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1. Introduction

The algebra of octonions is a well known non-associative division algebra. The
second not so well known feature is that we may define a function theory in
spirit of classical theory of complex holomorphic functions, and study its
properties. This theory has its limitations, since the multiplication is neither
commutative nor associative.

The octonions or Cayley numbers were first defined in 1843 by John
T. Graves. Nowadays the systematic way to define octonions is the so called
Cayley-Dickson construction, which we will also use in this paper. See histor-
ical remarks on ways to define the octonions in [1]. The first literary source of
octonionic analysis is the article [4] published by Paolo Dentoni and Michele
Sce in 1973. In the article authors introduced the basic operators and func-
tions, and studied some of their function theoretic properties. We will recall
all of their definitions that we will need in this paper. After Dentoni and Sce
octonionic analysis has been studied, and some function theoretic properties,
as well as solutions of the fundamental system, have been obtained, see for
example [7, 8, 12] and their references.

In this paper we will aggregate existing results, unify their notations,
and then study their new features. The first part of this paper is a survey of
known results, where we give a detailed definition for the octonions. To make
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our practical calculations easier, we derive the so called ”e4-calculus” on it.
Then we recall the notion of the Cauchy-Riemann operator. A function in
its kernel is called monogenic. To find explicit monogenic functions directly
from the definitions is too complicated, because the algebraic properties give
too many limitations. To give an explicit characterization of monogenic func-
tions, we separate variables, or represent the target space as a direct sum
of subspaces. Using this trick we obtain a list of real, complex, and quater-
nionic partial differential equation systems, which are all generalizations of
the complex Cauchy-Riemann system. These systems allow us to study ex-
plicit monogenic functions. We compute an example, assuming that the func-
tions are biaxially symmetric.

Authors like to emphasize, that this work is the starting point for our
future works on this fascinating field of mathematics. A reader should notice,
that although the algebraic calculation rules look really complicated, one may
still derive practical formulas to analyse the properties of the quantities of
the theory. It seems that there are two possible ways to study the octonionic
analysis in our sense. In the first one, one just takes results from classical
complex or quaternionic analysis and tries to prove them. The second one is
to concentrate to algebraic properties and features of the theory, and to try
to find something totally new, in the framework of the algebra. We believe
that the latter gives us deeper intuition of the theory, albeit the steps forward
are not always so big.

2. On Octonion Algebra

In this section we recall the definition of the octonions and study their al-
gebraic properties. We develop the so called e4-calculus, which we will use
during the rest of the paper to simplify practical computations.

2.1. Definition of Octonions

Let us denote the field of complex numbers by C and the skew field of quater-
nions by H. We assume that the complex numbers are generated by the basis
elements {1, i} and the quaternions by {1, i, j, k} with the well known defining
relations

i2 = j2 = k2 = ijk = −1.

We expect that the reader is familiar with the complex numbers and the
quaternions. We give [1, 3, 9, 13] as a basic reference.

The systematic way to define octonions is the so called Cayley-Dickson
construction. The construction produces a sequence of algebras over the field
of real numbers, each with twice the dimension of the previous one. The
previous algebra of a Cayley-Dickson step is assumed to be an algebra with
a conjugation. Starting from the algebra of real numbers R with the trivial
conjugation x 7→ x, the Cayley-Dickson construction produces the algebra of
complex numbers C with the conjugation x + iy 7→ x − iy. Then applying
Cayley-Dickson construction to the complex numbers produces quaternions
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H with the conjugation. The quaternion conjugation is given as follows. An
arbitrary x ∈ H is of the form

x = x0 + x

where x0 ∈ R is the real part and x = x1i+x2j+x3k is the vector part of the
quaternion x. Vector parts are isomorphic to the three dimensional Euclidean
vector space R3. Then the conjugate of x obtained from the Cayley-Dickson
construction is denoted by x, and defined by

x = x0 − x.

Now the Cayley-Dickson construction proceeds as follows. Consider pairs of
quaternions, i.e., the space H⊕H. We define the multiplication for the pairs
as

(a, b)(c, d) = (ac− db, da+ bc)

where a, b, c, d ∈ H. With this multiplication the pairs of quaternions H⊕H
is an eight dimensional algebra generated by the elements

e0 := (1, 0), e1 := (i, 0), e2 := (j, 0), e3 := (k, 0),

e4 := (0, 1), e5 := (0, i), e6 := (0, j), e7 := (0, k).

Denoting 1 := e0 and using the definition of the product, we may write the
following table.

1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

We see that e0 = 1 is the unit element of the algebra. Using the table, it is
an easy task to see that the algebra is not associative nor commutative. We
also see that the elements {1, e1, e2, e3} generate the quaternion algebra, i.e.,
H is a subalgebra.

The preceding algebra is called the algebra of octonions and it is denoted
by O. An arbitrary x ∈ O may be represented in the form

x = x0 + x

where x0 ∈ R is the real part of the octonion x, and

x = x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

is the vector part, where x1, ..., x7 ∈ R. Vector parts are isomorphic to the
seven dimensional Euclidean vector space R7. The whole algebra of octonions
is naturally identified with the vector space R8. The Cayley-Dickson construc-
tion produces naturally a conjugation (a, b)∗ := (a,−b) for octonions, where
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a is the quaternion conjugate. Because there is no risk of confusion, we will
denote the conjugate of x ∈ O by x. Using the real and vector parts, we have

x = x0 − x.

We refer [1, 3, 5] for more detailed description of this construction.

2.2. Algebraic Properties

In this subsection we collect some algebraic properties and results of the
octonions to better understand its algebraic structure.

The next result shows that O is an alternative division algebra.

Proposition 2.1 (cf. [13]). If x, y ∈ O then

x(xy) = x2y, (xy)y = xy2, (xy)x = x(yx),

and each non-zero x ∈ O has an inverse.

We see that the associativity holds in the case (xy)x = x(yx). Unfortu-
nately, this is almost the only non-trivial case when the associativity holds:

Proposition 2.2 (cf. [3]). If

x(ry) = (xr)y

for all x, y ∈ O, then r is real.

Hence, the use of parentheses is something we need to keep in mind,
when we compute using the octonions. The alternative properties given in
Proposition 2.1 implies the following identities.

Proposition 2.3 (Moufang Laws, [3, 11]). For each x, y, z ∈ O

(xy)(zx) = (x(yz))x = x((yz)x).

The inverse element x−1 of non-zero x ∈ O may be computed as follows.
We define the norm by |x| =

√
xx =

√
xx. A straightforward computation

shows that the norm is well defined, and

|x|2 =

7∑
j=0

x2j .

In addition,

x−1 =
x

|x|2
.

By the following result O is a composition algebra. We will say that the
octonions have a multiplicative norm.

Proposition 2.4 (cf. [3, 5, 13]). The norm of O satisfies the composition law

|xy| = |x||y|

for all x, y ∈ O.
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The composition law has algebraic implications for conjugation, since
the conjugate may be written using the norm in the form x = |x+1|2−|x|2−
1−x. The following formulas are easy to prove by brute force computations.
But the reader should notice, that actually they are consequences of the
composition laws, not directly related only to octonions.

Proposition 2.5 (cf. [3]). If x, y ∈ O, then

x = x and xy = y x.

In general we say that an algebra A is a composition algebra, if it has
a norm N : A → R such that N(ab) = N(a)N(b) for all a, b ∈ A. We know
that R, C, H and O are composition algebras. It is an interesting algebraic
task to prove that actually this list is complete.

Theorem 2.6 (Hurwitz, [3]). R, C, H and O are the only composition algebras.

2.3. e4–Calculus

In principle it is possible to carry out all of the computations with the oc-
tonions just using the multiplication table. However, this often leads to very
impractical calculations. In this subsection we study how to compute with
the octonions in practise. Our starting point is the observation that every
octonion x ∈ O can be written in the form

x = a+ be4,

where a, b ∈ H. This form is called the quaternionic form of an octonion. If

x = x0 + x1e1 + · · ·+ x7e7,

then

a = x0 + x1e1 + x2e2 + x3e3 and b = x4 + x5e1 + x6e2 + x7e3.

Using the multiplication table we can prove the following.

Lemma 2.7. Let ei and ej, where i, j ∈ {1, 2, 3}, be the basis elements for the
vector part of the quaternions H. Then

(a) ei(eje4) = (ejei)e4,
(b) (eie4)ej = −(eiej)e4,
(c) (eie4)(eje4) = ejei.

These rules imply the following rules for the vectors.

Lemma 2.8. Let a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3 ∈ H be
vectors (ai, bj ∈ R). Then

(a) e4a = −ae4
(b) e4(ae4) = a
(c) (ae4)e4 = −a
(d) a(be4) = (b a)e4
(e) (ae4)b = −(a b)e4
(f) (ae4)(be4) = b a
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Using preceding formulae, it is easy to obtain similar formulas for all
quaternions a = a0 + a1e1 + a2e2 + a3e3 and b = b0 + b1e1 + b2e2 + b3e3.

Lemma 2.9. Let a, b ∈ H. Then

(a) e4a = ae4
(b) e4(ae4) = −a
(c) (ae4)e4 = −a
(d) a(be4) = (ba)e4
(e) (ae4)b = (ab)e4
(f) (ae4)(be4) = −ba

The previous relations are called the rules of e4-calculus for the octo-
nions. The idea is that when we multiply octonions, we overcome the lack of
associativity of octonions by writing octonions in the quaternionic form and
using the rules of Lemma 2.9 to modify the products into the quaternionic
form. The situation is similar to computing with complex numbers, where we
usually write a+ bi (a, b ∈ R) and multiply using the relation i2 = −1. As an
example, we compute the following lemmata.

Lemma 2.10. Let x = a1 + b1e4 and y = a2 + b2e4 (ai, bj ∈ H) be octonions
in the quaternionic form. Then their product in quaternionic form is

xy = (a1a2 − b2b1) + (b1a2 + b2a1)e4.

Proof. Apply Lemma 2.9:

xy = (a1 + b1e4)(a2 + b2e4)

= a1a2 + (b1e4)a2 + a1(b2e4) + (b1e4)(b2e4)

= a1a2 + (b1a2)e4 + (b2a1)e4 − b2b1. �

Lemma 2.11. For an octonion a+ be4 (a, b ∈ H) in the quaternionic form we
have

a+ be4 = a− be4,
|a+ be4|2 = |a|2 + |b|2.

3. Cauchy-Riemann Operators

In this section we begin to study the basic analytical properties of the oc-
tonion valued functions. First we recall some basic properties and after that
we express some equivalent systems related to the decomposition of octo-
nions. Using these equivalent systems we may avoid difficulties caused by
non-associativity.
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3.1. Definitions and Basic Properties

In the octonionic analysis we consider functions defined on a set Ω ⊂ R8 ∼= O
and taking values in O. Similarly than in the case of quaternionic analysis,
we may consider octonionic analyticity, and see that the generalization of
Cauchy-Riemann equations is the only way to get a nice function class (see
[8]). We begin by connecting to an octonion

x = x0 + x1e1 + · · ·+ x7e7

the derivative operator

∂x = ∂x0 + e1∂x1 + · · ·+ e7∂x7 . (3.1)

This derivative operator is called the Cauchy-Riemann operator. The vector
part of it

∂x = e1∂x1 + · · ·+ e7∂x7 (3.2)

is called the Dirac operator. Now it is easy to represent the Cauchy-Riemann
operator and its conjugate as

∂x = ∂x0
+ ∂x and ∂x = ∂x0 − ∂x.

Remark 3.1. These operators were defined by Dentoni and Sce in [4]. They
called the operator ∂x the operator of Fueter and Moisil. In this paper we will
follow the notation used in Clifford analysis (cf. [2]) hoping that the reader
will get a better understanding of the octonionic analysis by comparing them
to each other. In [6] we study the similarities and differences between Clifford
and octonionic analyses.

The function f : Ω ⊂ O→ O is of the form

f =

7∑
j=0

ejfj

where fj : Ω ⊂ O→ R. If the components of f have partial derivatives, then
∂x operates from the left as

∂xf =

7∑
i=0

ei∂xi
f =

7∑
i,j=0

eiej∂xi
fj

and from the right as

f∂x =

7∑
i=0

fei∂xi
=

7∑
i,j=0

ejei∂xi
fj .

Definition 3.2. Let Ω ⊂ O be open and assume that the components of
f : Ω → O have partial derivatives. If ∂xf = 0 (resp. f∂x = 0) in Ω, then f
is called left (resp. right) monogenic in Ω.

Remark 3.3. These functions were defined in [4], where the authors called
them left- and right regular.
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We define the Laplace operator as

∆x = ∂2x0
+ ∂2x1

+ · · ·+ ∂2x7
.

Because xx = xx, it follows that in C2(Ω,O), where Ω ⊂ O is open,

∂x∂x = ∂x∂x = ∆x. (3.3)

From Proposition 2.1 it follows (xx)y = x(xy), and therefore for f ∈ C2(Ω,O)

(∂x∂x)f = ∂x(∂xf) = ∂x(∂xf).

Similarly

f(∂x∂x) = (f∂x)∂x = (f∂x)∂x.

These properties give us, like in the quaternionic case a relation between
monogenicity and harmonicity.

Proposition 3.4 (cf. [4]). If a function f ∈ C2(Ω,O) is left or right monogenic,
then f is harmonic.

Some basic function theoretical results have already been studied in
octonionic analysis, e.g., the following classical integral formula holds.

Theorem 3.5 (cf. [7]). Let M be an 8-dimensional compact, oriented, smooth
manifold with boundary ∂M contained in some open connected subset Ω ⊂ R8.
If the function f : Ω→ O is left monogenic, then for each x ∈M

f(x) =
1

ω8

∫
∂M

x− y
|x− y|8

(n(y)f(y)) dS(y),

where ω8 is the volume of the sphere S7, n is the outward pointing unit normal
on ∂M , and dS is the scalar surface element on the boundary.

Using this theorem, similarly than in the quaternionic analysis case,
we may prove many function theoretic results, for example the mean value
theorem, maximum modulus theorem, and Weierstrass type approximation
theorems, see [7].

3.2. Equivalent Systems for Monogenic Functions

In this paper our aim is to gain a better understanding of the monogenic
functions in the octonionic analysis. In this subsection we consider equivalent
real, complex, and quaternionic formulations of the equation ∂xf = 0. The
idea is that by separating the variables we obtain equivalent systems, which
allow us to avoid problems caused by non-associativity of the octonions. These
systems are motivated by the use of the subalgebras in the Cayley-Dickson
process.
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3.2.1. A Real Decomposition. We start from the most trivial case, which is
already well known (see [4]). We observe that the octonion algebra may be
represented as a direct sum of 1-dimensional real subspaces

O =

7⊕
j=0

ejR.

Now we can separate the variables and also split the target space and the
Cauchy-Riemann operator due to this decomposition: we write the variables,
the functions, and the Cauchy-Riemann operator in the form

x =

7∑
j=0

xjej , f =

7∑
j=0

fjej , ∂x =

7∑
j=0

ej∂xj
.

A straightforward computation yields that f is left monogenic if and only if
its component functions f0, f1, ..., f7 satisfy the 8× 8 real partial differential
equation system

∂x0f0 − ∂x1f1 − . . .− ∂x7f7 = 0,

∂x0f1 + ∂x1f0 + ∂x2f3 − ∂x3f2 + ∂x4f5 − ∂x5f4 − ∂x6f7 + ∂x7f6 = 0,

∂x0
f2 + ∂x2

f0 − ∂x1
f3 + ∂x3

f1 + ∂x4
f6 − ∂x6

f4 + ∂x5
f7 − ∂x7

f5 = 0,

∂x0
f3 + ∂x3

f0 + ∂x1
f2 − ∂x2

f1 + ∂x4
f7 − ∂x7

f4 − ∂x5
f6 + ∂x6

f5 = 0,

∂x0
f4 + ∂x4

f0 − ∂x1
f5 + ∂x5

f1 − ∂x2
f6 + ∂x6

f2 − ∂x3
f7 + ∂x7

f3 = 0,

∂x0f5 + ∂x5f0 + ∂x1f4 − ∂x4f1 − ∂x2f7 + ∂x7f2 + ∂x3f6 − ∂x6f3 = 0,

∂x0f6 + ∂x6f0 + ∂x1f7 − ∂x7f1 + ∂x2f4 − ∂x4f2 − ∂x3f5 + ∂x5f3 = 0,

∂x0
f7 + ∂x7

f0 − ∂x1
f6 + ∂x6

f1 + ∂x2
f5 − ∂x5

f2 + ∂x3
f4 − ∂x4

f3 = 0.

This explicit characterization of monogenic functions by the real partial dif-
ferential equation system has its advantages. For example, in [2] the system
is used to study monogenic functions using computer algebra.

Example. Let h : Ω → R be a harmonic function on an open set Ω ⊂ R8.
Then we may construct a solution f by setting

f0 = ∂x0
h, fj = −∂xj

h, j = 1, ..., 7.

Remark 3.6. The 8×8 system above is different to the classical Riesz system
of Stein and Weiss can be expressed

∂x0
f0 − ∂x1

f1 − . . .− ∂x7
f7 = 0,

∂x0
fi + ∂xi

f0 = 0, i = 1, . . . , 7,

∂xi
fj − ∂xj

fi = 0, i, j = 1, . . . , 7, i 6= j,

see [15]. We discuss the connection between these systems in more detail in
[6] and deduce that solutions of the Riesz system are equivalent with both
sided monogenic functions.
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3.2.2. A Complex Decomposition. The preceding subsection motivates us to
proceed further using similar techniques. Now we observe that the octonions
may be express as a direct sum of complex numbers

O = C⊕ Ce2 ⊕ (C⊕ Ce2)e4,

where a basis of C is {1, e1}. We may write an octonion with respect to this
decomposition as

x = z1 + z2e2 + (z3 + z4e2)e4,

where we denote
z1 = x0 + x1e1, z2 = x2 + x3e1,

z3 = x4 + x5e1, z4 = x6 + x7e1.

Similarly we express a function f as a sum of complex valued functions fj =
fj(z1, z2, z3, z4) in the form

f = f1 + f2e2 + (f3 + f4e2)e4. (3.4)

If we define complex Cauchy-Riemann operators as

∂z1 = ∂x0
+ e1∂x1

, ∂z2 = ∂x2
+ e1∂x3

,

∂z3 = ∂x4 + e1∂x5 , ∂z4 = ∂x6 + e1∂x7 ,

we may split the Cauchy-Riemann operator as

∂x = ∂z1 + ∂z2e2 + (∂z3 + ∂z4e2)e4.

Again, after straightforward computations, one have that ∂xf = 0 is equiva-
lent to the complex 4× 4 equation system

∂z1f1 − ∂z2f2 − ∂z3f3 − ∂z4
f4 = 0,

∂z1f2 + ∂z2f1 + ∂z3
f4 − ∂z4f3 = 0,

∂z1f3 − ∂z2
f4 + ∂z3f1 + ∂z4f2 = 0,

∂z1
f4 + ∂z2f3 − ∂z3f2 + ∂z4f1 = 0.

Similarly than in the case of real decomposition, one may construct solutions
to this system using complex harmonic functions. One can also prove that the
component functions are harmonic in the sense of several complex variables.
We leave the details for the reader. We do not discuss this decomposition
detailed here, but our aim is to study it more in future.

3.3. Quaternionic Cauchy-Riemann Equations

In this section we extend our procedure to the next level. We express the
octonion algebra as a direct sum

O = H⊕He4
of quaternions. This decomposition corresponds to the quaternionic forms
of octonions. Every function f : Ω ⊂ O → O can be written in the form
f = g + he4, where g and h are quaternionic valued. If we also write the
variable in the quaternionic form x = u+ve4, we observe that g, h : H×H→ H
are functions of two quaternionic variables. Similarly we split

∂x = ∂u + ∂ve4,



Cauchy-Riemann Operators in Octonionic Analysis 11

where ∂u and ∂v are quaternionic Cauchy-Riemann operators. The rules of
e4-calculus in Lemma 2.9 give us immediately:

Lemma 3.7. Suppose that the components of f : Ω ⊂ H → H have partial
derivatives, and let ∂u = ∂u0

+ e1∂u1
+ e2∂u2

+ e3∂u3
be the quaternionic

Cauchy-Riemann operator. Then we have

(a) ∂u(fe4) = (f∂u)e4,
(b) (∂ue4)f = (∂uf)e4,
(c) (∂ue4)(fe4) = −f∂u,
(d) (fe4)∂u = (f∂u)e4,
(e) f(∂ue4) = (∂uf)e4,
(f) (fe4)(∂ue4) = −∂uf .

Using these rules, we obtain the following equivalent systems:

Proposition 3.8 (Quaternionic Cauchy-Riemann systems). Assume that the
components of f : Ω ⊂ H × H → O have partial derivatives, and write f in
the quaternionic form f = g + he4, where g, h : Ω ⊂ H×H→ H. Then

(a) ∂xf = 0 if and only if {
∂ug = h∂v,

h∂u = −∂vg.
(3.5)

(b) f∂x = 0 if and only if {
g∂u = ∂vh,

h∂u = −∂vg.
(3.6)

Proof. Let f = g + he4 and ∂x = ∂u + ∂ve4. Then we have

∂xf = (∂u + ∂ve4)(g + he4)

= ∂ug + ∂u(he4) + (∂ve4)g + (∂ve4)(he4)

= ∂ug + (h∂u)e4 + (∂vg)e4 − h∂v,
which gives us (a). Computations for (b) are similar. �

As a special case:

Corollary 3.9. (a) If g = h = 0, then ∂xf = 0 if and only if{
∂ug0 = ∂vh0,

∂uh0 = −∂vg0.

(b) If g0 = h0 = 0, then ∂xf = 0 if and only if{
∂ug = −h∂v,
h∂u = ∂vg.

Proposition 3.4 implies:

Proposition 3.10. If g and h : Ω ⊂ H × H → H satisfy Cauchy-Riemann
system (3.5) or (3.6), then g and h are harmonic.
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In this point of view, octonionic analysis is actually two variable quater-
nionic analysis and there is a natural biaxial behaviour. Since O is an alter-
nating algebra, i.e., x(yx) = (xy)x, we may also define inframonogenic func-
tions as in the classical case (see [10]) as functions which satisfy the system
∂xf∂x = 0. For inframonogenic functions we obtain the following equivalent
decomposition.

Proposition 3.11. A function f = g + he4 ∈ C2(O,O) is inframonogenic if
and only if

∆vg − ∂ug∂u + h∂v∂u + ∂vh∂u = 0,

∆uh+ ∂vg∂u + ∂v∂ug − ∂vh∂v = 0.

Proof. As above,

∂xf = q1 + q2e4,

where q1 = ∂ug − h∂v and q2 = ∂vg + h∂u. Using the differentiation rules of
Lemma 3.7 we compute

∂xf∂x = (q1 + q2e4)(∂u + ∂ve4)

= q1∂u + (q2e4)∂u + q1(∂ve4) + (q2e4)(∂ve4)

= q1∂u + (q2∂u)e4 + (∂vq1)e4 − ∂vq2
= ∂ug∂u − h∂v∂u −∆vg − ∂vh∂u

+ (∂vg∂u + ∆uh+ ∂v∂ug − ∂vh∂v)e4. �

3.4. Real Biaxially Radial Solutions – a Connection to Holomorphic Func-
tions

In this last subsection we present the following example. Let us consider real
valued functions g and h : O → R which are axially symmetric (invariant
under the action of the spingroup) in the following sense: for all q ∈ S3

g(u0, u, v0, v) = g(u0, quq, v0, qvq). (3.7)

Then the functions g and h depend only on u0, v0, a = |u|2, b = |v|2 and
c = 〈u, v〉, see [14, Section 4]. Using the definition of the Dirac operator (3.2)
and the Chain rule we get

∂ug = 2u∂ag + v∂cg, ∂vg = 2v∂bg + u∂cg. (3.8)

By Corollary 3.9 (a) the function f = g+ he4 is monogenic if g and h satisfy
the system {

∂ug = ∂vh,

∂uh = −∂vg.
(3.9)
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Substituting (3.8) and similar equations for h into (3.9), we obtain the system

2∂ag − ∂ch = 0,

∂cg − 2∂bh = 0,

2∂ah+ ∂cg = 0,

∂ch+ 2∂bg = 0,

∂u0
g − ∂v0h = 0,

∂u0
h+ ∂v0g = 0.

(3.10)

The first four equations of (3.10) give us{
∂ag + ∂bg = 0,

∂ah+ ∂bh = 0.
(3.11)

Let us consider solutions of (3.11) of the form

g = G(u0, v0, a− b, c) and h = H(u0, v0, a− b, c). (3.12)

The first four equations of (3.10) yield{
2∂dG− ∂cH = 0,

2∂dH + ∂cG = 0,
(3.13)

where d = a− b. Let us look for a solution of the form H = edp(c, u0, v0) and
G = edq(c, u0, v0). The system (3.13) then reads{

2q − ∂cp = 0,

2p+ ∂cq = 0.
(3.14)

This system has a solution{
p(c, u0, v0) = −α(u0, v0) cos(2c) + β(u0, v0) sin(2c),

q(c, u0, v0) = α(u0, v0) sin(2c) + β(u0, v0) cos(2c),
(3.15)

i.e., {
g = α(u0, v0)ed sin(2c) + β(u0, v0)ed cos(2c),

h = −α(u0, v0)ed cos(2c) + β(u0, v0)ed sin(2c).
(3.16)

Substituting these into the last two equations of (3.10) we obtain{
∂u0

α = ∂v0β,

∂v0α = −∂u0
β.

(3.17)

This is the Cauchy-Riemann system. Hence, any holomorphic function α+ iβ
gives us a monogenic function f : H×H→ O,

f(u0 + u+ (v0 + v)e4) =

e|u|
2−|v|2

(
α(u0, v0) sin(2〈u, v〉) + β(u0, v0) cos(2〈u, v〉)

+
(
− α(u0, v0) cos(2〈u, v〉) + β(u0, v0) sin(2〈u, v〉

)
e4

)
.
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This method allows us to construct biaxially rotation invariant monogenic
functions. In the above example the function takes values in C, generated
by {1, e4}. An interesting problem in the future is to find general biaxially
rotation invariant functions. That kind of explicit functions would help us to
better understand monogenic functions in octonionic analysis.
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