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PLOCTree: A Fast, High-Quality Hardware BVH Builder

TIMOVIITANEN,MATIASKOSKELA, PEKKA JÄÄSKELÄINEN, ALEKSI TERVO, and JARMO
TAKALA, Tampere University of Technology, Finland

Fig. 1. Architecture of a PLOC sweep pipeline, the main component of PLOCTree (Nearest-neighbor search
radius R = 8, sweep count S = 32).

In the near future, GPUs are expected to have hardware support for real-time ray tracing in order to, e.g., help
render complex lighting effects in video games and enable photorealistic augmented reality. One challenge in
real-time ray tracing is dynamic scene support, that is, rebuilding or updating the spatial data structures used
to accelerate rendering whenever the scene geometry changes. This paper proposes PLOCTree, an accelerator
for tree construction based on the Parallel Locally-Ordered Clustering (PLOC) algorithm. Tree construction is
highly memory-intensive, thus for the hardware implementation, the algorithm is rewritten into a bandwidth-
economical form which converts most of the external memory traffic of the original software-based GPU
implementation into streaming on-chip data traffic. As a result, the proposed unit is 3.9 times faster and uses 7.7
times less memory bandwidth than the GPU implementation. Compared to state-of-the-art hardware builders,
PLOCTree gives a superior performance-quality tradeoff: it is nearly as fast as a state-of-the-art low-quality
linear builder, while producing trees of similar Surface Area Heuristic (SAH) cost as a comparatively expensive
binned SAH sweep builder.
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1 INTRODUCTION
Graphics processing units are undergoing a rapid development in order to render 3D scenes with
increasingly complex visual effects. In the near future, GPUs are evolving to include hardware
acceleration for real-time ray tracing, a technique used so far mainly for high-quality offline
rendering [McGuire et al. 2018]. Recently hardware architectures for ray tracing have been a
subject of intensive research, as detailed in a recent survey by Deng et al. [2017]. One challenge
specific to ray tracing is that, in order to reach acceptable performance, the renderer needs the 3D
scene geometry to be organized in a spatial acceleration data structure.

Currently, the most popular data structure is the Bounding Volume Hierarchy (BVH), where each
inner node divides a set of geometric primitives into two or more subsets, and stores the pointers
and Axis Aligned Bounding Boxes (AABB) of the subset nodes. In an animated scene, the BVH has
to be rapidly rebuilt or updated for each animation frame. Several hardware accelerators have been
proposed for this purpose [Doyle et al. 2013; Nah et al. 2015; Viitanen et al. 2017; Woop et al. 2006].

Fixed-function hardware accelerators are often 2-3 orders of magnitude more energy- and area-
efficient than programmable systems [Hameed et al. 2010]. However, large improvements are more
difficult to come by in memory-intensive and floating-point heavy workloads like ray traversal
and tree construction. As a result, recent research on ray tracing accelerators revolves around
algorithm-level optimizations to reduce memory traffic, such as compressed trees [Vaidyanathan
et al. 2016] and optimized data access patterns [Shkurko et al. 2017]. Likewise, the state of the art
hardware tree builders [Doyle et al. 2013; Viitanen et al. 2017] are designed at the algorithm level
to avoid accesses to external memory.

While the easiest performance and efficiency improvements in circuit design can be obtained at
the algorithm level, the state of the art tree update accelerators are based on somewhat archaic
algorithms: binned Surface Area Heuristic (SAH) sweep, refitting and Linear BVH (LBVH). In the
recent years, software builders on CPUs and GPUs have seen rapid progress in algorithms, and
several methods have been proposed that give clearly better performance-quality tradeoffs, e.g., a
quality similar to binned SAH with a runtime closer to LBVH. It seems that these algorithms could
translate into improved hardware units. In this paper, we identify a recent algorithm as particularly
suitable for hardware implementation, that is, Parallel Locally-Ordered Construction (PLOC) by
Meister and Bittner [2018], and propose a new hardware builder architecture, PLOCTree.
In addition to having good performance and quality in software, PLOC has characteristics that

suggest large potential improvements from hardware acceleration. In particular, PLOC comprises
tens of sweeping passes over an input primitive array which, eventually, reduce it bottom-up into a
BVH tree. On GPU, each pass incurs multiple kernel launches, which read and write large data
buffers. This results in significant external memory traffic when the intermediate buffers are too
large to fit in cache. We find that, in a hardware implementation, most of the data traffic of PLOC
can be kept on-chip, and multiple iterations can reuse the same hardware pipeline.

The main contributions in this paper are:
• A fully pipelined hardware architecture for a single PLOC sweep, including nearest-neighbor
search, merging, and compaction.

• A scheme to share the same pipeline resource between multiple PLOC sweeps, keeping the
inter-sweep traffic on-chip, and to parallelize the computation by placing multiple pipelines
in a sequence.

• Evaluation of reduced-precision surface area computation for bounding boxes as a power
optimization.

The proposed hardware architecture is evaluated by means of logic synthesis and power analysis
on a 28nm process technology.
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2 RELATEDWORK
The quality of a BVH is often estimated based on the Surface Area Heuristic (SAH), which estimates
the likelihood of intersection with a given tree node based on the surface area of its bounding box.
Traditionally, BVHs are built top-down based on SAH with the top-down SAH sweep [MacDonald
and Booth 1990] and binned SAH sweep [Wald 2007] algorithms. These methods begin with all
primitives in a single large leaf, and recursively split it along axis-aligned planes, selecting a plane
from several candidates which gives the best SAH. Surface area can also be used to build trees
by combining nodes bottom-up, selecting node pairs to merge such that the surface area of the
combined AABB is minimized [Walter et al. 2008].

Since SAH based builds are expensive, faster methods have been proposed. The fastest builders
are based on the LBVH algorithm of Lauterbach et al. [2009], which sorts triangles according to
their Morton codes, and then produces a hierarchy based on Morton code bit-patterns. Increasingly
optimized LBVH implementations have been proposed, most recently by Apetrei [Apetrei 2014].
LBVH produces trees of very low quality, so several works attempt to postprocess the tree to recover
quality [Domingues and Pedrini 2015a; Garanzha et al. 2011; Karras and Aila 2013; Pantaleoni
and Luebke 2010]. Recently, Morton code sorting has also been used to accelerate bottom-up
surface-area builds by limiting the nearest-neighbor search to a small window, in the AAC [Gu
et al. 2013] and PLOC [Meister and Bittner 2018] builders.
Aside from rebuilding BVHs from scratch, it is possible to reuse the BVH topology from a

previous animation frame, and refit the bounding volume coordinates to match the geometry in
the new frame [Wald et al. 2007]. This is inexpensive compared to a full rebuild, but tree quality
tends to degrade over the course of a longer animation. Several works work around this drawback
by, e.g., asynchronously refreshing the BVH with full rebuilds [Ize et al. 2007], postprocessing
the BVH to recover quality [Kopta et al. 2012], or constructing the initial BVH for good refitting
performance [Bittner andMeister 2015]. A drawback is that refitting is limited to mesh deformations,
and cannot handle topological changes between animation frames.

Several hardware accelerators have been proposed for tree update. Refitting has been accelerated
in the DRPU [Woop et al. 2006], and more recently, HART [Nah et al. 2015] ray tracing systems.
Doyle’s [2013] accelerator implements the binned SAH sweep algorithm, with loop pipelining to
reduce memory traffic. The builder was recently evaluated on FPGA [Doyle et al. 2017]. Merge-
Tree [Viitanen et al. 2017] implements the LBVH algorithm, likewise optimizing bandwidth by using
an external sorting algorithm and performing LBVH hierarchy emission and AABB computation as
a streaming postprocessing step. The commercial PowerVR Wizard ray tracing GPU includes a
BVH builder, though only limited details are available [McCombe 2014]. Builders have also been
proposed for k-d trees, another popular ray tracing data structure [Liu et al. 2015; Nah et al. 2014].
This paper proposes the first hardware builder to implement a modern algorithm [Meister and

Bittner 2018] based on Morton code sorting and postprocessing. As a result, it has a favorable
speed-quality tradeoff compared to previous hardware builders. The proposed builder has an AABB
sorting subsystem similar to MergeTree [Viitanen et al. 2017], but replaces the LBVH hierarchy
emission with a novel hardware architecture implementing the PLOC algorithm.

3 ALGORITHM
The basic concept of the GPU PLOC algorithm [Meister and Bittner 2018] is shown in Fig. 2. The
algorithm is given as input an array of N primitive AABBs. The first step is to assign each AABB a
Morton code based on its AABB centroid. Next, the input AABBs are sorted in Morton code order.
The main part of the algorithm then constructs a BVH tree by applying repeated iterations over
the array which we here call PLOC sweeps. Each sweep is made up of three steps:
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Fig. 2. Demonstration of the PLOC algorithm [Meister and Bittner 2018] for input size N = 8.

• Nearest-neighbor search: For each AABB, compute a distance metric to all AABBs in a
local window of radius R. Select the AABB with lowest distance as a nearest neighbor.

• Merging: Find pairs of AABBs that are mutual nearest neighbors. Merge each such a pair
into a BVH inner node. Place the AABB of the newly created node in one of the original array
positions, and leave the other empty. AABBs that do not have a mutual nearest neighbor are
left unchanged.

• Compaction: Remove empty elements in the array.
PLOC sweeps are repeated until there is only one element left in the AABB array, which corresponds
to the root node of the output BVH. The array size shrinks roughly exponentially with the number
of iterations.
While several recent build algorithms generate an initial hierarchy similarly to the LBVH

algorithm [Lauterbach et al. 2009], using Morton code bit patterns to generate octree-like halfway
splits, PLOC instead makes use of the property that the distance on the z-curve is a good proxy for
spatial locality. Hence, the global nearest-neighbor for an AABB is likely to be found nearby in the
Morton code sorted array.

In the original algorithm, each PLOC sweep consists of multiple kernel executions, each of which
reads and writes data buffers in the GPU memory. The data sizes for the first few sweeps are close
to the original primitive count and, therefore, operate on inputs too large to cache. The main goal in
this paper is to represent PLOC in a harware-oriented form which, as far as possible, replaces traffic
to external memory buffers with on-chip data streams, reducing the use of DRAM bandwidth. This
is done in two parts. First, a single PLOC sweep is represented as a streaming process, eliminating
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1 f o r ( i n t i dx =0 ; idx <N ; i dx ++)
2 n e a r e s t [ i dx ]
3 = index o f n e a r e s t ne ighbor in [ idx −R . . i dx +R]
4

5 i n t a abb_ou t_ i dx = 0 ;
6 f o r ( i n t i dx =0 ; idx <N ; i dx ++) {
7 i f ( n e a r e s t [ n e a r e s t [ i dx ] ] == idx ) {
8 i f ( n e a r e s t [ i dx ] > i dx ) {
9 out_node = { i npu t [ i dx ] , i npu t [ n e a r e s t [ i dx ] ] } ;
10 out_node_aabb = AABB( out_node ) ;
11 out_node_aabb . p t r = node_out_ idx ;
12 node_output [ node_out_ idx ++] = out_node ;
13 ou tpu t [ ou t _ i dx ++] = out_node_aabb ;
14 }
15 }
16 e l s e
17 ou tpu t [ ou t _ i dx ++] = inpu t [ i dx ] ;
18 }

Fig. 3. Basic serial implementation of a single sweep in the PLOC algorithm.

traffic between the NN search, merging, and compaction stages. Second, multiple sweeps are
performed on-chip, eliminating the traffic between the sweeps.

3.1 Streaming PLOC
An example serial PLOC sweep is shown in C pseudocode in Fig. 3. Here, input and output are
the input and output AABB arrays of a sweep. The code is split into two passes. First, a local
nearest-neighbor is found for each AABB and saved in an array (lines 1 . . . 3). If two neighbors
have equal distances, the one with a lower index is selected. Then on a second pass, elements are
merged into inner nodes based on the nearest array (lines 5 . . . 15). The AABB of a new node is
stored in the location of the first component AABB (line 13), and the second component AABB is
omitted from the output (line 8). AABBs that are not mutual nearest-neighbors of any other AABB
are passed unchanged to the output (line 17). AABBs in the algorithm consist of bounding box
coordinates, a child index ptr and a leaf marker field. The input AABBs are all marked as leafs. The
AABB() function computes the bounding box of a two-AABB node, which is marked as an inner
node.
In order to make the single-sweep algorithm suitable for hardware implementation, we would

like to merge the two passes into a single loop, and inside this loop, eliminate random accesses to
large memory arrays. The passes can be merged by noting that the second pass of the algorithm
only refers to the elements of the nearest array within radius R of the current element. That is,
when we have computed up to nearest[i], there is enough information to run the second pass
until i-R. We can, then, fuse the loops as long as the computations for the second pass stay R
elements behind the first.

In order to eliminate random accesses to input and nearest, note that iteration i of the second
pass only references elements of nearest in range i-R . . .i+R, and input in range i . . .i+R. Hence,
after computing the second pass up to iteration i, we can discard all elements of input and nearest
older than i-R. The remaining elements can be stored in, e.g., small ring buffers.
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1 AABB inpu t [B ] ;
2 i n t n e a r e s t [B ] ;
3 boo l p a i r _ l [B ] , p a i r _ r [B ] ;
4

5 i n t c _ i dx = 0 ;
6 i n t node_out_ idx = 0 ;
7 whi l e ( not done ) {
8 i npu t [mask ( c _ i dx +R ) ] = f i f o _ i n . pop ( ) ;
9 i n t c _ n e a r e s t _ r e l
10 = r e l a t i v e index o f n e a r e s t ne ighbor in
11 i npu t [mask ( c_ idx −R ) ] . . i npu t [mask ( c _ i dx +R ) ]
12 i n t c _ n e a r e s t = mask ( c _ i dx + c _ n e a r e s t _ r e l ) ;
13 n e a r e s t [ c _ i dx ] = c _ n e a r e s t ;
14

15 i f ( c _ n e a r e s t _ r e l <0 && ne a r e s t [ c _ n e a r e s t ]== c_ i dx ) {
16 p a i r _ l [ c _ n e a r e s t ] = t r u e ;
17 p a i r _ r [ c _ i dx ] = t r u e ;
18 }
19

20 i n t l _ i d x = mask ( c _ i dx − R ) ;
21 i n t l _ n r s t = n e a r e s t [ l _ i d x ] ;
22 i f ( p a i r _ l [ l _ i d x ] ) {
23 out_node = { i npu t [ l _ i d x ] , i npu t [ l _ n r s t ] } ;
24 out_node_aabb = AABB( out_node ) ;
25 out_node_aabb . p t r = node_out_ idx ++ ;
26 node_output . push ( out_node ) ;
27 f i f o _ o u t . push ( out_node_aabb ) ;
28 }
29 e l s e i f ( p a i r _ r [ l _ i d x ] ) {
30 }
31 e l s e
32 f i f o _ o u t . push ( i npu t [ l _ i d x ] ) ;
33

34 p a i r _ l [ mask ( c_ idx −R ∗ 2 ) ] = f a l s e ;
35 p a i r _ r [mask ( c_ idx −R ∗ 2 ) ] = f a l s e ;
36 c_ i dx = mask ( c _ i dx +1 ) ;
37 }

Fig. 4. Streaming, hardware-oriented version of a single PLOC sweep.

Fig. 4 shows a PLOC sweep algorithm with these modifications, moreover, external data accesses
are explicitly made through FIFOs. Here, input and nearest are small local buffers of size B (B
is a power-of-two). The function mask() is a logical and operation with B-1, causing the buffers
to wrap around. c_idx corresponds to pass 1 idx in Fig. 3 and l_idx to pass 2 idx. Also, they
are the indices of the left and center elements in the 2R + 1 element window searched for the
nearest-neighbors in each iteration.
Following our hardware implementation, each iteration of the Algorithm in Fig. 4 finds the

possible mutual nearest-neighbor of the input array element at c_idx, and then communicates the
found pair to the second pass side of the iteration via two additional buffers, pair_l and pair_r.
On encountering an element with pair_l set, the second pass joins it to its nearest neighbor to
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Fig. 5. Behavior of PLOC sweep input size during build, 15 test scenes.

produce a new node (lines 22 . . . 28). pair_r directs the second pass to discard the right-hand
element of the pair (29). In retrospect it would be clearer to follow the pass separation in Fig. 3
more closely, finding mutual nearest-neighbors for the element at l_idx and omitting the extra
buffers.

We now have a loop where each iteration reads one element from an input FIFO, writes up to one
element to fifo_out and fifo_node_out, and other than these external communications, only
references constant-sized local data.

3.2 Resource Allocation
From the previous subsection, we have an algorithm suitable for hardware implementation of a
single PLOC sweep. A PLOC build consists of tens of sweeps. It is straightforward to keep data
traffic between sweeps on-chip by feeding the output stream of one sweep as an input to the next.
However, if each sweep is executed by a separate hardware resource, this poses a load balancing
problem: sweep sizes vary heavily over the build, from the initial primitive count N down to 2.

We approach load balancing by mapping multiple PLOC sweeps to the same hardware resource:
with multiple resources, later resources can be assigned more sweeps to balance the workload. To
guide the assignment, wemicrobenchmark the PLOC algorithm on several test scenes to characterize
the behavior of sweep size over the course of a PLOC build. Fig. 5a shows input size as a function
of sweep index, and Fig. 5b the ratio between each sweep’s output and input size.

Fig. 5b shows that the first sweep reduces the input size by a larger fraction than the later ones,
on average 36%, after which subsequent sweeps reduce size by an average of 22%. As a result, sweep
size falls roughly exponentially and rapidly becomes insignificant, as shown in Fig. 5a. On average,
if the input size of the initial sweep is N , the summed number of elements over all sweeps is 4.1N .
Hence, for example, if we want to load balance between two hardware resources, we should assign
enough sweeps to the first resource to have a total workload of ca. 2N , and the rest of our on-chip
sweeps to the second resource. On average, sweeps 1–3 have a total input size of 2.1N , so in this
case it is good to assign ca. 3 iterations to the first resource.

3.3 Reduced Precision Distance Metric
A PLOC sweep pipeline implementing the Algorithm in Fig. 4 with a throughput of, e.g., 1 element
per cycle will require tens of floating-point units for distance metric evaluation. In order to save
silicon area and power, we compute distance metrics at lower arithmetic precision. Reduced-
precision arithmetic was earlier found effective in ray traversal by Keely [2014] and Vaidyanathan
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et al. [2016]. Simply dropping precision to, e.g., IEEE half-precision has two main failure modes
that severely degrade quality:

• Regions of the BVH that are outside the half-precision dynamic range, being clamped to
maximum float value

• Catastrophic cancellations occur when subtracting the AABB bounds to compute AABB
width along each axis.

The first error source can be worked around by keeping exponent size at the 8 bits of IEEE single-
precision floating point. Since most of the complexity of floating-point units is in the significand
datapath, this has little effect on the savings from reduced precision. The second error source can
be eliminated by using full-precision floats for the initial width computation, then truncating the
results, and using low precision for the rest of the surface area computation.

3.4 Adaptive Collapsing
One key component of GPU PLOC [Meister and Bittner 2018] is an adaptive, SAH-based treelet
collapsing step to produce large leafs. It is straightforward to make a collapsing decision in a
streaming manner, but more complex to generate the output leaf array. When merging two large
leafs, they are not guaranteed to map to consecutive regions of the leaf array: hence, a naive
implementation would have to read back both component leafs to be compressed, and write a
consecutive large leaf, leaving undesirable gaps in the leaf array. In this work, we only collapse
in the easy case of merging two single-triangle leafs. Moreover, we omit SAH computation, and
always generate a 2-triangle leaf when a PLOC sweep iteration is merging two triangles.

4 HARDWARE ARCHITECTURE
In this Section, we describe a hardware architecture for a tree builder based on the streaming PLOC
version described in Section 3.1. We first look into the detailed implementation of a single PLOC
sweep pipeline, and then describe a complete system architecture based on the pipeline.

4.1 PLOC sweep pipeline architecture
The hardware architecture of a PLOC sweep pipeline is shown in Fig. 1. The pipeline is fed with the
AABBs of the PLOC input array in Morton code order, and produces BVH node and leaf outputs, as
well as an AABB stream for the next sweep. Each AABB is 32B and consists of 6 single-precision
coordinates, an index, and a leaf size indicator. A leaf size of 0 indicates the AABB is of an inner
node, and the index is to the output node array – otherwise, it points to the triangles or leafs. The
inputs of the first sweep are the Morton code sorted AABBs of triangles, with leaf size set to 1. The
pipeline is designed for a throughput of 1 input AABB per cycle.

The pipeline is mostly a translation of the algorithm of Fig. 4 to hardware, but we split the input
buffer into two copies: one optimized as a sliding-window memory for the purpose of supplying
nearest-neighbor search with a window of 2R + 1 consecutive AABBs, and another optimized for
random single-AABB reads.
The sweep pipeline consists of a sliding-window input buffer, followed by nearest-neighbor

search and AABB merging. In order to share a pipeline between S PLOC sweeps, the window
memory contains the sliding-windows of more than one sweep. Each input AABB is tagged with a
⌈loд2S⌉ bit sweep identifier, which selects the sweep to use, and is propagated through the pipeline.
Input AABBs have a sweep identifier of 0. If a firing of the pipeline produces an output AABB, and
its identifier is S − 1, the AABB is output from the pipeline. If the identifier is less than S − 1, the
identifier is incremented, and the AABB is fed back to the start of the pipeline. An arbiter at the
start of the pipeline gives a higher priority to feedback AABBs, avoiding the need for a FIFO buffer.
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Fig. 6. Distance metric evaluator.

4.1.1 Window Memory. The task of the window memory is to maintain a set of sliding-window
buffers, one for each iteration assigned to the pipeline. When an AABB is input to the pipeline, it
first goes to the right side of the corresponding sliding window, pushing all elements previously in
the window to the left. The memory then outputs the full window of 2R + 1 AABBs.

In the current work, the window memory is implemented as a multi-bank memory followed by
a barrel-shifter shuffle network. Consecutive inputs to the same window are written to successive
banks, and the output is rotated so that latest input always appears in the same output position.
Small window memories are implemented as flip-flops and large (>16 elements per bank) as SRAMs.
For small S , it may be interesting to instead implement the windowmemory as a set of shift registers
followed by a multiplexer.

4.1.2 Distance Metric Evaluator. The 2R + 1 output AABBs from the window memory are fed
into a bank of 2R distance metric evaluator (DME) units. Each DME takes two AABBs as input,
one of which is the center box of the window, and computes the surface area of an AABB that
covers both input boxes. Optionally, reduced precision may be used for part of the computation, as
detailed in Subsection 3.3. The structure of a DME is shown in Fig. 6. The DME bank accounts for
all the floating-point computation in the system, and much of the pipeline latency.

4.1.3 Comparator Tree. The comparator tree receives 2R distances from the DME bank as inputs,
and outputs the relative index of the AABB with the lowest distance, ranging from −R to R. The
index is also used as a tiebreaker, selecting the leftmost of AABBs with equal distance.

4.1.4 Postprocessing. The previous stages of the pipeline find the relative nearest-neighbor
indices for each input aray element. In addition to the nearest-neighbor index, the postprocessing
unit receives the left and center AABBs of the corresponding sliding window as input. The unit
then performs the rest of the work of the algorithm in Fig. 4. At this point, the nearest-neighbor
indices are stored and used to find the AABB pairs that are mutual nearest-neighbors. Based on
the found pairs, AABBs are either output as they are, consumed, or joined with another AABB,
emitting node and leaf data. Node and leaf addresses are requested from an address counter unit
shared between the PLOC sweep pipelines, if there is more than one pipeline in the design.
A stage-by-stage architecture of the postprocessing pipeline is shown in Fig. 7. The pipeline

initially computes c_idx, c_nearest and l_idx as in Fig. 4 (here shortened to ci, cni and li,
respectively) and writes the AABB and nearest-neighbor index to local SRAMs. The nearest-
neighbor memory is then read to determine whether the current center node is the right side of
a nearest-neighbor pair (Cycle 2). A detected pair is marked in the pair_l and pair_r registers
(Cycle 3). The rest of the pipeline deals with the left AABB: based on pair_l and pair_r, it is
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Fig. 7. Postprocessing pipeline architecture.

either consumed (if pair_r is set), joined with its nearest-neighbor to emit a node (if pair_l is
set) or output as-is (if both are false). The joint node AABB is speculatively computed on Cycle 4,
and the merge decision itself is made on Cycle 5. On Cycle 6, if the pipeline is emitting a node, it
requests write addresses to the node and leaf output tables from the address counter unit; these
addresses are used to finalize the output node and AABB data on Cycle 7.

4.1.5 Boundary Conditions. In order to handle the end of the input stream, after feeding the
complete input array to the pipeline, we add 2SR dummy AABBs with lower and upper bounds set
to minimum and maximum representable single-precision floating-point values, respectively. This
special-case AABB is always its own nearest neighbor, and never the nearest neighbor of any of
the valid AABBs. This forces the algorithm to run also with the final input AABBs as the center
and left elements of the nearest-neighbor search window. Special logic is placed at the input of
the first PLOC pipeline to insert the dummy AABBs. It should be noted that this is a source of
inefficiency in later, small PLOC sweeps, where DMEs are often evaluating distances to dummy
AABBs. However, the large majority of the work in PLOC is done in the middle of early, large
sweeps, where the DME banks can be fully utilized.

4.2 System architecture
The basic system architecture of PLOCTree is shown in Fig. 8, and its main components are a sorting
subsystem followed by one or more PLOC sweep pipelines. Each pipeline has a separate parameter Si
for the maximum number of sweeps it can handle. Moreover, an address counter module is included
to assign memory addresses to nodes output from multiple sweep pipelines.

Our main requirements for a hardware sorter are that it should produce an ordered output stream
(as opposed to, e.g. a parallel radix sort), and preferably be based on a bandwidth-economical
external sorting algorithm. We use the AABB sorting subsystem of the MergeTree builder [Viitanen
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Fig. 8. PLOCTree system architecture with 2 builders.

(a) LBVH with binned SAH toplevel
build. (nbox = 102.5, ntr i = 7.1)

(b) Binned SAH build.
(nbox = 76.8, ntr i = 10.4)

(c) PLOC build (proposed).
(nbox = 90.3, ntr i = 7.9)

Fig. 9. Traversal cost example, Italian scene. Red: ray-AABB tests, blue: ray-triangle intersection tests. nbox :
mean ray-AABB tests per pixel, ntr i : mean ray-triangle tests per pixel.

et al. 2017] which has these properties. Instead of feeding the sorted AABBs to a LBVH hierarchy
emitter, they are input into the first PLOC sweep pipeline. As with MergeTree, the input array of
PLOCTree consists of primitive AABBs annotated with precomputed Morton codes. In a practical
use, though, it may be preferable to directly read primitive data, and include hardware for AABB
and Morton code computation.

The MergeTree sorter has two main operating states: block sort (divided into read and write sub-
states), which sorts blocks of AABBs small enough to fit in the on-chip scratchpad, and multimerge,
which produces the final sorted array. In the proposed system, the PLOC sweep pipelines are active
during the multimerge state and inactive in the block sort state. Moreover, we add a third operating
state, repeat, where an AABB array is read directly from memory and written to the PLOC pipelines,
bypassing the sorter. In case the PLOC build of a scene needs more sweeps performed than the
number that can be run on-chip (

∑
Si ), an intermediate AABB array is written out to external

memory, and the repeat state is used one or more times to finish the build. Given a
∑
Si of tens of

iterations, the repeat sweep sizes are very small.
The build is parallelized by increasing the number of sweep pipelines in sequence. As discussed

in Section 3.2, the total work is ca. 4.1 times the input triangle count. Assuming full utilization
and good load balancing between pipelines, a single-pipeline builder has a throughput of ca. 1

4 ,
a two-pipeline builder of 1

2 , and a four-pipeline builder has a throughput close to 1. It should be
noted that these are very idealized assumptions: in real use, load balancing is imperfect, and the
tree build has startup and wind-down phases where some of the resources are under-utilized. The
MergeTree sorter has an ideal throughput of 1

2 , so in order to roughly match its throughput, we
focus on a two-input builder design.
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5 EVALUATION
For evaluation, PLOCTree is implemented at the register transfer level (RTL) in SystemVerilog.
We evaluate an instance with two PLOC sweep pipelines of radius R = 8, configured to handle
S1 = 4 and S2 = 32 sweeps, respectively. The sorter has the same configuration as in [Viitanen
et al. 2017], with a 256KB scratchpad and 32-bit Morton codes, and capable of sorting arrays up
to 2M AABBs. Enhanced Morton codes [Vinkler et al. 2017] are used. Moreover, distance metric
evaluation is computed partly at reduced arithmetic precision as discussed in Section 3.3. The
low-precision FPUs use 17-bit floats with 8-bit exponents and significands. In order to gauge the
effect of reduced-precision DME, all benchmarks are also rerun with a single-precision, otherwise
identical builder.

The builder is synthesized on a 28nm FDSOI CMOS technology. Operating conditions were set at
1V, temperature at 25◦C, and the target clock frequency at 1 GHz. Contrary to MergeTree [Viitanen
et al. 2017], which used a SRAM macro from the technology foundry, we use SRAMs with area,
power and delay modeled with CACTI-P [Li et al. 2011]: this is intended to help reproducibility,
and make results more comparable with previous builders [Doyle et al. 2013; Liu et al. 2015; Nah
et al. 2011] that are evaluated based on CACTI estimates.

We run RTL simulations for builds of various scenes, perform power analysis based on switching
activity information extracted from simulation, and record the build times, memory traffic, and
estimated build energy. Fifteen test scenes are used. In order to verify the correctness of resulting
trees, they are extracted from the RTL simulation as hex dumps, loaded to a software ray tracer,
validated, and used to render each scene.

Tree quality is evaluated by computing SAH costs of the output trees, with node traversal cost set
at 1.2 and triangle intersection cost at 1.0, as in Karras and Aila [2013]. The SAH cost is normalized
to full SAH sweep. It should be noted that SAH cost is an imperfect proxy of ray tracing performance.
Aila et al. [2013] have found that especially bottom-up builders tend to have worse performance
than predicted by SAH. Hence, our results should not be taken as a definitive quality comparison.
The timing of the external memory interface is modeled with Ramulator [Kim et al. 2015], and

the power consumption with DRAMPower [Chandrasekar et al. 2012]. Ramulator is integrated via
the Systemverilog DPI to RTL simulation, and activity logs printed from it are fed to DRAMPower
for analysis. We use a memory configuration with four 64-bit banks of 1333MHz LPDDR3 DRAM,
which gives a theoretical peak bandwidth of 42.7 GB/s, the same as [Viitanen et al. 2017] and
conveniently close to the 44 GB/s interface of [Doyle et al. 2013] for comparison. Also, we subtract
the idle energy of the DRAM interface – obtained by generating an idle DRAMPower trace with
only refresh commands – in order to isolate the dynamic increase in DRAM energy consumption
caused by the tree build.
We compare to two state-of-the-art hardware builders: MergeTree [Viitanen et al. 2017] and

the binned SAH builder by Doyle et al. [2013]. MergeTree is resynthesized with the same settings
(and CACTI SRAMs) as PLOCTree, giving somewhat smaller area and higher on-chip power than
the original work, and then run through the same benchmarks, using the same power estimation
methodology. Moreover, we make the optimistic assumption that the output BVHs from MergeTree
are post-processed with a high-level binned SAH build, at no extra runtime or energy cost. For
Doyle et al. [2013], we run a software binned SAH build, and estimate memory bandwidth based on
extracted binned SAH sweeps lengths as in [Viitanen et al. 2017]. For energy, only DRAM energy is
considered, and it is scaled from the PLOC DRAM results after excluding refresh power, assuming
linear scaling with memory traffic.

Moreover, two GPU builders are included as reference, PLOC and LBVH. The PLOC builder [Meis-
ter and Bittner 2018] is configured for similar behavior as our hardware, with radius 8, maximum
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leaf size 2, 32-bit Morton codes, and adaptive collapsing disabled. For LBVH, we use Domingues
and Pedrini’s [2015b] implementation of Karras’ [2012] algorithm with 32-bit codes. However, the
resulting trees are not identical to the hardware builders, due to the use of enhanced Morton codes,
reduced-precision distance metric evaluation in PLOC, and an unstable hardware sort which may
reorder elements with equal sort keys. GPU PLOC and LBVH are benchmarked on a Geforce GTX
1080 Ti GPU, and memory traffic is extracted with nvprof. We report kernel runtimes. Some kernels
in each builder correspond to tasks which are not performed by the hardware units: these include
Morton code computation, scene extent computation and triangle conversion to Woop’s [2005]
format. These kernels are removed from the bandwidth and memory results.

6 RESULTS
The main results are summarized in Table 1. The detailed results for performance, memory band-
width usage, and tree quality are listed in Table 2, and power analysis in Table 3. In the benchmark
conditions, PLOCTree consumes 1.4–1.9W of power, including DRAM traffic. To give a rough frame
of reference, mobile GPUs in a recent game benchmark [Pathania et al. 2014] consume 1–3W, thus
the builder appears to fit in a mobile power budget with the reported build performances. However,
while the builder is in use at full performance, there is little bandwidth or power budget left for
rendering. On desktop, PLOCTree would account for less than 1% the silicon area and thermal
design power of a high-end GPU, and less than 10% of the maximum bandwidth, so it would be
practical to constantly run it at full performance.

The closest point of comparison is MergeTree [Viitanen et al. 2017]. It is visible that PLOCTree is
able to keep up with the throughput of the sorting subsystem, as it is only 7% slower than the LBVH
builder. As drawbacks, PLOCTree consumes, on average, 4.5× the on-chip power and 4.8× the
on-chip build energy of MergeTree, and has a 37% area overhead. A large increase in logic power is
expected since MergeTree mostly performed computationally light sorting, while PLOCTree adds
computationally intensive postprocessing logic. However, since in both cases the on-chip power
consumption is dwarfed by DRAM interface power, and both builders have similar DRAM traffic,
the effect on total build energy is comparatively small, 32%. DRAM accounts for an average of 94%
of build energy for MergeTree and 79% for PLOCTree. The memory traffic of PLOCTree differs
from MergeTree mainly due to leaf sizes. In large scenes, PLOCTree tends to give smaller leafs than
32-bit LBVH and, therefore, writes inner nodes, leading to 10% higher traffic on average. Moreover,
some extra traffic is due to reading and writing intermediate arrays as described in Sec. 4.2.

It should be noted that mobile SoCs and desktop GPUs are beginning to switch to newer memory
technologies such as LPDDR4 and HBM2. Convenient power models were not available for these
technologies. LPDDR4 is according to one estimate [Lee et al. 2017] 39% more power-efficient than
LPDDR3. Efficient external memory would increase the relative importance of core power.

Compared to a binned SAH builder [Doyle et al. 2013], PLOCTree gives similar SAH cost, but is
ca. 5× faster, with 3× less bandwith usage, and 5× less silicon area. However, as noted in Sec. 5,
SAH cost is an imperfect tree quality measure. Fig. 9 shows an example scene where practical
performance is worse than predicted by SAH. On average, when rendering the test scenes with
primary rays, PLOCtree gave 12% higher box test counts than binned SAH, compared to 31% for
LBVH. The original PLOC paper [Meister and Bittner 2018] measures practical GPU ray tracing
performance and finds a large improvement over LBVH. Compared to a GPU software PLOC builder,
PLOCTree is ca. 4× faster and uses 8× less bandwidth. It should be noted that MergeTree gave far
more modest improvements over a GPU LBVH build; ca. 3× less bandwidth and a slower build
speed. Hence, the results show PLOC is highly suitable for hardware acceleration.

An area and power breakdown of the system is shown in Table 4. Here, it is visible that the PLOC
sweep pipelines are compact but very power-intensive compared to the sorter. Furthermore, the
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Table 1. Summary of results.

GPU PLOC, HW SAH HW LBVH HW PLOC
GTX 1080 Ti [Doyle

et al.
2013]

[Viitanen
et al.
2017]

(proposed)

Process 16nm 65nm 28nm 28nm
Area (mm2) 610b 68.76d 1.77 2.43
Scaled area 1868 12.76 1.77 2.43
Clock (GHz) 1.6 0.5 1.0 1.0
BW (GB/s) 484 44 42.7 42.7
FPU counta 3584c 1184e 0 256f
TDP (W) 250 - 0.085g 0.362g

Avg SAH 105% 104% 116% 104%
Build time 386% 550% 93% 100%
Mem. traffic 772% 278% 91% 100%
Energy - 221% 70% 100%
a Number of FPU add, subtract, multiply and reciprocal units.
b Assuming same as Tesla P100 [Harris 2016].
c Assuming 1 FPU per CUDA core.
d 2 subtree builders á 31.88 mm2 and upper builder 5 mm2.
e Each subtree builder has 160 add, 192 sub, 224 mul, 16 reciprocal
units. Upper builder not counted.

f 5
8 of these FPUs are using low arithmetic precision.

g Highest on-chip power encountered in benchmarks.

iteration count has a large effect on pipeline cost: the second pipeline (S1=32) has an over 2× larger
area and power footprint than the first (S2 = 4). The window memory of the second pipeline is the
largest single power consumer in the builder, and accounts for over one-third of on-chip power.
Reduced-precision DME has the effect of saving 8.3% silicon area – a full-precision builder is

2.7mm2 – and an average of 12.9% of on-chip build energy. However, due to large share of DRAM
energy, total build energy only falls by 3%. The effect on SAH quality is on average 0.2% and
ranges between -1.2% . . . 2.5%. Extended Morton codes reduce SAH cost by 2.8%. If Morton code
computation was done in hardware, this would incur the cost of a bounding-box diagonal length
computation, which is inexpensive compared to the current design’s 128 FPUs.

7 LIMITATIONS AND FUTUREWORK
The main limitation of the current builder compared to software PLOC is the lack of large leaf
collapsing. If adaptive collapsing as in [Meister and Bittner 2018] could be implemented in hardware,
our initial software experiments indicate that the builder could give a ca. 5% better quality as
measured with SAH cost. We are working on a hardware architecture to allow streaming adaptive
collapsing. Other limitations include that the present hardware has a hardwired search radius R = 8
and a Morton code bitwidth of 32, which may be too inaccurate for large scenes. Moreover, the
sorter configuration only handles scenes of up to 2M primitives. It would be particularly expensive
to increase R since this requires replicating nearly every hardware resource in the builder. However,
in the original PLOC paper [Meister and Bittner 2018], R only had a minor effect on tree quality.
Several opportunities remain for optimization. For example, the current architecture evaluates

each distance metric twice – it may bemore efficient to only compute distances to previousR AABBs,
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Table 4. Area and power breakdown. Note: Due to preserving hierarchy in resynthesis, area and power is
significantly higher than in the main results.

Component Area (mm2) Power (mW)

Sorting subsystem 1.65 (65%) 86 (18%)
FIFOs, muxes 0.43 (17%) 6 (1%)
Insertion sorters 0.24 (9%) 27 (6%)
Multimerge unit 0.97 (38%) 52 (11%)

PLOC pipe 1 0.24 (10%) 110 (23%)
Window memory 0.09 (3%) 26 (6%)
Distance metric evaluators 0.10 (4%) 28 (6%)
Comparator tree, delay pipe 0.02 (1%) 35 (7%)
Postprocessing 0.04 (1%) 19 (4%)

PLOC pipe 2 0.51 (20%) 270 (57%)
Window memory 0.25 (10%) 173 (37%)
Distance metric evaluators 0.10 (4%) 27 (6%)
Comparator tree, delay pipe 0.02 (1%) 35 (7%)
Postprocessing 0.13 (5%) 32 (7%)

Misc. toplevel logic 0.12 (5%) 4 (1%)

Total 2.53 (100%) 471 (100%)

though this adds complexity to the postprocessing stage. Moreover, the PLOC sweep pipelines are
idle when the sorter is running a block sort, so it may be interesting to decouple the block sorts
from the merge logic of the sorting subsystem. The build speed of PLOCTree can be scaled up by
adding pipelines, but we expect that the sorting subsystem would then become the bottleneck, and
need to be replaced with a faster sorter, e.g., in the vein of Casper and Olukotun [2014]. Instead of
the current pipeline-style parallelization, it may be preferable to run multiple elements of the same
PLOC sweep in parallel, as this shares window memory hardware between the parallel resources,
and may give better load balancing.

8 CONCLUSION
This paper proposed PLOCTree, a fast, high-quality hardware BVH tree builder for real-time ray
tracing, based on the PLOC algorithm by Meister et al. [Meister and Bittner 2018]. The proposed
builder has a better performance-quality tradeoff relative to previous work, giving a large tree
quality improvement over a hardware LBVH build [Viitanen et al. 2017] with a modest runtime
and energy overhead. The resulting trees have SAH costs similar to a binned SAH builder [Doyle
et al. 2013], though practical ray tracing performance may be lower [Aila et al. 2013]. Moreover,
PLOCTree gives a significant speedup and reduction in memory bandwidth usage compared to a
software implementation of the same algorithm running on a high-end desktop GPU.
The proposed builder might be used as a component of either a desktop or mobile ray tracing

GPU to good effect. On desktop, it would take up a small fraction of the silicon area and TDP
of a high-end GPU, and free up the computational resources of the GPU for other tasks, while
speeding up tree builds by a factor of 3.9. The power footprint of the builder is small enough to
fit in a mobile platform. This work demonstrates that an algorithm from the recent crop of fast,
high-quality builders, based on Morton code sorting and postprocessing, can be succesfully adapted
to hardware.
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