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Abstract—To increase productivity in designing digital

hardware components, high-level synthesis (HLS) is seen as the
next step in raising the design abstraction level. However, the
quality of results (QoR) of HLS tools has tended to be behind those
of manual register-transfer level (RTL) flows. In this paper, we
survey the scientific literature published since 2010 about the QoR
and productivity differences between the HLS and RTL design
flows. Altogether, our survey spans 46 papers and 118 associated
applications. Our results show that on average, the QoR of RTL
flow is still better than that of the state-of-the-art HLS tools.
However, the average development time with HLS tools is only a
third of that of the RTL flow, and a designer obtains over four
times as high productivity with HLS. Based on our findings, we
also present a model case study to sum up the best practices in
comparative studies between HLS and RTL. The outcome of our
case study is also in line with the survey results, as using an HLS
tool is seen to increase the productivity by a factor of six. In
addition, to help close the QoR gap, we present a survey of
literature focused on improving HLS. Our results let us conclude
that HLS is currently a viable option for fast prototyping and for
designs with short time to market.

Index Terms—Electronic design automation (EDA) and
methodology, field programmable gate array (FPGA), hardware
description languages (HDL), high level synthesis (HLS),
reconfigurable logic

I. INTRODUCTION

OR DECADES now, register-transfer level (RTL) has been
the dominant method to describe very large scale

integration (VLSI) systems and their constituent intellectual
property blocks. Whereas the RTL tools have developed only
incrementally, the complexity of the VLSI systems has raised
exponentially, which has made the design and verification
process a bottleneck for productivity [1].

High-level synthesis (HLS) promises to alleviate this
problem by a variety of ways [2]–[5]. In HLS, the application
is described on a behavioral level, omitting implementation
details such as timing and the nature of interface and memory
elements. These details are determined using an HLS tool that
takes the behavioral description as an input. The designer can
select the target technology in the tool and map the interface
and memory variables to specified technology-dependent
elements. The HLS tool then produces an RTL description
based on the target technology and microarchitectural choices.

The promises of HLS are many.

1) Initial design effort is reduced by raising the
abstraction level. The designer can concentrate on
describing the behavior of the system without having
to spend time implementing the microarchitectural
details. Introduction of bugs in the code is also less
likely on a higher level of abstraction.

2) Verification is accelerated. The behavior of the design
can often be verified using software verification tools
that are faster and simpler to use than RTL simulation
tools. Furthermore, the RTL output of the HLS tool
can be verified by using the original behavioral test
bench, as the tool can check that the results of both
models are identical.

3) Design space exploration (DSE) is faster. The
microarchitecture can be explored by making choices
in the HLS tool, which require little or no
modifications to the code. Thus, several
transformations such as pipelining and various loop
unrolling factors can be explored in a matter of hours.
This is a tremendous improvement upon RTL
methodology, where these kind of changes would
require significant modifications to the source code.

4) Targeting new platforms is straightforward. If the
target platform changes, the HLS tool is able to
modify the RTL output accordingly. For example, if
the new platform has a different clock frequency, the
HLS tool reschedules operations according to the new
frequency.

5) HLS is accessible to software engineers. Whereas
RTL design requires knowledge of languages such as
VHDL and Verilog, HLS tools usually use familiar
languages such as C/C++. The HLS tool can take care
of most of the hardware specific implementation
details, so the threshold of software engineers to
tackle hardware projects is greatly reduced. That said,
to obtain optimal results, hardware expertise is still
useful when employing HLS.

Together, these benefits reduce the design and verification
time, push down the development costs, and lower the bar for
tackling hardware projects. Consequently, the time to market is
shortened, and using hardware acceleration on heterogeneous
systems becomes a more attractive option.

The rise of field-programmable gate arrays (FPGAs) is also
an enabling factor for HLS. FPGAs are ideal platforms for HLS
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designs, as they allow quick prototyping, have rapid design
cycle, and are inherently reprogrammable. Modern HLS tools
usually contain a wide library of FPGA technologies for design
targeting.

The history of HLS dates back to the 1970s and 1980s, but it
was not until the turn of the century that it became a viable
option for the industry [2]. One of the reasons for the slow
adoption is that the quality of results (QoR), such as resource
usage and performance, was initially poor compared with the
RTL approach. The QoR has improved with the newest
generation of HLS tools, but the results reported in individual
studies still vary, and it is unclear whether the QoR gap has been
closed yet.

The goal of this paper is to answer this question by a literature
review. We examine 46 recent papers that compare the QoR and
development effort of HLS and RTL approaches for the same
applications. Our work has four main contributions:

1) a comparative analysis of the QoR and design effort of
HLS and RTL reported in scientific articles;

2) a case study presenting the best practices for
comparing HLS and RTL approaches with a test group
that uses both flows to implement a part of a
HEVC/H.265 video encoder;

3) a survey of the literature suggesting research
directions and ways to improve HLS;

4) conclusions on the current state of the art in HLS.
To the best of our knowledge, this is the first comprehensive

quantitative study that uses a wide variety of sources to
compare the QoR and design effort of HLS and RTL flows.
Previous works have instead focused on comparing different
HLS tools to each other [6], [7]. Other papers have provided
insights on how to close the QoR gap against RTL or otherwise
improve HLS tools [5], [8]. A thorough quantitative analysis on
the current state of HLS has been missing, however, which this
paper amends.

The rest of the paper is structured as follows. Section 2
describes our criteria for selecting papers for this study. Section
3 contains a meta-analysis of the reviewed papers, summarizing
what kind of information was reported in them. In Section 4, we
show and analyze the results from the literature study, and
Section 5 describes our test group study with its results. Section
6 reviews papers that propose improvements to HLS, and
finally section 7 concludes the paper with some discussion of

the results.

II. QUALIFYING PAPERS

For this study, we examined papers published in 2010 or later
to get a comprehensive view of the latest HLS works.
Altogether, we found over a thousand candidate papers and
selected those articles for further study whose abstracts stated
that: 1) one or more applications were implemented using HLS;
and 2) the obtained results were compared with equivalent self-
made or referenced RTL applications.

We also required the qualifying papers to list one or more of
the following metrics for both the HLS and RTL versions of the
applications:

1) performance with an application specific metric;
2) execution time and/or latency;
3) maximum achievable clock frequency on target

platform;
4) area on application-specific integrated circuit (ASIC);
5) resource usage on FPGA;
6) power consumption;
7) development time;
8) lines of input source code (LoC).

In total, we found 46 qualifying papers out of which 39 were
from IEEE Xplore, two from Springer Link, one from ACM
Digital Library, two from arXiv.org, one from EBSCOhost, and
one from Science Direct. Basic information on all the reviewed
papers is given in Table IX in the Appendix. As can be seen
from the table, the range of applications is very diverse. This
makes it impractical to analyze the QoR results by the type of
application, which would otherwise give interesting insight on
the strengths and weaknesses of HLS. A qualitative analysis
like that would also benefit from access to the implementations’
source codes, which are seldom available.

Table I shows a breakdown of the number of qualifying
papers published each year. Because the number of papers from
each year is low, it is not feasible to use our data to check for a
possible trend in the QoR of HLS during these years. A longer
year range would also be preferable for that kind of study.

III. META-ANALYSIS

Table II gathers a summary of the metrics of interest and their
frequency of occurrence in the reviewed papers. In general, the
reviewed works have much variance in the reported details
about the experimental setup and results. The table counts only
those papers that report the results in exact terms either in
absolute values or in percentages. Inexact values, such as “the
execution time was less than 100 ms,” were excluded from our
quantitative analysis.

Twenty-two articles report results for more than one
application or experimental setup. In many works, multiple
different applications were implemented, often related to each
other (for example, [9]–[11]). Some authors compared different
HLS tools [12]–[14], whereas others compared various micro-
architectural optimizations, such as loop unrolling and
pipelining [15], [16], or different FPGA chips [17], [18]. The
data set is thus larger than the mere number of qualifying papers

TABLE I
NUMBER OF PAPERS PUBLISHED BY YEAR

Year Papers
2010 4
2011 5
2012 3
2013 8
2014 10
2015 8
2016 8
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would suggest. For brevity, we shall call each of these
individual results applications, regardless of whether they are
based on actual different applications, HLS tools, FPGA chips,
or other variations. The third column of Table II shows the total
number of applications for which the given metric is reported.

Development time is of great interest when comparing the
HLS and RTL methodologies. However, only a third of the
papers report the development time, which can be seen as a flaw
in the articles omitting it. Of the various QoR metrics, FPGA
resource usage is reported more often than the performance
values. Only four papers target ASIC implementation (instead
of FPGA), and thus there is not enough data to compare ASIC
area results. The same is true for power consumption.

Almost all papers report the used HLS tool. The remaining
works give no reason for not revealing the information, but
license agreements may have been the cause. However, even
those articles mention the HLS input language.

Table III shows a summary of the used HLS tools. The
second column tells the number of occurrences of each tool and
the third column their input languages. The table suggests that
Vivado HLS (formerly known as Autopilot) is the most popular
HLS tool, at least in academia. All the other tools gain only
scattered usage. Vivado’s popularity is probably due to Xilinx
being the leading FPGA vendor, whose design suite for FPGAs
includes Vivado HLS. The large number of used HLS tools also
speaks of the relative immaturity of the field.

Of the 46 qualifying works, 39 used self-made RTL
implementations for comparison with HLS and seven cited
RTL results from other research groups. There are additional
papers that would have qualified for this study, but they cite
papers with incompatible RTL implementations, which resulted
in their preclusion. For example, the FPGA chip used for RTL
was from a different family, which prevented fair resource

usage comparison.

IV. COMPARATIVE STUDY RESULTS AND ANALYSIS

A. On the QoR Metrics
The fundamental building block of FPGAs is a configurable

logic block (CLB) or a logic array block (LAB), depending on
the FPGA vendor and device. CLB/LAB consists of a few
logical cells that may be called logic cells (LCs), logic elements
(LEs), or adaptive logic modules (ALMs). These logical cells
are made of look-up tables and flip-flops. The reviewed papers
usually report one of these figures when synthesizing an
application for FPGA. For the purposes of this study, it is
irrelevant which figure was reported, since we are interested in
the ratio of resource usage between HLS and RTL. Thus, we
have grouped all of these resource metrics under the same term
called basic FPGA resources.

FPGAs also contain other resources such as DSP blocks and
on-chip block RAM (BRAM) memories, which cannot be
converted to CLB equivalents without sufficient data from the
FPGA vendors. This would require knowing the exact FPGA
chip type, but only about 60% of the reviewed papers report it,
and the others merely state the used FPGA family. Therefore,
we had no universal way to combine all the resource metrics
into a single resource usage value, which could be compared
across applications. Thus, we discarded this approach and chose
CLBs or its constituents as the basis for resource usage
comparisons.

The reviewed papers also use various different performance
metrics depending on the implemented application. These can
be divided into four categories: 1) performance, 2) execution
time, 3) latency, and 4) maximum frequency. In this context,
performance can be interpreted in several ways depending on

TABLE II
THE METRICS AND THE FREQUENCE OF THEIR OCCURRENCE IN THE REVIEWED PAPERS

Metric
Number of papers

reporting
(percentage of total)

Number of
applications for
which the metric

was reported
HLS tool 42 (91%) -
HLS input language 46 (100%) -
Lines of input code 13 (28%) 36
Development time 15 (33%) 25
Maximum frequency 24 (52%) 74
Latency 10 (22%) 17
Execution time 8 (17%) 14
Performance 15 (33%) 46
FPGA
LUTs/LCs/LEs/Slices

36 (78%) 92

FPGA Flip-flops 23 (50%) 63
FPGA DSP blocks 22 (48%) 50
FPGA BRAM 22 (48%) 55
ASIC area 4 (9%) 8
Power consumption 3 (7%) 7
Total papers 46

TABLE III
HLS TOOL USAGE BY PAPERS

HLS Tool N Tool language
AccelDSP 1 MATLAB
Altera OpenCL 3 OpenCL
Bluespec 2 Bluespec language
C2RTL 1 C
Cadence Stratus 1 C/C++/SystemC
CAPH Toolset 2 CAPH language
Catapult-C 2 C/C++/SystemC
Chisel 2 Scala
Cadence C-to-Silicon 2 C/C++/SystemC
Convey Hybrid-Threading 1 HT language
HCE 2 C
HIPAcc 2 HIPAcc language
Impulse C 1 C
LegUp 3 C
MATLAB Simulink HDL Coder 1 MATLAB functions, Simulink models
Maxeler MaxCompiler 1 Java
ROCCC 1 C
Xilinx System Generator for DSP 2 MATLAB Simulink
Xilinx Vivado HLS/Autopilot 18 C/C++/SystemC
Undisclosed 4 N/A
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the application. For example, for a video encoder, it would
mean frames per second, and for a cryptography module, it
would mean encrypted bits per second. For applications with a
clear start and finish, execution time is often reported, and some
papers report latency, i.e. the number of clock cycles for
processing a sample. The most often reported performance
metric is the maximum frequency for which the application can
be scheduled on the target FPGA.

We wanted to include as many performance metrics as
possible so all of them are used in our study. For papers that
report more than one metric, we prioritize performance over
execution time, execution time over latency, and latency over
maximum frequency. Thus, we use only one of these values per
application rather than try to create an arbitrary aggregate
performance metric. In the figures of the following subsections,
we shall call the selected value just performance. We have also
inverted execution time and latency values in calculations for
the figures so that a larger value is always better. The way to
examine the various data cloud figures in the following
subsections is not to compare individual data points to each
other but to concentrate on the center of gravity and dispersion
of the data.

B. Numerical Analysis
Table IV gathers the numerical aggregate data of our

findings. N denotes the number of applications for which the
corresponding data were reported. The third column reports the
mean of the ratios between HLS and RTL results. For all the
values except DSP blocks and BRAM, we used the geometric
mean rather than the arithmetic one, since the values in each
category can differ by orders of magnitude because of the wide
variety of applications. For DSP blocks and BRAM, the
geometric mean could not be calculated because of the zeros in
the data set, so arithmetic mean was used instead. Bolded mean
values favor HLS while unbolded values favor RTL. The fourth
column shows the geometric standard deviation (GSD). Note
that it is a multiplicative value: The lower bound is obtained by
dividing by the GSD and the upper bound is obtained by
multiplying by the GSD. The last column shows the percentage
of results for which the HLS application performed as well or

better than the corresponding RTL version.
As expected, HLS outperforms RTL in both development

time and lines of source code. The average development time is
only about a third of a corresponding RTL application. We also
examined the HLS to RTL development time ratio as a function
of the absolute development time to see if the scale of the project
had an effect on the ratio, but found no correlation. Thus, it
seems that for both large-scale and small-scale applications the
reduction in development time is the same. On the other hand,
the respective comparison with code size shows that for larger
applications (1,000 LoC or more), HLS code seems to be more
compact compared with RTL code. In fact, in all the cases
where there was more HLS LoC than RTL LoC, the code size
was less than 250 LoC. With smaller code size, non-behavioral
code takes a relatively larger part of the total, which seems to
favor RTL.

In performance and execution time, the HLS design is on
average clearly inferior, but in latency and maximum frequency
the difference is less prominent. The HLS approach also loses
in basic resource usage: On average, HLS uses 41% more basic
FPGA resources than RTL. With BRAM and DSP blocks, the
results are ambivalent. Based on papers, which report the
number of used BRAM blocks, HLS seems to use them more
efficiently, but with papers, which report BRAM usage in
kilobytes, RTL wins. In DSP block usage, HLS and RTL seem
similar.  .

We also examined how the HLS input language affects the
QoR. In [19], the HLS tools are divided into five categories
based on their style of describing the input: hardware
description language (HDL) like frameworks, C based
frameworks, high-level language (HLL) based frameworks
(these are highly abstract, usually object-oriented languages),
model based frameworks (using executable specification, e.g.
NI LabView and Matlab HDL Coder), and CUDA/OpenCL
based frameworks. In our study, we found five applications
implemented with HDL like, 77 with C based, 10 with HLL
based, six with model based, and 11 with CUDA/OpenCL
based frameworks. Since other than C based frameworks
receive only scattered usage, it is not prudent to compare all the
categories with each other. Instead, we compare the QoR of C
based frameworks and all the others. The results are shown in
Table V, where N denotes the number of comparable results. It
seems that C based frameworks produce designs with worse
performance than the other frameworks but save in basic
resource usage. Looking further into the data, we noticed that

TABLE IV
SUMMARY OF THE NUMERICAL DATA FROM THE PAPERS

Metric N
HLS/RTL

mean
Geometric
std. dev.

HLS better or
equal to RTL

Lines of code 36 0.52 2.26 75 %
Development time 25 0.32 2.59 88 %
Performance 46 0.47 5.50 39 %
Execution time 14 1.70 2.21 39 %
Latency 17 1.05 2.07 35 %
Maximum frequency 74 0.88 1.48 42 %
Basic FPGA resources 92 1.41 3.76 33 %
DSP blocks 50 1.11 - 68 %
BRAM blocks 29 0.49 - 45 %
BRAM (kB) 27 1.47 - 33 %
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the CUDA/OpenCL based frameworks were especially
resource consuming (3.56×) and produced the worst
performance (0.56×).

C. Comparisons between Resource Usage and Performance
 To better illustrate the QoR differences, Fig. 1 shows the

relative HLS/RTL performance against the relative HLS/RTL
basic resource usage for each application. Each “X” in the
figure represents a single application. The wider horizontal and
vertical lines denote break-even lines where the performance
and basic resource usage are the same for both HLS and RTL,
respectively. Most of the marks are clustered around the
intersection of the break-even lines, indicating that in the great

majority of cases the performance and basic resource usage
difference between HLS and RTL is relatively small.
Nevertheless, there are more marks towards the right and
bottom of the figure than in the opposite directions, showing
that RTL tends to outmatch HLS in both regards.

Another way to look at the same data is depicted in Fig. 2,
which shows the absolute performance and basic area usage
values for both HLS applications (“+”) and RTL applications
(“x”). The large, partially overlapping symbols show the
centers of gravity based on geometric means for both metrics
correspondingly. The data point clouds are largely overlapping,
and the centers of gravity lie close to each other. Thus, on
average there is no radical difference between the HLS and RTL
QoRs, but RTL fares somewhat better.

We also wanted to see, whether there exists any correlation
between the relative HLS/RTL performance and the absolute
numbers of basic resource usage. That is, does the relative
performance between HLS and RTL designs change as a
function of consumed FPGA resources. Our hypothesis was that
the HLS tools’ ability to optimize data path and control logic
might be more limited with larger applications. The results are
plotted in Fig. 3, which shows that there is no clear correlation,
and indeed, the Pearson correlation coefficient is only 0.10 for
this data set. Thus, the size of the design does not seem to affect
the HLS tools’ ability to optimize performance.

D. Comparisons Based on Design Effort
Fig. 4 shows the HLS/RTL development time ratio for

applications for which the development time was reported. In
all but three cases, the ratio is less than one, and in 72% of cases,
it is less than 0.5. The three applications, where the HLS
development time is larger than that of RTL, are from the same
work [13]. The authors stated that the difference in
development time was due to the time spent to learn to use the
HLS tool and the need to modify the reference C++ source code
to reach the required throughput.

TABLE V
COMPARISON OF QOR BY FRAMEWORK TYPE

N
HLS/RTL

performance
ratio

N
HLS/RTL

Basic resouce usage
ratio

C based framework 100 0.64 71 1.26
Other frameworks 51 0.84 36 1.50

Fig. 1.  Scatter graph of the HLS to RTL ratio between performance
and basic resource usage for different applications.
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Similarly, Fig. 5 depicts the LoC ratio between HLS and RTL
designs. Here, the HLS dominance is less prominent but still
significant. In 75% of cases, the HLS LoC is smaller than RTL
LoC.

We also investigated a possible correlation between the size
of the application in LoC and HLS/RTL performance. Fig. 6(a)
shows the data. When the three outliers in the top right corner
are eliminated from calculations, the Pearson correlation
coefficient is only 0.04. Thus, it seems that the size of the code
is no indication for the relative HLS/RTL performance. Fig.
6(b) shows the same data for the relative HLS/RTL basic
resource usage. The correlation is -0.08, so the code size does
not correlate with the basic resource usage ratio either. Taken
together, Figs. 3 and 6 indicate that the complexity of the
application has no effect on the relative HLS to RTL
performance or basic resource usage. However, as Fig. 6 shows,
the majority of the applications presented in the papers are
rather small in terms of LoC. Studying the respective behavior
with larger applications is omitted due to the absence of data.

One way to look at the usefulness of HLS relative to RTL is
to examine the performance obtained per design hour as
discussed in [11]. Fig. 7 shows the relative productivity for all
applications for which both performance and development time
is reported, by dividing the HLS/RTL performance by the

development time ratio. A value larger than one indicates that
the HLS approach gives more performance per design hour than
RTL. The average value is 4.4. RTL approach clearly wins in
cases 1 to 4. The methodologies are about equal in cases 5 and
6, and HLS is the better approach in the remaining cases. For
application 1, the bar is almost invisible, as the ratio is 0.05.

Fig. 4.  HLS/RTL development time ratio for different applications.
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This application is a sparse algorithm matrix multiplication [11]
with dynamic loop bounds, which are unsuitable for the
automatic optimizations that HLS tools perform to speed-up
computation. Despite that, the figure indicates that on average,
a designer gets more performance per design hour with HLS
tools.

V. TEST GROUP STUDY

This survey demonstrates that many prior works report the
results of HLS to RTL comparisons rather inadequately, which
also complicated our data collection. Therefore, we organized a
case study to demonstrate the best practices in setting up
appropriate tests for such comparisons and reporting the results.
A secondary purpose of the case study was to examine how
HLS and RTL flows differ from the user’s perspective and what
is the relative productivity of the flows. Most previous studies
have focused only on the QoR differences instead.

The case study was to implement a 2-dimensional discrete
cosine transform (DCT) [20] algorithm for 8 × 8 residual blocks
used in the High Efficiency Video Coding (HEVC) [21]
encoder. DCT was chosen because it is well known and of
suitable complexity for this study.

A. Test Group
The test group consisted of six participants having basic

knowledge on digital design and programming. As shown in
Table VI, they had written 1k to 100k lines of C or C++
previously. On average, they had about 15 months of
programming experience in work or hobby projects. The
participants were much less experienced in hardware design
with an average of 1k lines of VHDL or Verilog code and three
months of experience in such projects. Only one of the
participants had done a small tutorial with HLS before this
study, making this experiment the first introduction to HLS for
the rest.

We selected participants with limited hardware experience
but moderate software experience, as HLS promises to hide
away the hardware-specific implementation details. Thus,
programmers who are used to writing behavioral descriptions
in software projects are an ideal audience for HLS. Indeed, the
litmus test of HLS is that such users reasonably effortlessly can
produce acceptable results when designing relatively simple
hardware blocks.

To acquire sufficient background knowledge of HLS, the
participants self-studied the HLS basics and carried out five
small exercises implementing parts of an audio codec for

FPGA. Previously, they had done the same exercises using
VHDL RTL.

B. Test Case
In an HEVC encoder, DCT is used to convert 8 × 8 spatial-

domain residual blocks into 8 × 8 transform-domain coefficient
(tcoeff) matrices. A well-known row-column algorithm [20]
executes these 2-D transforms with separable 1-D transforms in
two consecutive stages. The transform is first applied to each
row of the residual block to generate an intermediate matrix and
then to each column of the intermediate matrix to generate the
final transform coefficient matrix.

The participants were assigned to implement this 2-D DCT
hardware unit for 8 × 8 residual blocks with RTL (VHDL or
Verilog) and HLS (C/C++ with Mentor Graphics’ Catapult-C
version 8.2m UV). Catapult-C supports the whole design flow
from writing the original source code to generating and
verifying the RTL code. In this study, no physical FPGA
implementation was made, but only the synthesis results were
used to obtain the QoR data. Performing place & route (P&R)
was omitted as we were interested in the relative HLS to RTL
results, and P&R should not affect the ratio significantly.

The provided DCT references included the HEVC
specification and its implementation in the HEVC reference
encoder (HM) [22]. The participants were also given a ready-
made SystemC test bench and requirements for the interfaces to
make the test bench work without modifications. Interface
requirements included the widths of the input and output data
buses and related control signals. The same test bench was used
for the RTL and HLS versions. It generated random residual
values for the first pass and performed the necessary transpose
for the second pass. The condition for successful
implementation was to pass the test bench validation.

The participants were also instructed to allocate their
working hours to five categories: designing, implementing,
searching information, simulating, and debugging. They were
allowed to choose whether to implement the HLS or RTL
version first or both simultaneously.

C. Results
Table VII shows the area and speed figures of the RTL and

HLS implementations for the individual test persons. The
HLS/RTL ratio shows the ratio between the results for HLS and
RTL. The bolding indicates when the HLS flow achieved better
results. The speed was calculated as million transform
coefficients per second (Mtcoeff/s) using the output
coefficients, latency, throughput, and frequency reported by the
participants.

Four test persons started the work with the RTL
implementation. All participants wrote the RTL code with
VHDL rather than Verilog. Even though the smallest area and
the highest frequency were achieved with RTL, the overall
trend was that the participants were able to get slightly smaller
area and slightly higher clock frequencies with the HLS tool.
Furthermore, the HLS designs are over 2.5× as fast as the RTL
designs, which also affected the speed to area ratios. For
example, person #4 achieved the best speed to area ratio of all
designs with HLS. On the other hand, person #3 was the only
one who got better speed to area ratio with RTL. All test persons

TABLE VI
BACKGROUND EXPERIENCE OF THE TEST GROUP

Person # LoC (SW)
SW experience

(months) LoC (HW)
HW experience

(months)
1 1k 18 1k 10
2 10k 3 1k 3
3 10k 18 1k 3
4 100k 50 1k 0
5 10k 3 1k 3
6 1k 1 1k 1
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used a multi-stage structure to calculate the DCT in RTL code,
but none of them implemented a more complex state machine
to use stage pipelining for consecutive inputs. The lack of
pipelining lowered throughputs in the RTL case. In comparison,
all persons were able to use loop unrolling and pipelining in
HLS to achieve much better throughput values than with RTL.

Table VIII tabulates productivity values for HLS and RTL
approaches. The productivity of all participants was clearly
better with the HLS tool, and the average productivity of HLS
was up to 6.0 times that of RTL. Hence, it is even higher than
that found in the survey results. We can speculate how the
productivity would have changed if the persons had
implemented stage pipelining in their RTL implementations. It
is still unlikely that the productivity levels had shifted to
support RTL over HLS, as the time usage would have increased
along with the throughput.

Fig. 8 shows the time usage of the participants in five
categories. On average, the persons used less time within all
categories when working with HLS. The grand total for
maximum, average, and minimum time usages with the RTL
flow was 37.7, 15.1 and 3.7 hours, respectively, whereas the
respective values for the HLS flow were 25.0, 10.1, and 1.6
hours.

As a conclusion, all participants had better productivity with
HLS than with RTL. Although the group size was small, and
the hardware background of the persons was very similar, this
study shows that it is easier to adopt HLS than RTL and receive
better results faster for people who have most of their
experience in software design. This result underlines the fact
that HLS is a useful tool for software engineers who want to
implement, for example, hardware accelerators.

It should be noted that our result differs from the typical
surveyed study, where the QoR of RTL was better than that of
HLS. The likely explanation for this is that in the surveyed
works, the designers had significantly more previous hardware
expertise than our test persons. On the other hand, our case
study is in line with the surveyed literature concerning
productivity, which favors HLS.

D. Feedback from the test persons
After completing the test assignments, the participants were

asked about the pros and cons of HLS and RTL design flows,
out of which they finally had to select their favorite. The
answers were split evenly (3-3) between HLS and RTL flows.

The persons favoring RTL over HLS hoped for more open
source support for HLS tools, as the flow is highly tool
dependent. This would allow more hobbyists to use HLS tools.

TABLE VIII
HLS AND RTL PRODUCTIVITY

Person # Hours Quality*/Hours Hours Quality*/Hours
1 2 80 4 14 5.9×
2 4 44 9 11 4.1×
3 12 19 21 17 1.1×
4 9 47 18 6 7.6×
5 5 60 9 6 9.4×
6 20 15 26 2 9.0×

Avg. 9 44 14 9 6.2×

*Mtcoeffs/kLUTs

HLS RTL HLS/RTL
Quality Ratio

Fig. 8. Maximum, minimum, and average time usage for different categories with RTL and HLS.

0

2

4

6

8

10

12

Designing
RTL

Designing
HLS

Implementing
RTL

Implementing
HLS

Searching
information

RTL

Searching
information

HLS

Simulating
RTL

Simulating
HLS

Debugging
RTL

Debugging
HLS

H
ou

rs

TABLE VII
AREA AND PERFORMANCE FIGURES OF RTL AND HLS DESIGNS

HLS
Person # Area (LUTs) Freq. (MHz) Speed* Speed/Area** Started

1 1 860 214 258 139
2 3 161 101 588 186 x
3 2 814 211 675 240
4 2 273 167 972 427 x
5 2 768 137 797 288
6 2 463 211 750 305

Avg. 2 557 174 673 264
RTL

1 4 000 145 197 49 x
2 2 068 108 192 93
3 1 292 308 458 355 x
4 4 431 148 499 113
5 2 066 137 122 59 x
6 2 722 149 121 44 x

Avg. 2 763 166 265 119
HLS/RTL ratio

1 0.47× 1.48× 1.31× 2.81×
2 1.53× 0.94× 3.06× 2.00×
3 2.18× 0.69× 1.47× 0.68×
4 0.51× 1.13× 1.95× 3.80×
5 1.34× 1.00× 6.55× 4.89×
6 0.90× 1.42× 6.22× 6.87×

Avg. 0.93× 1.05× 2.54× 2.22×
*Mtcoeffs/s   **Mtcoeffs/kLUTs
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Some test persons also longed for more control in the HLS tool
over the resulting RTL in terms of cycle accuracy. For them,
RTL was easier to fine tune and it gave them a better
understanding of the problem at hand.

The persons favoring HLS over RTL liked the ease of HLS,
where unnecessary details such as automatic I/O handshaking
and pipelining support can be left as the responsibility of the
HLS tool. This let the participants to focus on defining the
behavioral description. They also felt that RTL was more time
consuming, required more planning, and would have been
harder to redesign.

The overall conclusion from the test persons was that HLS
vs. RTL compares to C vs. assembly languages in embedded
programming. They expressed the view that, a designer would
rather use HLS, the highest level of abstraction available, and
the lower level RTL should only be used in cycle critical
applications or if it is able to provide a noticeable increase in
performance.

E. Best Practices
We use our literature survey and this case study to sum up

the following best practices for conducting comparative studies
with RTL and HLS work flows:

1) A group of individuals should be used to implement the
same design to lessen the impact of designer experience
with the two flows.

2) The used HLS tools and languages should be reported
unless license agreements prevent that. These choices
have been shown to affect the QoR [12]-[14].

3) The same microarchitectures should be used in both
RTL and HLS designs when conducting a study that
concentrates on the QoR differences. If the emphasis is
on productivity or the usability of HLS, however, then
this restriction can be lifted.

4) For FPGA implementation, the exact FPGA chip model
and version should be reported to allow replication of the
results.

5) The time usage by each designer should be reported.
Additionally, the time spent in each work phase should
be reported to allow more insight into what parts are the
most time consuming with HLS and RTL versions.

6) Lines of input code should be reported to show the size
and complexity of the applications.

7) In addition to the basic QoR results, performance per
design time should be reported to show the difference in
productivity between the HLS and RTL flows.

VI. CLOSING THE QUALITY GAP

Our survey shows that more often than not, there still is a
QoR gap between the HLS and RTL methods for any given
application, usually favoring RTL. A large amount of literature
exists that has recognized the gap and proposes ways to close
it. In this section, we present a survey of that literature to
highlight it for the HLS researchers and developers. In addition,
we review papers that introduce novel improvements to the
existing HLS flows.

A. Research Directions for Tool Developers
The authors in [8] have several suggestions for the HLS tool

developers, for where to focus their efforts. They note that
resource sharing and scheduling are two major features in HLS
techniques that the current HLS tools still struggle with. For
example, they demonstrate that a HLS tool instantiates 31
hardware operators of a certain type when only 13 would be
needed with optimal sharing. They also note that the HLS tools
obfuscate the relationship between the source code and the
generated hardware, which in turn makes it hard to identify the
sub-optimal parts of the code. Furthermore, the authors call for
the industry to agree on a standard C-based input language for
HLS. This would allow an unambiguous way for the tool users
and the tools themselves to interpret the source code.

In [57], the authors recognize room for development in both
the usability and the QoR of HLS. Their study uses AutoPilot
(now Vivado HLS), but the advice is generalizable. The authors
propose automatic tradeoff analysis of loop pipelining and
unrolling to make the DSE faster. With complicated loop
structures, the number of possible optimization combinations
can be very high. In addition, the authors call for support for
BRAM port duplication directives, more robustness for
dataflow transformations, and support for streaming
computation for 2D access patterns. To improve the QoR, they
suggest that the tools should detect memory level dependence
between separate loops and functions, and automatically re-
order memory access to allow partitioning, streaming, and
better pipelining. The tools should also automatically create
buffers to improve memory access reuse.

The importance of optimized memory accesses in high-
quality designs is also recognized in [5]. The authors point out
that the HLS tools usually do not have support for memory
hierarchy nor do they abstract external memory accesses.
Therefore, the designer is required to pay attention to the details
of bus interfaces and memory controllers, which does not sit
well with the idea of behavioral design paradigm. The HLS
tools should hide external memory transfers from the designers
to fix this problem. The paper also notices the difficulty of
obtaining task-level parallelism from sequential C/C++
specifications, for which the authors suggest developing an
appropriate device-neutral programming model.

In [32], the lack of support for dynamic data structures in
HLS tools is brought forward. The authors implement the same
algorithm with a data-flow centric way and by using recursive
tree traversal, which uses dynamic memory allocation, and
observe a significant performance reduction using the latter
method. By applying several manual code transformations, the
authors can increase the performance, and conclude that the
HLS tools should automatically perform similar optimizations
with dynamic data structures.

B. Improvements to the HLS Flow
Since the writers of research articles typically have no access

to the source code of commercial HLS tools, most papers that
have improved upon the HLS results do so by introducing new
optimization steps to the design flow. Some promising results
falling in this category are reviewed in this sub-section.
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In [58], the authors propose using parallel pattern templates
to scale module implementation according to the properties of
the target device, exceeding the capability of the HLS tool to do
so. The authors show up to 2.8× speed-up over a standard HLS
tool flow. A template-based approach is also used in [59],
where composable and parameterizable templates of common
computation patterns optimized for hardware are used to
improve performance. These kind of templates could be
included in HLS tools for the users’ convenience.

In [60], the problem of memory access bottleneck in
massively parallel algorithms is discussed. The authors propose
an algorithm that schedules the memory accessed during
different pipeline stages reducing the simultaneous access
pressure. Their approach improves the pipelining performance
by 43% on average and reduces memory bank usage by 55%.
Another way to reduce memory access overhead is discussed in
[61]. The paper presents a novel algorithm to scalarize arrays
selectively to on-chip registers within certain area constraints.
The results indicate significant performance improvements.

One method to enable more efficient HLS is by identifying
custom operations that are merged from sequential basic
operations. This reduces the complexity of the data flow graph
of the synthesized algorithm, which in turn reduces synthesis
runtime and improves the QoR. This method has been studied
in [62], achieving significant improvements in area
consumption, performance, and code size. Therefore, HLS tools
should include custom operation identification as a pre-
processing step.

Resource allocation and operation binding are two of the
basic steps in HLS. Thus, their efficient implementation is of
critical importance in achieving good QoR. In [63], the effect
of register allocation has been investigated. The paper shows
that in most cases a naïve resource allocation strategy, i.e. one
register per variable without register sharing leads to the best
QoR results.

HLS tools use a software compiler to create an intermediary
representation (IR) of the input program. The IR is then used in
the HLS optimization steps. It is not surprising that the IR and
thus the compiler options affect the QoR. The authors in [64]
have studied the effect of different compiler options on the QoR
and developed a method to automatically select only those
options that improve the QoR, achieving on average a 16%
better performance compared to the usual –O3 optimization
level.

In [65], it is observed that significant area savings can be
achieved by merging different behavioral descriptions instead
of performing HLS for each of them separately. This is due to
allowing better resource sharing of functional units on FPGA
when the HLS tool can share them between descriptions. The
paper presents an algorithm for searching for optimal mergings
within given latency constraints.

C. Design Space Exploration
The HLS tools contain various directives that can guide the

hardware synthesis to generate designs that are more efficient.
These directives include pipelining and unrolling of loops and
array partitioning among others. Since most algorithms contain

numerous loops and data arrays, finding the group of Pareto
optimal directive settings can be a daunting task, yet it is
essential for good QoR. Exploring the design space for optimal
settings should therefore be automated, but currently the
leading HLS tools do not help the user in DSE. On the other
hand, there are a few academic papers that have studied the DSE
automation in HLS.

A straightforward automated iterative DSE methodology is
presented in [66]. The method, which focuses on area reduction,
achieves up to 50% improvement in the QoR when compared
to non-guided HLS flow. A more complicated DSE algorithm,
based on an adaptive windowing method, is shown in [67]. This
algorithm is shown to offer a good trade-off between running
time and finding the best QoR. A similar approach specializing
on applications with nested loops has demonstrated up to 235×
speed-up compared to exhaustive DSE, while achieving similar
results [68].

A sequential model-based optimization has been applied to
the DSE problem in [69]. The paper shows that the method can
find globally optimal points from a space of tens of thousands
of possible designs in reasonable time. In [70], a lightweight
pre-processing step has been added before HLS to perform
dynamic dependence analysis of the target algorithm. The
method can expose resource sharing opportunities that result in
better QoR when they are given as constraints to the HLS tool.

The specific but important question of finding the optimal
loop unrolling factor has been discussed in [71]. The authors
have developed an algorithm for finding the optimal unrolling
factor within given area constraint and show that it can provide
the best performance compared to other possible solutions.

D. Verification
Verification remains a time-consuming part of any design

project. Therefore, it is crucial that the HLS tools support the
verification flow on all stages. While the HLS flow allows for
efficient behavioral verification of single modules, the
generated RTL must still be verified for non-behavioral aspects
such as interface synthesis results and successful component
integration. Traditional RTL verification after HLS is difficult
since there is no direct relationship to the input source code [4],
[5], [8]. Nevertheless, verification time has been halved in
many cases using HLS [72].

The verification aspects of HLS have been extensively
discussed in a recent paper [72]. The author points out that logic
redundancy, which lowers test coverage, is a major problem
with HLS. Logic redundancies may be present in the source
specification but also introduced by the HLS tool in the RTL
generation. Thus, the developers of the HLS tools should strive
to eliminate the tendency to generate logic redundancy. Besides
that, formal tools can be used to identify the redundancies
during verification. The paper also promotes source linting as a
way to improve HLS. Not only can it be used to check for error
sources, but also to help with the design optimization by
proving properties such as FIFO sizes.

The authors in [5] present three noteworthy items to enable
most of the debugging to occur on the behavioral input
language level for on-chip validation: 1) the ability to add
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debugging logic with small overhead, 2) the ability to observe
critical buffers such as FIFOs, and 3) the ability to observe the
internal states of hardware blocks using breakpoints in the
source code. These important debugging features cannot be
implemented on the RTL level after performing HLS because
of the machine-generated RTL code.

Besides verification, engineering change orders (ECOs)
present difficulties with HLS [4]. When an ECO is issued, only
some small incremental changes are required, which are
typically not captured by the high-level behavioral description.
On the other hand, it has been noted that since the behavioral
source code can be extensively verified and the HLS tools
ensure that the generated RTL is correct, ECOs are uncommon
in HLS flows [66].

VII. CONCLUSION

In this paper, we examined 46 recent articles about
comparisons on the QoR and design effort between HLS and
RTL design flows. As HLS promises great productivity gains
over RTL, our aim was to see whether the contemporary HLS
tools are also able to produce results that can compete with hand
tuned RTL designs.

Our survey indicates that even the newest generation of HLS
tools does not provide as good performance and resource usage
as manual RTL does. However, there is a great variance in the
results and HLS is shown to equal or outperform RTL approach
in about 40% of the evaluated cases. Our own case study
demonstrates that a designer with limited hardware experience
can obtain better results with HLS, with 2.5 times more
performance and slightly lower FPGA resource usage. We also
examined whether the size of the design affected the relative
QoR between HLS and RTL, but found no correlation. Thus,
HLS seems as suited for small as large designs.

In design effort, the survey showed that HLS was clearly the
frontrunner as expected. On average, the HLS design time was
only a third of the corresponding RTL design time. In addition,
the size of the HLS input code was almost halved, being 52%
of the RTL code size on average. When taking into account both
the QoR and the design effort, we found out that a designer gets
on average 4.4 times as high performance per design hour using
HLS than RTL. Our own case study supported this argument by

reporting 6.0 times increase in productivity. Thus, HLS is a
particularly good choice when time to market is a dominant
issue and there is no compelling need to gain the ultimate
performance or smallest resource usage for the product. HLS
also offers tremendous time savings when architectural changes
are made to an existing design.

In our reference literature, there was often lacking
information, which made the HLS to RTL comparisons more
challenging. Therefore, our case study also demonstrated the
best practices in reporting HLS and RTL results for the same
application. Preferably, the test group should be larger than we
had at our disposal, but our test case still shows the essential
details that we recommend reporting in this kind of research. In
the future, a similar case study could be carried out with a test
group with more hardware expertise. While our study shows
that people with limited hardware experience can easily adopt
HLS and produce good results, it would also be interesting to
see how the productivity and QoR differences behaved with
hardware engineers as test persons.

Verification effort comparisons were also often missing from
the surveyed papers. Most often, there was only a brief note on
how HLS tools allow convenient use of behavioral test bench
in RTL verification. As verification is a major part of any
hardware project, this is a significant oversight in the state of
HLS research. Therefore, in the future, more quantitative
studies should be carried out on HLS vs. RTL verification
flows.

We also surveyed the literature for both suggestions and
completed research for improving the QoR and verification
flow of HLS. We found numerous papers that showed methods
to improve the QoR significantly by adding new steps to the
HLS design flow or by automating the design space
exploration.

With the progress achieved in HLS tools during the last
decade, we can conclude that the methodology is ready for
adoption by the industry in prototyping and fast product
development. If the next generation of HLS tools can close the
QoR gap entirely, then HLS will become the new standard
design method, and RTL can be targeted at similar limited fine-
tuning as assembly languages in software development today.

APPENDIX

TABLE IX
SUMMARY OF THE REVIEWED PAPERS

[#] Year HLS tools Modules or algorithms Number of
applications

LoC Dev.
time

Performance Basic FPGA
Resources

[5] 2011 AutoPilot Multi-I/O sphere decoder 1 x x
[8] 2016 Undisclosed AES encryption 1 x x
[9] 2014 Catapult-C K-means accelerator, histogram map/reduce,

matrix mult., word count
5 x x

[10] 2016 Vivado Data pinning, step row filter, Sobel filter 3 x x x
[11] 2013 Vivado Matrix multiplication 3 x x x
[12] 2015 Vivado, LegUp, Simulink HDL HEVC 2D IDCT 3 x x
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