 
k ) of eigenvalues of A and a constant

C > 0 such that Im\lambda \pm 
k \sim \pm k\pi as k \rightarrow \infty and

 - C

| Im\lambda \pm 
k | 3

\leq Re\lambda \pm 
k < 0, k \in \BbbN .(3.10)

In particular,

lim sup
| s| \rightarrow \infty 

\| R(is, A)\| 
| s| 3

> 0.

Proof. Consider the functions Fk(\lambda ) = tanh pk(\lambda ) and

Gk(\lambda ) =
pk(\lambda )

\lambda qk(\lambda )
tanh qk(\lambda ), \lambda \in \BbbC ,

where pk, qk are as in Theorem 2.1, and let \mu \pm 
k = \pm i\pi 

\surd 
k2 + 1, k \in \BbbN . Note that

pk(\mu 
\pm 
k ) = i\pi and let q\pm k = qk(\mu 

\pm 
k ), k \in \BbbN . Then Fk(\mu 

\pm 
k ) = 0 and

Gk(\mu 
\pm 
k ) = \pm 

tanh q\pm k
q\pm k

\surd 
k2 + 1

, k \in \BbbN .

In particular, since | q\pm k | \sim k\pi and | tanh q\pm k | \rightarrow 1 as k \rightarrow \infty we have | Gk(\mu 
\pm 
k )| \sim 

(k2\pi ) - 1 as k \rightarrow \infty . In fact, if we let \Omega \pm 
k = \{ \lambda \in \BbbC : | \lambda  - \mu \pm 

k | < k - 3\} , k \in \BbbN , a more
careful argument using Taylor expansions shows that

sup
\bigl\{ 
| Gk(\lambda )| : \lambda \in \partial \Omega \pm 

k

\bigr\} 
\sim 1

k2\pi 
, k \rightarrow \infty .(3.11)

For \lambda = \mu \pm 
k + z we have

Fk(\lambda ) = i tan

\left(  \pi 

\Biggl( 
1 - z2 \pm 2zi\pi 

\surd 
k2 + 1

\pi 2

\Biggr) 1/2
\right)  

and hence another Taylor expansion shows that | Fk(\lambda )| \geq (2k2) - 1 for \lambda \in \partial \Omega \pm 
k

provided k is sufficiently large. Thus by (3.11) we have | Gk(\lambda )| < | Fk(\lambda )| for such
values of \lambda and k, so Rouch\'e's theorem implies that the function Fk + Gk has roots
\lambda \pm 
k \in \Omega \pm 

k when k is sufficiently large. By Theorem 2.1 any root of Fk + Gk is an
eigenvalue of A, so we obtain (3.10). The final claim follows easily since \| R(is, A)\| \geq 
dist(is, \sigma (A)) - 1, s \in \BbbR .

Remark 3.4. An alternative approach to proving optimality of the resolvent bound
in Theorem 3.1 is to show directly, by estimating \| R(is, A)z0\| from below for suitable
s \in \BbbR and z0 \in Z, that the upper bounds in the latter part of the proof of that result
cannot be improved. Note also that the points on the imaginary axis at which the
resolvent norm is shown to be large are of the form \pm isk, k \in \BbbN , where sk \sim k\pi as
k \rightarrow \infty ; see Remark 3.2.
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4. Energy decay. We now turn to the rate of energy decay for classical solutions
of the abstract Cauchy problem (2.1) corresponding to the wave-heat system (1.1).
Our main result, Theorem 4.2 below, is a consequence of the following abstract result
on rates of decay for semigroups on Hilbert space due to Borichev and Tomilov [10];
see also [7, 17].

Theorem 4.1. Let Z be a Hilbert space and let (T (t))t\geq 0 be a bounded C0-semi-
group on Z with generator A. Suppose that \sigma (A) \subseteq \BbbC  - . Then for any constant \alpha > 0
the following conditions are equivalent:

(i) \| R(is, A)\| = O(| s| \alpha ) as | s| \rightarrow \infty ;

(ii) \| T (t)A - 1\| = O(t - 1/\alpha ) as t \rightarrow \infty ;

(iii) \| T (t)z0\| = o(t - 1/\alpha ) as t \rightarrow \infty for all z0 \in D(A).

We now come to the main result of this paper.

Theorem 4.2. For z0 \in D(A) the energy of the classical solution of (2.1) satisfies
Ez0(t) = o(t - 2/3) as t \rightarrow \infty .

Proof. Note that for any z0 \in Z we have Ez0(t) = 1
2\| T (t)z0\| 

2, t \geq 0. Since
\| R(is, A)\| = O(| s| 3) as | s| \rightarrow \infty by Theorem 3.1 it follows from Theorem 4.1 that
Ez0(t) = o(t - 2/3) as t \rightarrow \infty for z0 \in D(A).

Remark 4.3. (a) The rate t - 2/3 in Theorem 4.2 is optimal in the sense that,
given any positive function r satisfying r(t) = o(t - 2/3) as t \rightarrow \infty , there exists
z0 \in D(A) such that Ez0(t) \not = o(r(t)) as t \rightarrow \infty . This follows from Theorem 3.3
and the uniform boundedness principle together with [8, Proposition 1.3]; see also
[4, Theorem 4.4.14].

(b) It follows from Theorem 3.3 and standard C0-semigroup theory that there is no
hope of finding a rate of energy decay which is valid for all initial values z0 \in Z;
see also [15, Lemma 3.1.7]. On the other hand, if z0 \in D(Ak) for some k \in \BbbN , then
it follows easily from the semigroup property that Ez0(t) = o(t - 2k/3) as t \rightarrow \infty ,
so more regular solutions have faster energy decay.

We conclude by mentioning that methods similar to the ones presented here can
be used to obtain sharp estimates for the rate of energy decay in various related
problems, such as system (1.1) but with the coupling condition ut(0, y, t) = w(0, y, t)
replaced by u(0, y, t) = w(0, y, t) for y \in (0, 1), t > 0. Another example is the following
wave equation which is damped on one half of its rectangular domain but not on the
other: \left\{       

utt(x, y, t) + 1\Omega +
(x, y)ut(x, y, t) = \Delta u(x, y, t), (x, y) \in \Omega , t > 0,

u(x, y, t) = 0, (x, y) \in \partial \Omega , t > 0,

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) \in \Omega .

Here \Omega = ( - 1, 1)\times (0, 1) and \Omega + = (0, 1)\times (0, 1) as in section 1, and u0, v0 are suitable
functions defined on \Omega . In this case the energy

Ez0(t) =
1

2

\int 
\Omega 

\Bigl( 
| \nabla u(x, y, t)| 2 + | ut(x, y, t)| 2

\Bigr) 
d(x, y), t \geq 0,

of any classical solution u, with corresponding initial data z0 = (u0, v0), can be shown
to satisfy Ez0(t) = o(t - 4/3) as t \rightarrow \infty , and furthermore this estimate is sharp; see
[3, Part IV.B], [18], and also [11, 14]. Our methods can also be adapted to study
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the following wave equation on the square \Omega  - = ( - 1, 0) \times (0, 1) subject to Dirichlet
boundary conditions along three of its edges but with the coupled heat equation
in (1.1) replaced by a dissipative boundary condition along the fourth edge:\left\{                     

utt(x, y, t) = \Delta u(x, y, t), (x, y) \in \Omega  - , t > 0,

u(x, 0, t) = u(x, 1, t) = 0, x \in ( - 1, 0), t > 0,

u( - 1, y, t) = 0, y \in (0, 1), t > 0,

ux(0, y, t) =  - \kappa ut(0, y, t), y \in (0, 1), t > 0,

u(x, y, 0) = u0(x, y), (x, y) \in \Omega  - ,

ut(x, y, 0) = v0(x, y), (x, y) \in \Omega  - ,

(4.1)

for suitable initial data u0, v0 defined on \Omega  - and any constant \kappa > 0. Models of
this type are considered, for instance, in [1, 2, 13]. By formulating (4.1) as an ab-
stract Cauchy problem and proceeding as in sections 2 and 3 one obtains the sharp
estimate \| R(is, A)\| = O(| s| 2), | s| \rightarrow \infty , for the resolvent of the generator A of the
corresponding contraction semigroup. It follows as in Theorem 4.2 that the energy of
any classical solution u of (4.1) decays like o(t - 1) as t \rightarrow \infty , and this estimate too is
optimal.
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