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Abstract

Purpose: To investigate the use of an affine-variance noise model, with correlated
quantum noise and spatially-dependent quantum gain, for the simulation of noise in virtual
clinical trials (VCT) of digital breast tomosynthesis (DBT).

Methods: Two distinct technologies were considered: an amorphous-selenium (a-Se)
detector with direct conversion, and a thallium doped cesium iodide (CsI(Tl)) detector
with indirect conversion. A VCT framework was used to generate noise-free projections of
a uniform 3D simulated phantom, whose geometry and absorption match those of a poly
methyl methacrylate (PMMA) uniform physical phantom. The noise model was then used
to generate noisy observations from the simulated noise-free data, while two clinically
available DBT units were used to acquire projections of the PMMA physical phantom.
Real and simulated projections were then compared using the signal-to-noise ratio (SNR)
and normalized noise power spectrum (NNPS).

Results: Simulated images reported errors smaller than 4.4% and 7.0% in terms of
SNR and NNPS, respectively. These errors are within the expected variation between two
clinical units of the same model. The errors increase to 65.8% if uncorrelated models are
adopted for the simulation of systems featuring indirect detection. The assumption of
spatially-independent quantum gain generates errors of 11.2%.

Conclusions: The investigated noise model can be used to accurately reproduce the
noise found in clinical digital breast tomosynthesis. The assumption of uncorrelated noise
may be adopted if the system features a direct detector with minimal pixel crosstalk.

Keywords: noise simulation, quantum noise, electronic noise, virtual clinical trials, digital
breast tomosynthesis
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1 Introduction
The ultimate validation of medical devices is done through clinical trials. However, clinical trials
require large financial investments for prototype design and patient recruiting. Furthermore,
the duration of clinical trials is highly dependent on patient and physician availability. In
this context, virtual clinical trials (VCTs) are becoming an attractive option as a pre-clinical
validation [1–3].

In a VCT, the anatomical data, the imaging physics and human interpretation are simulated
by computer algorithms.

To reproduce the image quality obtained in real-life systems accurately, it is vital to simulate
the noise in VCTs accurately. For instance, noise can have higher impact on the detection of
breast cancer than spatial resolution [4].

Here we investigate the validity of the noise models used to simulate digital breast tomosyn-
thesis (DBT). We start by testing an affine-variance noise model with correlated quantum noise
and spatially-varying quantum gain [5, 6], which we consider to be faithful to the detector
physics. We then assess and compare the performance of simpler noise models.

2 Problem formulation
Our goal is to obtain approximations ẑ(x) of observed DBT pixels z(x), by adding noise to a
simulated noise-free signal y(x) generated by a VCT tool.

Let us consider z(x) as an observed pixel of a raw DBT projection at spatial position x ∈ Z2.
As in [5, 6], we model z(x) as

z(x) ≈ ẑ(x) = λ(x)π(x) + τ + ωe, π(x) ∼ P{y(x)/λ(x)}, (1)

where P{ξ} is a Poisson distribution with average count ξ, describing the signal corrupted by
heteroskedastic quantum noise; λ is the scaling of the Poisson noise, which is related to the
quantum gain of the image formation and to the detector gain; y is the flat-fielded simulated
underlying noise-free signal; τ is the pixel offset; and ωe is the homoskedastic Gaussian noise,
which represents the signal-independent noise sources, such as readout, amplification and ther-
mal noise, here referred to as electronic noise. The coefficients λ vary with x, i.e. we account
for the spatial dependency of the pixel gain, which results from the flat-fielding process that
compensates non-uniformities such as described by the inverse square law and heel effect.

From (1), the expectation and variance of z(x) depend on y(x) and are

E {z(x)|y(x)} = y(x) + τ , (2)
var {z(x)|y(x)} = y(x)λ(x) + σ2

e . (3)

In the model above, the variance is an affine function of y(x), where λ(x) is the slope and
σ2

e = var {ωe} is the intercept. Hence, (2)-(3) is often referred to as a signal-dependent affine-
variance noise model. Due to the counting range at which DBT systems operate (y/λ� 10),
we assume that the quantum noise is approximately normally distributed [7].

Equation (1) may be described in the additive form

z(x) = y(x) + τ + ωq + ωe, (4)

where ωq and ωe are the signal-dependent and signal-independent noise components, respec-
tively. Each noise component can be also represented as

ωq = (Kq ∗ N{0, 1})
√
λy (5)

ωe = (Ke ∗ N{0, 1})σe (6)
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where Kq and Ke are convolution kernels that determine the spatial correlation of each noise
component starting from the uncorrelated noise N{µ, γ}, normally distributed, with mean µ
and variance γ. Both kernels must be normalized so that ||Kq||2 = ||Ke||2 = 1, to conserve the
variances of ωq and ωe.

Below we present two simplified noise models derived from the initial noise model described
by (1)–(6).

• Simplification 2.1: The first simplification adopts a spatially-invariant λ, i.e. λ(x) =
λ̄,∀x, where λ̄ represents the average of λ over a region of interest (ROI). The average
minimizes the quadratic discrepancies between λ̄ and λ over the ROI. The common ar-
gument for this approximation is that often the breast only covers a small area of the
detector where the variations of λ are smaller.

• Simplification 2.2: The second simplification assumes an affine-variance model with
uncorrelated quantum noise, i.e. Kq = δ(0). This assumption is commonly adopted for
direct conversion detectors, due to the low pixel crosstalk reported by this technology.

3 Methods
Figure 1 illustrates the adopted validation strategy, with the noise simulation step described in
detail. We started the validation by selecting appropriate poly methyl methacrylate (PMMA)
uniform phantoms, commonly provided by the vendors for flat-fielding calibration. The PMMA
phantom allows an easy estimation of the signal and noise properties due to the uniformity of
the phantom. Digital 3D models of the physical phantoms were then generated with the first
module of the VCT pipeline. The digital models were designed to reproduce the absorption
and geometry of the PMMA physical phantoms.

Projections of the physical phantoms were acquired at a range of dose levels. Meanwhile,
the VCT pipeline was used to generate simulated noise-free DBT projections, considering the
same acquisition geometry and selected radiographic factors from the clinical units. The pre-
sented noise models were then used to generate noisy projections, which were compared to the
projections obtained from the clinical units.

4 Materials
Clinical images were acquired using DBT systems from two vendors. Table 1 presents the
properties of both systems.

Two PMMA physical phantoms were used during the experiments. One of them, with 4 cm
thickness, was provided by the manufacturer of the Selenia Dimensions system. The second
phantom, with 3 cm thickness, was provided by the manufacturer of the Senographe Essential
system. The uniform phantoms are commonly used for the flat-fielding correction and they
simplify the estimation of signal and noise properties at each spatial position.

Simulations were performed using the virtual clinical trial framework developed at the Uni-
versity of Pennsylvania [8, 9], and available for download [10]. This VCT tool is dedicated to
the optimization and validation of breast imaging modalities and is capable of simulating the
anatomy of the human breast tissue, the physics of the x-rays generation, transmission and
detection, and the psychophysics behind image interpretation.

The simulation assumed perfectly flat-fielded projections. The Siddon 3D algorithm [11]
was adopted as the x-ray tracing algorithm. The effects of lag/ghosting and scatter were not
considered in the ray-tracing. Lag/ghosting and scatter respectively affect the average pixel
value reported at different angles and the noise power spectrum. Thus there might be minor
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intensity differences between the real and simulated phantom projections, which were partly
compensated by the affine mapping of intensities as done in [12, 13]. The noise power spectral
density (PSD) is estimated from real data and thus naturally includes scattering effects.

Two digital phantoms were generated, both designed to mimic the absorption and geometry
of the two uniform PMMA physical phantoms.

4.1 Image Acquisition

Two image sets were required from each of the two system models: one calibration set and one
validation set. The calibration set was used to estimate noise parameters of the DBT systems,
such as τ , λ, σe, Kq and Ke; while the validation set was used to estimate the fidelity between
real and simulated noise considering a range of radiation doses. To avoid circular proofing,
calibration and validation sets were acquired from two different units of the same model. Thus,
a total of four clinical units were used for the image acquisition process. Table 2 presents the
radiographic factors used during the acquisition process. Ten realizations were acquired at each
combination of radiographic factors in the validation sets to allow better noise estimation.

As we adopted distinct units for calibration and validation, it is important to investigate the
SNR and NNPS variability between systems of the same model. For this purpose, we acquired
ten extra sets of projections using the calibration systems at 30 and 63 mAs on the a-Se and
CsI(Tl) systems, respectively. The extra sets were used to estimate the variability in SNR and
NNPS between the calibration and validation systems.

Conventional DBT images were acquired on both systems. The PMMA phantoms were po-
sitioned on the breast support. Projections from Selenia Dimensions and Senographe Essential
were acquired without and with an anti-scatter grid, respectively, as per the systems’ default.
Only raw (DICOM tag “for processing”) projections were used in this study.

4.2 Paramenter Estimation

Below we specify the methods adopted to estimate the noise parameters. It is important to
emphasize that the estimation methods were used as tools, and thus we refer the readers to the
cited works to find detailed descriptions about the estimation process.

• Pixel Offset τ : estimated using the mean pixel value (MPV) × incident air kerma
(IAK) plot as described by the EUREF [14]. A 10 mm × 10 mm square ROI used for
the estimation was taken from each raw projection, at the midline, 60 mm from the chest
wall edge. A single τ was estimated for each system model. The estimated offset values
are close to the reported by other works [15,16].

• Standard Deviation of the Electronic Noise σe: estimated using the noise variance
× linearized MPV plot. The linearized MPV was calculated by subtracting the offset τ
from the raw pixel values, and σe was estimated as the square root of the intercept of the
affine function fitted to the noise variance × linearized MPV plot. The ROIs were chosen
as described previously. A single σe was estimated for each system model.

• Correlation Kernel of the Electronic noise Ke: throughout this paper we assume
that the electronic noise is not correlated, i.e. Ke = δ(0). This assumption is based on
measurements performed by other authors on both a-Se [17] and CsI(Tl) [15] detectors.

• Gain Map of the Quantum Noise λ: estimated using the ratio between the variance
of the quantum noise and the linearized MPV, as described in [6,12]. The estimated map
was detrended using a second order polynomial surface. The estimation was performed
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in each projection and each combination of radiographic factors from the calibration sets.
The estimates were then averaged among radiographic factors. Thus, a single λ map was
estimated for each projection angle of each system.

• Correlation Kernel of the Quantum Noise Kq: estimated through the power spectral
density as in [6,12] over the calibration image with the highest dose, so that the quantum
noise dominates over the electronic one. 200 rows and columns of pixels were excluded
from each border to avoid saturated pixels.

Table 3 shows the estimated pixel offset and standard deviation (std) of the electronic noise.
Figure 2 shows examples of estimated λ maps and blurring kernels Kq, taken from the central
projection. The two λ maps shown in Figure 2 make evident the impact of the non-uniformity
correction on the gain of the quantum fraction of the noise. The shape of the maps resemble
the shape seen in the non-uniformities described by the inverse square law and heel effect.

The analysis of the cross-section taken from the 2D kernel shows that the a-Se detector has
99.8% of its energy concentrated at the central pixel, and 0.2% of its energy spreading to the
neighboring pixels. Meanwhile, the CsI(Tl) detector has 83.9% of its energy concentrated at
the central pixel, with 16.1% of energy spreading to the neighboring pixels.

4.3 Metrics

Several works have studied noise in breast imaging [4,5,18–22]. Noise is usually evaluated by the
signal-to-noise ratio (SNR), the signal difference-to-noise ratio (SDNR), or the normalized noise
power spectrum (NNPS). Here we adopt the local SNR and NNPS as reasonable descriptors
of the noise statistics in DBT systems. The local SNR is the pointwise ratio between the local
signal mean and the local noise standard deviation, estimated over ten realizations

SNR(x) =
µ(x)√
σ(x)2

, µ(x) =
1

R

R∑
r=1

zr(x), σ2(x) =
1

R− 1

R∑
r=1

(zr(x)− µ(x))2, (7)

where r = 1, 2, . . . , R are realizations of the image (R=10). For each pair of real and simulated
data, the overall average SNR was plotted as a function of projection angle. SNR profiles were
also plotted by averaging the SNR map in the chest-wall-to-nipple (posterior-anterior, PA) and
lateral directions.

The spectral properties of the simulated and real noise were compared in terms of normalized
noise power spectrum (NNPS) [23,24], which is defined as

NPS =
Ns2

M

M∑
m=1

|F{Im − Sm}|2, NNPS =
NPS

L2
, (8)

where N is the number of pixels in a patch, s is the pixel size, m = 1, . . . ,M indicates the
patch taken from the uniform image I, F indicates the Fourier transform, Im and Sm are the
signal and detrending surface of the patch m, respectively, and L is the average value of I. We
adopted the mean value of the patch m as the detrending Sm. Because of the detrending using
smooth trend, low frequencies of the power spectrum cannot be estimated. Thus, frequencies
below 0.5 mm−1 were omitted from the graphs.

The overall quality of the noise simulation was computed as the pointwise relative absolute
error between simulated and real SNR maps. Second-order polynomial surfaces were fitted to
each SNR map to minimize noise from the estimations due to the few realizations. We opted to
calculate the errors over the entire detector field, as in clinical practice there are many breasts
that are larger than the detector, sometimes even requiring tiling of the breast.
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5 Results
Figure 3 shows examples of simulated and real noise maps, with a magnified portion for better
visual assessment. The SNR and NNPS obtained for both systems at a range of dose levels
are shown in Figure 4. The PA and lateral SNR profiles make evident the exponential and
quadratic behavior of the SNR in each of the two directions, respectively. Furthermore, the
NNPS shows that the noise from the a-Se detector has an approximately flat spectrum, when
compared to the CsI(Tl) detector.

Table 4 summarizes the relative SNR and NNPS results obtained with the initial noise
model (1)–(6) and the Simplifications 2.1 and 2.2, along with the respective 95% confidence
intervals as the values in parentheses. Assuming uncorrelated noise impacted mostly the NNPS
of the CsI(Tl) detector but did not affect any of the SNR values.

The system variability study showed that the a-Se detector at 30 mAs yielded an average
discrepancy of 3.2% (2.0% 4.4%) in terms of SNR, and 3.8% (2.5% 5.2%) in terms of NNPS.
Considering the CsI(Tl) detector at 63 mAs, the estimated variability was 3.5% (3.0% 4.0%)
in terms of SNR, and 7.6% (5.3% 9.9%) in terms of NNPS. Thus, the errors achieved by our
simulations are comparable to the system variability.

6 Discussions and Conclusions
We evaluated the similarity between real and simulated noise in DBT projections generated by
a virtual clinical trials framework. The initial noise model accounts for the correlation of the
quantum noise and the spatial dependency of the quantum gain λ. Two simplified versions of
the initial noise model were also investigated. Structural noise was considered negligible at the
the counting ranges at which DBT operates, and thus it was not considered here.

Noise maps are illustrated in Figure 3, where we can appreciate the noise correlation of the
CsI(Tl) detector. This correlation results from the indirect energy conversion to visible light
adopted by this technology.

In Figure 4, noise measurements from the central projection are plotted as an example.
The PA plot of the SNR illustrates how this measurement changes significantly as the distance
to the chest wall increases. This is a result of the calibration process (flat-fielding), which
compensates non-uniformities described by the inverse square law and the heel effect. The
NNPS shows that the CsI(Tl) detector indeed yield much stronger noise correlation, compared
to the a-Se detector.

The results of this study are summarized in Table 4. The errors in the simulation are
comparable to the discrepancy between systems of the same model.

The assumption of spatially-independent quantum gain λ resulted in minor differences in
the NNPS measurements, since this quantity does not carry spatial information. However, the
average error was significantly increased in terms of SNR, reaching up to 11.2%.

Lastly, the assumption of uncorrelated quantum noise had virtually no impact in the sim-
ulated noise of the a-Se detector. However, significant errors (up to 65.8%) arise when this
model is adopted for the CsI(Tl) detector.

Monte Carlo (MC) methods provide a gold-standard approach to simulating noisy x-ray
projections. Recent works [25, 26] showed that a MC-based method, as well as the single
iteration x-ray tracing used here, are capable of reproducing the outcome of real-life DBT
clinical trials using exclusively artificial data. However, even though both methods perform with
an acceptable degree of realism, the computational time required by MC-based methods [25]
is up to 65 times higher than required by the algorithm adopted here [27]. As virtual clinical
trials may involve large numbers of simulations (potentially 104 − 105 simulated images), our
goal is to develop a rapid alternative with sufficient realism to obtain accurate results.
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The SNR and NNPS ranges of the two detectors are considerably different, as the Senographe
Essential unit could not be set to current-time products lower than 36 mAs. Thus, SNR and
NNPS should not be used for a direct comparison of the systems’ performance.

Our analysis can be extended to other imaging modalities that share a similar noise model
with DBT.

In conclusion, we have investigated the fidelity between simulated and real noise measure-
ments from two DBT systems. An affine-variance noise model, which considers the correlation
of the quantum noise and the spatial dependency of the quantum gain was able to achieve
errors as small as the variability found between systems of the same model. The correlation
of the quantum noise may be disregarded if simulating the noise from a direct detector with
minimal pixel crosstalk.
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Figures and Tables

Table 1: Properties of the two simulated system models.

Model Detector Pixel Size # of Projections Angular Range
Selenia Dimensions a-Se 140µm 15 15◦

Senographe Essential CsI(Tl) 100µm 9 25◦

Table 2: Radiographic factors used during the image acquisition process.

Detector Target/Filter kVp PMMA Total mAs Application

a-Se W/Al 31 4 cm 69, 63, 54, 48, 45 Calibration
60, 30, 15, 9 Validation

CsI(Tl) Rh/Rh 29 3 cm 120, 90, 72, 54, 45, 36 Calibration
99, 81, 63, 54, 36 Validation

Table 3: Estimated pixel offset and standard deviation (std) of the electronic noise.

Detector Pixel Offset (τ) Electronic Noise Std (σe)
a-Se 47 1.37

CsI(Tl) -17 7.03

Table 4: Relative error between simulated and real noise measurements. The values in paren-
thesis represent the 95% confidence interval of the measurements.

Detector mAs Initial Model (Sec. 2) λ(x) = λ̄,∀x Kq = δ(0)
SNR (%) NNPS (%) SNR (%) NNPS (%) SNR (%) NNPS (%)

a-Se

60 4.4 (4.0 4.9) 6.1 (5.5 6.1) 11.1 (10.8 11.3) 9.8 (8.8 10.8) 4.4 (4.0 4.9) 5.4 (4.0 6.8)
30 2.2 (1.7 2.7) 3.4 (2.6 4.2) 11.2 (9.7 11.7) 9.8 (8.7 10.9) 2.2 (1.7 2.7) 5.7 (4.2 7.1)
15 1.4 (1.2 1.6) 1.8 (1.1 2.6) 11.0 (10.8 11.1) 4.9 (4.4 5.5) 1.4 (1.2 1.6) 5.0 (3.5 6.5)
9 2.9 (2.7 3.1) 5.8 (5.0 6.6) 11.1 (11.0 11.2) 2.7 (1.8 3.6) 2.9 (2.7 3.1) 8.9 (6.8 11.1)

CsI(Tl)

99 3.9 (3.7 4.2) 7.0 (4.9 9.1) 6.9 (6.5 7.3) 7.2 (4.9 9.4) 3.9 (3.7 4.2) 65.8 (50.0 81.6)
81 3.6 (3.4 3.9) 6.3 (4.2 8.4) 6.8 (6.4 7.2) 6.3 (4.2 8.4) 3.6 (3.4 3.9) 65.1 (49.7 80.6)
63 3.0 (2.7 3.4) 6.0 (3.4 8.6) 6.8 (6.3 7.1) 5.8 (3.3 8.3) 3.0 (2.7 3.4) 63.9 (48.8 79.0)
54 2.8 (2.3 3.4) 5.4 (2.8 8.0) 6.3 (5.6 7.0) 5.5 (3.0 8.0) 2.8 (2.3 3.4) 62.3 (47.9 76.8)
36 3.7 (3.4 3.9) 5.2 (1.9 8.5) 4.5 (4.2 4.8) 5.0 (2.1 7.9) 3.7 (3.4 3.9) 61.0 (46.9 75.0)
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Figure 1: Overview of the adopted validation process. The variable y represents the flat-
fielded noise-free simulated projection generated by a VCT framework. The rightmost flowchart
illustrates the noise simulation pipeline. The methods adopted to estimate τ , λ, σe, Kq and Ke

are referenced in Section 4.2.

Figure 2: From left to right: estimated λ at the central projection from a-Se and CsI(Tl)
detectors, respectively, and the cross-section of the 2D kernel Kq from both detectors. Markers
represent the experimental data, while the lines represent a Gaussian fit of the data.
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Figure 3: Noise maps taken from the central projection. From left to right: real (a-Se, 60
mAs), simulated (a-Se, 60 mAs), real (CsI(Tl), 63 mAs) and simulated (CsI(Tl), 63 mAs). The
noise maps were estimated as the difference between two realizations of the image acquisition,
divided by the square root of two, to correct the standard deviation.

Figure 4: Examples of noise measurements from both detectors, simulated using the initial
model described in Section 2 (top row: a-Se detector; bottom row: CsI(Tl) detector). The
posterior-anterior (PA) SNR profiles, lateral SNR profiles, and the NNPS correspond to the
central projection.
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