
TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 1

PRUNE: Dynamic and Decidable Dataflow for
Signal Processing on Heterogeneous Platforms

Jani Boutellier, Member, IEEE, Jiahao Wu, Member, IEEE, Heikki Huttunen, Member, IEEE, Shuvra S.
Bhattacharyya, Fellow, IEEE

Abstract—The majority of contemporary mobile devices and
personal computers are based on heterogeneous computing plat-
forms that consist of a number of CPU cores and one or more
Graphics Processing Units (GPUs). Despite the high volume of
these devices, there are few existing programming frameworks
that target full and simultaneous utilization of all CPU and GPU
devices of the platform.

This article presents a dataflow-flavored Model of Computa-
tion (MoC) that has been developed for deploying signal pro-
cessing applications to heterogeneous platforms. The presented
MoC is dynamic and allows describing applications with data
dependent run-time behavior. On top of the MoC, formal design
rules are presented that enable application descriptions to be
simultaneously dynamic and decidable. Decidability guarantees
compile-time application analyzability for deadlock freedom and
bounded memory.

The presented MoC and the design rules are realized in a
novel Open Source programming environment “PRUNE” and
demonstrated with representative application examples from the
domains of image processing, computer vision and wireless
communications. Experimental results show that the proposed
approach outperforms the state-of-the-art in analyzability, flexi-
bility and performance.

Index Terms—Dataflow computing, design automation, signal
processing, parallel processing

I. INTRODUCTION

ADVANCES in signal processing have enabled new tech-
nologies that greatly affect our everyday lives. Progress

in wireless communications, video coding, and recently, com-
puter vision, has provided us previously impossible applica-
tions. However, simultaneously, the signal processing behind
MIMO radios, H.265 video coding and Convolutional Neural
Networks has reached considerable computational complex-
ity, even though these applications are often executed on
performance-constrained mobile devices.

Enabling real-time performance for such signal processing
algorithms often means resorting to computation acceleration
by fixed-function ASICs (Application Specific Integrated Cir-
cuit) or by programmable accelerators such as GPUs. How-
ever, due to strict design time requirements of the industry,

J. Boutellier is with the Laboratory of Pervasive Computing, Tampere
University of Technology, Finland, e-mail: jani.boutellier@tut.fi.

J. Wu is with the Department of Electrical and Computer Engineering,
University of Maryland, USA, e-mail: jiahao@terpmail.umd.edu.

H. Huttunen is with the Laboratory of Signal Processing, Tampere Univer-
sity of Technology, Finland, e-mail: heikki.huttunen@tut.fi.

S. S. Bhattacharyya is with the Department of Electrical and Computer
Engineering, University of Maryland, USA, and the Laboratory of Pervasive
Computing, Tampere University of Technology, Finland, email: ssb@umd.edu.

Manuscript received —– xx, 2017; revised —– xx, 2017.

programmable accelerators are becoming increasingly popular
compared to ASICs.

The efficiency of programmable computation accelerators
is based on the fact that their architectures have been tuned
to accelerate specific classes of algorithms. Unfortunately,
this means that accelerators are only suitable for executing
certain parts of application code, leaving the rest of the
execution burden to the general purpose CPU cores of the
computation platform. Hence, both general purpose CPU cores
and accelerators have a significant role in the total application
performance. To this extent, tapping the full performance
potential of a heterogeneous computing platform requires a
programming approach that can efficiently and simultaneously
use all available CPU cores and accelerators.

The mainstream approach for programming the most pop-
ular compute accelerators of today, GPUs, involves the C-
like languages CUDA from NVidia and OpenCL by Khronos.
Whereas the former is intended for offloading computations
to NVidia GPU devices, the latter provides a common Appli-
cation Programming Interface (API) for both CPU cores and
GPUs. Unfortunately, the OpenCL API operates on a low level
and requires the programmer to take care of synchronization
and memory transfers between devices, which is tedious and
requires specialized expertise.

As it has been observed in many previous works [1], [2],
[3], [4], dataflow Models of Computation provide a remarkably
suitable abstraction for signal processing algorithms. Previous
work [5] has also shown that programming frameworks based
on the dataflow abstraction allow the application programmer
to concentrate on developing the application, as concurrency
and memory related low-level tasks are managed by the
dataflow abstraction and by the programming framework.

This article describes a dataflow-flavored Model of Compu-
tation that

• captures the functionality of data dependent signal pro-
cessing algorithms,

• enables design time analysis for deadlock freedom and
bounded memory use (decidability) through formal de-
sign rules, and

• provides a basis for efficient concurrent computation on
heterogeneous platforms.

The MoC presented in this article has been published [6]
recently, and in this article the MoC is complemented with
design rules that enable decidability analysis.

Based on the MoC, the article describes a novel Linux-



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 2

based Open Source1 programming framework PRUNE (PSM
Runtime Environment) targeted for high-performance signal
processing applications. PRUNE

1) implements application consistency analysis,
2) provides an efficient runtime memory- and concurrency

management framework for heterogeneous platforms,
3) presents a compile-time translator that allows importing

programs from previous similar run-time frameworks.
Out of these, items 1) and 3) are novel compared to [6].

To the best knowledge of the authors, the PRUNE dataflow
framework is the first to simultaneously provide a) flexibil-
ity for describing signal processing applications with data-
dependent token rates, b) a decidable Model of Computation,
and c) experimental results that demonstrate high performance.

II. BACKGROUND

In the dataflow abstraction [7], an application is described
as a graph that consists of actors (nodes) and communication
channels (edges). Actors perform computations on data that is
quantized into tokens. Actors acquire tokens from their input
ports and produce computation results to their output ports.
Token communication between actors is handled by order-
preserving FIFO (First-In-First-Out) channels that are attached
to actor ports. A dataflow actor performs a computation by
firing, which can include consuming tokens from input ports,
and producing tokens to the actor output ports. A central
feature of the dataflow abstraction is that computations are
triggered by the availability of data, in contrast to, for example,
time-triggered abstractions [8].

In the literature, a wide variety of dataflow Models of
Computation (MoC) has been presented. One of the most
important factors that differentiates a dataflow MoC from
another concerns the token communication rates (dataflow
rates) — that is, the rates at which an actor reads from or
writes to the channels that are connected to it. In this sense,
the most restricted dataflow MoC is homogeneous synchronous
dataflow (HSDF) [7], where for each actor the token rate of
each input port and each output port must be exactly one.
Synchronous dataflow (SDF) [7] is more expressive as it allows
token rates larger than one, as is cyclo-static dataflow (CSDF)
[2], which goes beyond SDF by allowing tokens rates to vary
in repetitive cycles.

The aforementioned MoCs (HSDF, SDF, CSDF) are re-
stricted in the sense that they disallow data dependent changes
to the token rates, which is a required feature as, for example,
video decoders [9] and Software Defined Radio applications
[10] introduce behavior that cannot be captured by static token
rates. To achieve this, dynamic dataflow MoCs are required.
Examples of dynamic dataflow MoCs are Boolean dataflow
(BDF) [11], enable-invoke dataflow (EIDF) [1] and dataflow
process networks (DPN) [4]. Dynamic dataflow MoCs allow
port token rates to change based on values of input tokens.
Some formulations [12], [13] also allow interpreting Kahn
process networks (KPN) [14] as a kind of a dynamic dataflow
MoC.

1https://gitlab.com/jboutell/Prune

The BDF MoC is related in some ways to that of PRUNE,
however PRUNE and its design rules impose some additional
restrictions that make it more analyzable than BDF. For
example, PRUNE requires that (descriptions of SWITCH and
SELECT can be found in [11])

1) each SWITCH type actor needs to have a corresponding
SELECT actor, unlike BDF;

2) data streams that control a pair of SWITCH and SE-
LECT actors need to be identical, which is not the case
in BDF;

3) the input token rate and output token rate on each end
of a FIFO need to be identical.

These three differences are related to minimal examples pre-
sented in [11] that break either the strong consistency or
bounded memory assumptions in BDF and preclude decidabil-
ity.

A. Analyzability of Dynamic Dataflow MoCs
The disadvantage of dynamic dataflow MoCs is their limited

analyzability. A promising approach to provide analyzability
and structure to dynamic behavior is parameterization, which
restricts the allowed dynamic application behavior to a certain
extent. An example of a well-known MoC belonging to this
class is Parameterized Synchronous Dataflow (PSDF) [15].

Parameterization, however, does not imply any guarantee
on decidability, which means compile-time application an-
alyzability for deadlock freedom and bounded memory. A
dataflow MoC that is both decidable and dynamic is Scenario
Aware Dataflow (SADF) [16], where each operation mode
(scenario) of an application is expressed as a separate SDF
graph. Unfortunately, in some situations, such as when there
is an arbitrary sample rate change in a signal processing
application, the use of the SADF model yields an unwieldy
number of scenarios. Parameterized sets of modes (PSMs) [17]
is a modeling approach that addresses this shortcoming via
mode sets that enable compact management of changes both in
dataflow graph topology and sample rates. Intuitively, a PSM
is a modeling abstraction that groups together a collection of
related operating modes, where one or more parameters are
used to select a unique mode from the collection at compile-
time or run time. For details on the PSM modeling approach,
we refer the reader to [17].

A different approach for providing decidability to dynamic
dataflow is presented by Gao et al. in well-behaved dataflow
(WBDF) [18]: the use of dynamic actors is restricted to
pre-defined actor patterns that have been shown to provide
decidability. Advantages of this approach are that it can be
adapted to various dataflow MoCs, and extended with new
patterns, as needed.

The PRUNE MoC presented in Section III is accompanied
with design rules (Section IV) in the spirit of WBDF, in order
to formulate necessary conditions for guaranteeing decidabil-
ity, while still maintaining support for dynamic application be-
havior. The PRUNE MoC also draws from the PSM concepts
for compact representation of token rate changes. PRUNE
applications undergo a consistency analysis at compile time
(Section V), and are executed under an efficient runtime
system (Section VI) that targets heterogeneous platforms.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 3

TABLE I: Comparison to related dataflow models and lan-
guages.

Work Decidable Dynamic High-performance
SADF [16] + + ?
BDF [11] - + ?
DAL [5] - +(-) +
RVC-CAL/Orcc [19] - + +
StreamIt [20] + - +
PRUNE + + +

B. Related Programming Frameworks
A number of programming frameworks that target hetero-

geneous platforms have emerged in the last several years. The
frameworks described in [21], [22] and [23] represent task-
based programming approaches, where tasks are spawned, ex-
ecuted and finished, and their interdependencies are expressed
as a directed acyclic graph. The proposed approach, in con-
trast, is based on actors that are created once at initialization
and run as independent entities, communicating with each
other until termination of the application.

Concerning actor based programming frameworks, a recent
article [20] presents a framework that enables deploying
applications written in the StreamIt language [3] to GPUs.
Compared to this work, the significant difference is that
the StreamIt language heeds the SDF MoC, which does not
allow run-time changes in token rates. The same token rate
restriction applies to two recent works [24], [25] that discuss
deployment of RVC-CAL dataflow programs to heterogeneous
architectures.

The DAL framework [26] is based on Kahn process net-
works and also has an extension [5] for targeting heteroge-
neous systems with OpenCL enabled devices. In terms of
OpenCL / GPU acceleration, this framework is limited to the
SDF MoC, which disallows dynamic token rates.

Representative previous works are compared to the proposed
PRUNE framework in Table I in terms of decidability, support
for dynamic token rates, and experimentally demonstrated high
performance on heterogeneous platforms.

III. PROPOSED MODEL OF COMPUTATION

A common feature in signal processing oriented MoCs is the
use of semantic restrictions that a) enhance the potential for ap-
plication analysis and optimization, while b) being compatible
with specialized classes of signal processing applications. The
PRUNE MoC has been designed for capturing the behavior
of high-performance signal processing applications that can
be viewed as having configurable-topology, symmetric-rate
dataflow behavior.

Here by symmetric-rate dataflow, we mean a restricted
form of SDF in which the token production rate is equal
to the consumption rate on every FIFO channel. However,
the PRUNE MoC is significantly more flexible than SDF
in that the connections between actors (graph topology)
can be changed at run-time. At the same time, the design
rules (Section IV) that are imposed on the construction of
PRUNE graphs ensure that important decidability properties
are maintained, including analyzability for bounded memory
and deadlock-free operation.

A. Connections of a PRUNE Graph

In the PRUNE MoC, an application is described as a graph
G = (A,F ), where A is a set of actors and F is a set of
FIFO communication channels that interconnect the actors.
Each actor a ∈ A may have zero or more input ports and
zero or more output ports. If an actor a has no input ports it
is called a source actor, and if it has no output ports it is called
a sink actor. If an actor a contains port p, we say that a is
the parent of p, denoted parent(p). When needed for clarity,
we denote with a superscript +/- the output/input direction of
a port, and with a subscript number/letter the index/parent of
a port. For example, p+a1 denotes output port #1 of actor a.

Each FIFO f ∈ F is connected to an output port p+ of
some actor parent(p+), and to an input port p− of some actor
parent(p−). The ports p+ and p− are referred to, respectively,
as the source port and sink port of f . We say that the ports
p− and p+ are connected when they are source and sink ports
of the same FIFO — that is, when fifo(p−) = fifo(p+).

A given output port p+ can be connected to multiple FIFOs.
However, each FIFO has a unique source port and sink port,
and each input port p− has a unique FIFO that connects to it.
When a source port p+ is connected to multiple FIFOs, and
parent(p+) writes a token through p+, the token is written
(i.e., broadcasted) into all of the FIFOs connected to p+.

Each port p has a type that is either a control input port
(“control port”), a static regular port (SRP) or a dynamic
regular port (DRP). SRPs have a single, fixed, positive token
consumption rate (for input ports), or token production rate
(for output ports). DRPs, in contrast, have two fixed token
rates that are referred to as the active token rate (atr ) of p, and
denoted as atr(p), and the inactive token rate (itr ), which is
always zero. The consumption rate of a control port is always
equal to unity.

A distinguishing aspect of the PRUNE MoC is that each
FIFO has a single, positive-integer token rate, denoted by
fiforate(f), that is associated with it. In conjunction with
this association of token rates with FIFOs, the PRUNE
MoC imposes the restriction for each port p, atr(p) =
fiforate(fifo(p)). In other words, it is a semantic error to have
a port that is connected to a FIFO if there is a mismatch
between the atr of the port and the token rate of the FIFO.

Similar to KPN [14], in the PRUNE MoC, blocking reads
and blocking writes are assumed for all actors. Under blocking
a read, the execution of an actor stalls if it has an input port
p such that the number of tokens in fifo(p) is less than the
number of tokens in fiforate(p). The same holds for output
FIFOs and their free token slots.

B. Types of Actors

Computations related to a PRUNE application are per-
formed in firings of actors. A firing φ of actor a consumes
tokens from the input ports (FIFOs) of a and produces tokens
to the output ports (FIFOs) of a. In the PRUNE MoC, each
actor has a type that is either static processing actor, dynamic
actor, or configuration actor. The allowed port types and their
associated firing behavior depend on the type of the actor.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 4

Actor xFIFO f [1]

FIFO f [1]

FIFO f [2]c
1

2

ଵି݌3

ଶି݌

ଷା݌

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 1: An illustration of a dynamic actor in the PRUNE MoC.

A dynamic actor x has at least one DRP, any number of
SRPs, and a unique control input port, denoted cport(x).
When dynamic actor x performs a firing φ, a control token
is consumed from cport(x). The control token sets the token
rate for each DRP p of x to atr(p) or itr(p) for the duration
of φ. By definition, the token rate of each SRP of x remains
at its fixed positive token rate regardless of the value of the
corresponding control token.

Fig. 1 depicts an example of a dynamic actor. This actor,
denoted x, is connected to three FIFO channels, f1, f2 and f3,
through its ports p−1 , p−2 and p+3 . FIFOs f1, f2 and f3 have
token rates of 1, 1, and 2 (shown in brackets), respectively.
The annotation of port p−1 with “c” indicates that this is the
control port of the dynamic actor. Port p−2 is a DRP, while p+3
is an SRP. Values of the tokens consumed from the control
port set the token rate of input port p−2 to either 0 or 1; in
other words, atr(p−2 ) = 1 and itr(p−2 ) = 0.

A configuration actor has one or more control output ports.
A control output port of a configuration actor must be an SRP,
have a token production rate of unity, and be connected to
the control input port of a dynamic actor. Thus, the control
tokens consumed by control input ports are always produced
by configuration actors: if p−x is a control input port of a
dynamic actor x = parent(p−x ), then there is a unique control
output port p+q of a configuration actor q = parent(p+q ) such
that p−x is connected to p+q . In addition to its one or more
control output ports, a configuration actor has zero or more
data ports of type SRP. A data port can be either an input
port or output port.

Finally, all ports of a static processing actor a are of the
type SRP and hence active during all firings of a. Thus, for
all firings φ of a static processing actor a, and all ports p of
a, tokrate(p, φ) = atr(p), where tokrate(p, φ) denotes the
token rate of a port p during a firing φ of parent(p).

C. Control and Firing of a Dynamic Actor

Since each control output port p+q of a configuration actor q
is required to connect to a control input port p−x of a dynamic
actor x, and in turn p−x sets the token rate of each DRP of x,
we say that the port p+q controls the DRPs of x. This control
relationship can be represented as part of a data structure called
the control table. The control table for a PRUNE graph or
subgraph G is a matrix whose rows are indexed by control
output ports, and columns are indexed by DRPs. The size of
the matrix is h×w, where h and w are the number of control
output ports and DRPs, respectively, in G. Fig. 2 provides an
example of a control table.

q

x

z

pq1

pq2

px1
px2

pz1
pz2
pz3

px1 px2 pz1 pz2 pz3 py1 py2 pv1 pv2 pv3
pq1 1 2 0 0 0 1 2 0 0 0
pq2 0 0 1 2 3 0 0 1 2 3

y

v

py1
py2

pv1
pv2
pv3

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 2: A PRUNE graph and its control table. Configuration
actor q controls the DRPs of dynamic actors x, y, z and v.

When a dynamic actor x fires, it first consumes a control
token from its control port. A control token in turn encapsu-
lates a control value v̄, which is a vector v̄[1], v̄[2], . . . , v̄[K]
of Boolean elements, and K is the number of DRPs in x. In
other words, there is one element in v̄ for each DRP of x (For
reasons of clarity, here K is assumed to equal the DRP count
of x. A more general formulation is presented in Section V).
A control value v̄ produced on a port j is related to the control
table in that each entry T [j][i] of the control table indicates
the element index in v̄ that is used to configure the DRP i.
For example, T [j][i] = 3 means that the third element of each
control token produced on port j is used to control DRP i. If
port j is not used to configure DRP i, then T [j][i] = 0.

Based on the control value of the consumed control token,
the token rate of each DRP p of x is fixed to either 0 or atr(p)
for the duration of the current firing φ. More specifically, the
token rate on DRP p for firing φ is determined by

tokrate(p, φ) = BTOI (v̄φ[p])× atr(p), (1)

where v̄φ denotes the control value consumed in firing φ, and
BTOI (Boolean to integer) represents a simple function that
maps Boolean values to integer values: that is, BTOI (false) =
0, and BTOI (true) = 1.

The computation associated with a given firing φ must ad-
here to the dynamically-adjusted dataflow constraints imposed
by Equation 1. Implementation of actor firing functions in
PRUNE is discussed in Section VI-A.

D. Token Delays

Each FIFO channel f ∈ F has a non-negative integer
delay associated with it, which specifies the number of initial
tokens that are placed in the channel at system setup time
(before the graph is executed). Such delays can be used, for
example, to implement the z−1 operator in signal processing
(e.g., see [27]). If p+ and p− are two ports that are connected
to a common FIFO f , then (with a minor abuse of notation)
we denote the delay associated with f by delay(p+, p−) or by
delay(f). It is of high importance to notice that the presence
of delays on FIFOs combined with PRUNE’s symmetric-rate
dataflow behavior can lead to unaligned FIFO accesses. This
is discussed in Section VI-B.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 5

IV. DESIGN RULES

Arbitrary connections of dynamic actors can lead to in-
consistent dataflow behavior [11]. Such inconsistencies can
lead to deadlock or unbounded accumulation of tokens within
FIFOs, which are problematic when a signal processing system
must operate on very large, possibly unbounded streams of
data [27].

PRUNE imposes a small set of concrete design rules to
ensure that dynamic activation of ports in a given graph is
performed in a manner that maintains matched patterns of
token production and consumption across each FIFO in a
PRUNE graph. Thus, tokens that need to be consumed are
ensured to have corresponding producers (producing actors),
and similarly, production of tokens is matched with a corre-
sponding “demand” to consume the produced data. The design
rules therefore ensure consistency in the dynamic dataflow
behavior of PRUNE graphs.

In the remainder of this section, we formulate the design
rules of PRUNE. The precise formulations provided here in
terms of fundamental dataflow and graph-theoretic concepts
allow the rules to be checked automatically within design
tools. Indeed, in our prototype analysis tool for PRUNE, which
we report on in Section V, the design rules are checked
automatically to aid the designer in iteratively refining a design
as needed until all design rules are satisfied.

As necessary background we first review some graph theo-
retic concepts in the context of PRUNE graphs. We say that
two PRUNE actors a and b are adjacent if there is a FIFO that
connects a port of a to a port of b. A chain in a PRUNE graph
is a non-empty sequence S = (a1, a2, . . . , aN ) of actors in the
graph such that for each i = 1, 2, . . . , (N−1), ai and ai+1 are
adjacent. We say that the chain S connects a1 and aN . The
chain S is a simple chain if all of the ai’s are distinct. Given
two actors x and y, an actor z /∈ {x, y} is said to connect
actors x and y if there is a chain S that connects x and y
such that S contains z.

Now suppose that px and py are distinct ports within two
actors x and y, respectively, of a PRUNE graph G. We say that
px and py are linked ports if (a) fifo(px) = fifo(py) or (b) there
is a simple chain (x, a1, a2, . . . , aN , y) of actors, where px is
connected to a port of a1, and py is connected to a port of aN .
The sequence of ais in (b) is referred to a connecting subchain
associated with the linked ports {px, py}. Note that for the
same linked ports {px, py}, there can be multiple connecting
subchains. If px and py are linked ports, and they are both
DRPs, then we say that they are linked DRPs.

The first design rule, called the linked port control rule, is
that for each pair {px, py} of linked DRPs, the ports must be
controlled by the same control output port pq , and by the same
element of the associated control token — that is, T [pq][px] =
T [pq][py] > 0.

The second design rule, called the balanced delay
rule, states that if a control output port pq controls
DRPs cport(x) and cport(y), then delay(pq, cport(x)) =
delay(pq, cport(y)). In other words, the control input ports
of x and y must be connected to pq with the same delay.

The third design rule, called the connecting subchain
rule, states that if x and y are dynamic actors, {px, py} are

(e) Encapsulation rule.

(a) Linked port control rule.

(b) Balanced delay rule.

(c) Connecting subchain rule.

x ya1 aN. . .

q

a2

px py
pq 1 1

a1 aN. . .a2

c

௫ଶି݌

௫ଵି݌

௫ଷା݌

(d) Single-sided dynamism rule.

x ya1 aN. . .a2

b
௫݌ ௬݌

x ௫݌ y݌௬

q ௤݌

x ya1 aN. . .a2݌௫ ௬݌

z ௭݌

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 3: An illustration of design rules in PRUNE.

linked DRPs with parent(px) = x and parent(py) = y,
S = (a1, a2, . . . , aN ) is a connecting subchain associated with
{px, py}, then (1) actor ai ∈ S must be a static processing
actor, and (2) each connecting subchain, to which actor ai ∈ S
belongs, must be associated with the two dynamic actors x and
y.

The fourth design rule, called the single-sided dynamism
rule, states that a dynamic actor may only have dynamic input
ports, or dynamic output ports, but not both.

The fifth design rule, called the encapsulation rule, states
that if x and y are dynamic actors, {px, py} are linked
DRPs with parent(px) = x and parent(py) = y, S =
(a1, a2, . . . , aN ) is a connecting subchain associated with
{px, py}, and b /∈ S is an actor that connects to an actor
ai ∈ S through an SRP of b, then b must belong to a chain
that connects x and y.

Fig. 3 provides illustrations of the five design rules in
PRUNE. The control table shown in the lower part of Fig. 3(a)
represents relationships between the control output port pq
and two DRPs — DRP px of actor x, and DRP py of
actor y. The control table shows that since DRPs px and
py are controlled by the same control output port pq and
the same element of the associated control token, the linked
port control rule is satisfied. Fig. 3(b) shows a graph that
satisfies the balanced delay rule, whereas Fig. 3(c) shows an
example that violates the connecting subchain rule: actor a2
of the connecting subchain (a1, a2, . . . , aN ) associated with



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 6

the dynamic actors x and y also belongs to another connecting
subchain, associated with dynamic actors z and y. In Fig. 3(d),
the dynamic actor x violates the single-sided dynamism rule,
as it contains both input and output DRPs. Finally, Fig. 3(e)
depicts a violation of the encapsulation rule. Here, actor a2
belongs to a chain that connects dynamic actors x and y.
Actor a2 is adjacent to actor b, but b is not part of a chain
that connects x and y.

V. COMPILE TIME GRAPH ANALYSIS

The aim of the proposed design rules is to ensure that
deadlock freedom and bounded memory analysis of a PRUNE
graph can be completed in finite time, i.e. these problems
remain decidable. This section establishes this decidability
result for the PRUNE model of computation.

The design rules require that DRPs and their dynamic actor
parents x and y always appear in pairs and both of these are
controlled by the same configuration actor q. Therefore, in
a PRUNE graph G we can identify zero or more dynamic
processing graphs (DPGs) that each consist of a) one config-
uration actor q, b) exactly two dynamic actors, x and y, and
c) any number of chains that connect x and y. These chains
form the dynamic components (DCs) of the DPG. Given a
DPG D, the set of DCs of D is denoted Zc(D), and the pair
of dynamic actors contained in D is denoted δ(D).

Consider a DPG that contains dynamic actor x with K
output DRPs pxi (i = 1, 2, . . . ,K), and dynamic actor y
with L input DRPs pyj (j = 1, 2, . . . , L), {x, y} = δ(D);
we require that each pxi is a linked DRP with at least one
of pyj . Our procedure for finding the DCs Zc(D) associated
with a given DPG D can be expressed as follows:

1. For each linked DRP {pxi, pyj}, where fifo(pxi) =
fifo(pyi), insert a dummy actor d such that fifo(pxi) =
fifo(p−d ) and fifo(p+d ) = fifo(pyj).

2. Remove q, x, y, and all FIFOs fifo(pq), fifo(px) and
fifo(py) in the DPG. This removal procedure decomposes
the DPG into a set of connected components that form
the DCs. Thus, Zc(D) = {Z1, Z2, . . . , ZM}, where M ∈
[1,min(K,L)] is an integer constant.

As an example, consider the DPG in Fig. 4 that consists of
the configuration actor q, the pair of dynamic actors δ(D) =
{x, y}, and actors a1 through a4. It can be seen that the linked
DRPs of this DPG are {px1, py1}, {px2, py1}, {px3, py2}, and
{px4, py3}.

The linked port-pair {px3, py2} is connected over a one-
actor chain of S = (a4), whereas the ports {px4, py3} are
linked directly, i.e., fifo(px4) = fifo(py3). Here, the DC
analysis procedure inserts the dummy actor d. Finally, for
{px1, py1} and {px2, py1}, the adjacent actors a1, a2, and a3
form one DC. Hence, in this example, the DPG consists of
three DCs Zc(D) = {Z1, Z2, Z3}, where Z1 = {a1, a2, a3},
Z2 = {a4}, and Z3 = {d}. The dummy actor d exists only
for the duration of the graph analysis and is not carried to the
final implementation.

For a DPG to be valid, we require that a) each DC in Zc(D)
is connected to at least one DRP of x and to at least one
DRP of y ({x, y} = δ(D)), and b) there must be exactly one

x y

a1

q

a2

a3

a4

px1
px2

px3
px4

py1

py2

py3d

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 4: PRUNE compile time analysis example for one DPG.
Connections to the complete PRUNE graph G are not shown.

Boolean element in v̄ for each DC in Zc(D). Thus, the number
of elements in v̄ must equal M .

Expressed through binary relations of sets, the relation
between DCs of Zc(D) and the elements of v̄ is required to
be a bijection. In contrast, the relation drps(x)→ Zc(D) (and
drps(y)→ Zc(D)) is surjective, but not necessarily injective.
Here, the set of all DRPs of x is denoted as drps(x). In
other words, the DRPs associated with a specific Zk must
all simultaneously be configured with their respective atrs, or
they all must be configured with their itrs.

Consequently, in a valid DPG D, each control token (which
encapsulates v̄) produced by q sets each DRP px of x and each
DRP py of y either to its atr or its itr , where {x, y} = δ(D).
A control token effectively sets each DC in Zc(D) as active
or inactive. In this context, we say that the DC Zk ∈ Zc(D)
is active if it will be provided with tokens through DRPs of
x, and the actors within Zk will consequently fire producing
tokens that are consumed by actor y. Inactiveness of Zk, in
contrast, means that DRPs of x will not provide tokens to Zk,
and consequently no actor in Zk will fire, and actor y does
not demand tokens from Zk.

Returning to Fig. 4: due to Design Rules 1 and 2, for a
valid DPG, for example the linked DRP pairs {px1, py1} and
{px2, py1} are all simultaneously set either to their atr or to
their itr ; a deadlock would follow if any of the three ports
would be set to its itr , while the other would be set to its atr
(and vice-versa).

Above, the necessary background information has been
given for our discussion on the decidability of PRUNE graphs.
As the design rules of Section IV restrict dynamic actors to
exist within DPGs, actors outside DPGs have fixed data rates
and have dataflow relationships with DPGs that are simple, and
can readily be validated using standard SDF techniques. Thus,
in the remainder of this section, the decidability discussion
concentrates on DPGs.

In general, a PRUNE graph G may contain multiple DPGs.
However, our design rules require the DPGs of G to be
independent of each other. Since the number of distinct DPGs
is finite, our proof of decidability can be reduced to proving
that consistency analysis for a single DPGs is decidable.

Definition 1 (Consistency). A PRUNE graph is consistent
if it can be scheduled with guarantees of bounded memory
requirements and deadlock-free operation, regardless of what
inputs are applied.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 7

Theorem V.1. The consistency analysis of a PRUNE graph is
decidable.

Proof. Let Zc(D) = Z1, Z2, . . . , ZM be the set of DCs of
DPG D. Since Design Rule 3 requires that all actors in
DCs are static processing actors, there is a finite number of
different SDF graphs Z1, Z2, . . . , ZM that can be active during
execution of the DPG D.

Since each Zk, k ∈ [1,M ] is an SDF graph, it is decidable to
determine whether or not the graph is consistent [7]. If any of
the Zk’s is not consistent, then deadlock-freedom and bounded
memory scheduling for the DPG D cannot be guaranteed, and
therefore D is inconsistent. On the other hand, if all Zk’s are
consistent, then there exists a valid, periodic schedule P (Zk)
for each Zk [7]. P (Zk) provides a schedule for actors(Zk),
where actors(X) represents the set of actors that are contained
in a given DC X .

For each FIFO f connected to an actor a ∈ actors(Zk),
there is a buffer bound Bk(f) which gives the maximum
number of tokens on f during an execution of P (Zk). The
existence of this buffer bound follows from the properties of
consistent SDF graphs [7]. There is then a finite maximum
β(f) = max(Bk(f) | Zk ∈ Zc(D)).

Any execution of the DPG D can be carried out by a
sequence of schedules Ω = (O1, O2, . . .) where for each Ok,
there is an Hk ∈ Zc(D) such that Ok = P (Hk). Hk can
be viewed as the kth active graph during execution of the
enclosing DPG.

Since each Zk is assumed to be consistent and have a
valid, periodic schedule P (Zk), Ok produces no net change
in the token populations of the buffers between actors(Zk),
and consequently, the number of tokens on a FIFO f during
an execution of Ok is bounded by Bk(f). It follows that the
number of tokens on f during execution of Ω is bounded by
β(f).

In summary, the consistency of the DPG D can be deter-
mined by analyzing the consistency of the elements of Zc(D).
Since the elements of Zc(D) can be analyzed in finite time
(due to the decidability of SDF and the fact that Zc(D) has
finite cardinality), it follows that consistency analysis for DPG
D is decidable.

The design rules presented in Section IV and the analysis
presented in this section allow construction and verification of
DPGs within a PRUNE application graph G. A DPG can be
seen as a generalization of the conditional schema of [18] in
terms of the number and topology of conditional branches, and
the fact that the branches are not mutually exclusive. Following
the same logic, it is possible to formulate useful design rules
for other kinds of dynamic constructs on top of the PRUNE
MoC, which is a useful direction for future work.

VI. THE PRUNE FRAMEWORK

The previously described design rules and compile time
graph analysis have been implemented to the PRUNE compiler
and analyzer as shown in Fig. 5. The PRUNE compiler takes
three types of input files: the application graph, the platform
graph, and the actor-to-platform mapping.

Actors
•C functions
•OpenCL kernels

C compiler

Actor-to-platform
mapping
•XML file

PRUNE runtime
•C library

CPU coresGPU

GPU drivers

Threading library

OpenCL
compiler

Operating system

Platform graph
•XML file

PRUNE compiler and analyzer

Main program
•C function

Application graph
•XML file

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 5: Overview of the PRUNE framework.

The formats of the application graph and the platform graph
have directly been adopted from the DAL framework [26],
but some extensions have been introduced to provide support
for execution of dynamic actors on GPUs, multi-dimensional
OpenCL workloads and static data for OpenCL actors.

The PRUNE compiler and analyzer transforms the XML
input files into an internal representation, which is suitable
for performing graph analysis and verification. If the sanity
checks and the compile-time analysis (Section V) for the input
files pass, the compiler outputs the main program file of the
application, which takes care of initializing and terminating
OpenCL device access, memory allocations, actors and FIFOs.

After the PRUNE compiler and analyzer has successfully
produced the main C file of the application, the application is
ready to be compiled with the target platform specific C and
OpenCL compilers.

Besides the main C file, this compilation step requires
the functional description of each actor. The PRUNE actor
API (application programming interface) closely follows the
DAL API except for GPU-mapped actors that are described
in OpenCL (in DAL a small translator converts appropriately
formatted C actors to their OpenCL equivalents). The PRUNE
actor API essentially provides functions for inter-actor com-
munication, such as fifoWriteStart, fifoWriteEnd,
etc.

Finally, compilation with the target-specific C compiler
requires the PRUNE run-time library, which contains applica-
tion independent actor wrappers, FIFO implementations and
OpenCL support. The following detailed description of the
PRUNE runtime framework contains some extension com-
pared to our preliminary work [6], where it was first presented.
For example, Equation 2 has been generalized to support token
delays > 1.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 8

D W W W W 

R R R R 

R R R R 

R R R R 

W W W W 

W W W W 

D W W W W 

W W W W R R R R 

Iteration 

N 

N+1 

N+2 

N+3 

... 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Buffer slot index (as tokens) 

Fig. 6: FIFO channel token access pattern in the case of one
delay token for token rate 4 and C = 3.

A. Description of Actors

In the PRUNE runtime framework the description of each
actor consists of the mandatory fire function, and optional
init, control, and finish functions. The fire function describes
the actor’s behavior upon firing and comprises the reading
of SRP and DRP input ports, computation and writing to
SRP and DRP output ports. The optional init and finish
functions are only executed once on application initialization
and termination, and are mainly useful for source and sink
actors to start and end interfacing with I/O. The control
function is only required for dynamic actors and is executed
once for each firing of the actor, right before invoking the fire
function. The control function is responsible for reading the
control input port and setting the token rates of DRPs.

This formulation, where actors consist of init, fire, and finish
functions is identical to the DAL [26] framework. However,
the control function, especially required for enabling dynamic
data rate actors on OpenCL / GPU devices, is specific to
PRUNE. The control function takes one control token as input
and sets the token rate (to itr(p) or atr(p) as defined in
Section III) of each DRP for the duration of one firing.

B. Communication Channels

A communication channel in the proposed framework con-
nects an output port of an actor to an input port of another
actor, heeding FIFO behavior. In contrast to other (e.g. [26])
programming frameworks, the capacity Γf of a communica-
tion channel f cannot be arbitrarily chosen by the programmer,
but is exactly specified as

Γf =

{
B ∗ (r ∗ C +Q), Q not an integer multiple of r
B ∗max(r ∗ C,Q), otherwise,

(2)
where r = fiforate(f), B is the size (e.g. in bytes) of one
token of FIFO f , Q = delay(f), and C is a compile-time
constant. For example, setting C = 2 creates a double buffer,
and C = 3 creates a triple buffer.

A regular channel (the otherwise case in Equation 2) is
double or a triple buffer, which allows simultaneous reading
and writing of tokens to the channel. On each write, f
assumes to receive r tokens, and on each read the channel
outputs r tokens. However, for channels that contain initial
tokens (delay), the channel is implemented as a slightly more
complex buffer that implements a specific access pattern to

GPU 

Source Gauss Thres Med Sink 

Fig. 7: The Motion Detection application.

enable simultaneous reads and writes to the channel. This is
exemplified in Fig. 6 with r = 4.

At application initialization the initial token in the channel,
displayed with D in Fig. 6, resides in buffer slot 0. The first
write to the channel occupies slots 1 ... 4, whereas the first
read consumes tokens from slots 0 ... 3 and so forth. The third
write to the channel reaches the end (slot 12) of the buffer,
followed by an explicit data copy from slot 12 to slot 0, and the
access pattern starts to repeat. The access pattern is repetitive
and can be generalized to any token rate beyond one.

Looking at Fig. 6, it is evident that this solution does
not minimize the memory footprint, but it was chosen as
it offers 1) uncompromised throughput and 2) transparency
to the application programmer. Ring buffers were considered
inadequate, as OpenCL / GPUs offer the best combination of
performance and ease of programming when input and output
data to actors is provided as contiguous arrays.

C. Concurrency, Scheduling and Actor-to-Core Mapping

The proposed framework has been designed to enable max-
imally parallel operation. Parallelism is based on threading,
such that each actor runs on an operating system (OS) thread
of its own, regardless whether the actor is targeted to OpenCL
/ GPU devices or to one of the CPU cores. Each actor thread
is created once at application startup, and is canceled after
the application has terminated. Similar to the DAL framework
[26], [5], synchronization of data exchange over FIFO chan-
nels is based on mutex locks and blocking communication: if
an actor attempts to read a channel that has less tokens than
the actor requires, the reading actor blocks until sufficient data
is available. This enables very efficient multiprocessing, but on
the other hand makes the MoC somewhat more restricted than
e.g. that of DPNs [13].

As each actor is instantiated as a separate thread using the
GNU/Linux pthreads library, the scheduling of actor firings
(heeding data availability) is left to the OS. If the programmer
so chooses, the framework allows fixing of actors to specific
CPU cores, otherwise the OS chooses the core on which the
actor is executed.

It is necessary to state that alternatively to the adopted OS
threading based concurrency, it would also have been possible
to build concurrency and synchronization on top of OpenCL
events, however this would have limited the applicability to
platforms where both the CPU cores and GPUs have OpenCL
drivers. The adopted OS threading based solution, however,
is beneficial due to its backwards compatibility: with this
solution it is possible to jointly synchronize and run also non-
OpenCL compatible CPU cores with GPUs.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 9

TABLE II: Platforms used for experiments.

Tag CPU OpenCL Device Operating System
Carrizo AMD Pro A12-8800B (2.1 GHz, 4 cores) AMD Radeon R7, OpenCL 2.0, driver 15.30.3 Ubuntu 14.04, g++ 4.8.4
i7 Intel Core i7-6700HQ (2.6 GHz, 4 cores) CPU, Intel OpenCL 1.2 driver 6.2.0.1760 Ubuntu 16.04, g++ 4.8.5
RX Intel Core i7-4770 (3.5 GHz, 4 cores) AMD Radeon RX 460, OpenCL 1.2, driver 16.40 Ubuntu 16.04, g++ 4.8.5

TABLE III: Motion Detection performance in HD 1080p
frames/s.

Tag DAL PRUNE DAL PRUNE
Multicore Multicore Heterogen. Heterogen.

Carrizo 15.9 17.3 132 140
i7 39.2 39.8 - 113
RX 41.1 42.9 696 772

TABLE IV: Digital Predistortion performance in complex float
megasamples/s.

Tag DAL PRUNE DAL PRUNE
Multicore Multicore Heterogen. Heterogen.

Carrizo 6.15 6.64 n/a 39.5
i7 6.78 7.34 n/a 25.1
RX 17.2 19.2 n/a 106

TABLE V: Adaptive Deep Neural Network performance in
frames/s.

Tag DAL PRUNE DAL PRUNE
Multicore Multicore Heterogen. Heterogen.

Carrizo 8.63 11.5 n/a 160
i7 9.37 9.86 n/a 299
RX 26.2 37.8 n/a 1033

poly

FIR
1 FIR

2FIR
3

FIR
5

FIR
6FIR

7 FIR
8FIR

9 FIR
10

snk-
i

FIR
4

conf

src-
i

snk-
q

src-
q

add

GPU

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 8: The Dynamic Predistortion application.

VII. EXPERIMENTAL RESULTS

This section presents experimental evaluation, which shows
that the PRUNE framework is efficient and suitable for running
real-life signal processing workloads. The performance results
are compared against the DAL framework [5], which in many
ways resembles PRUNE.

A. Use Case Applications

1) Video Motion Detection: The first application used in
our experiments is 8-bit grayscale video Motion Detection
that consists of five actors, as shown in Fig. 7. The source
and sink actors are always executed on CPU cores and are
essentially responsible for reading and writing data from/to
mass storage. The Gauss actor performs 5×5 pixels Gaussian
filtering on input frames, followed by the Thres actor that
subtracts consecutive frames and performs pixel thresholding
against a fixed constant value. To avoid exceeding frame
boundaries, the Gauss actor skips filtering for two pixel rows
in the frame top and frame bottom. Finally, the Med actor
performs 5-pixel median filtering to reduce noise from the
generated motion map.

The distinguishing feature of this use case application is
the use of delay tokens: one of the communication channels
between the Gauss and Thres actors bears a dot in Fig. 7
and depicts an initial token, which is a one-frame delay that
enables consecutive frame subtraction functionality. Out of the
use case applications, Motion Detection is the only one that
can be described using fixed token rates, and hence be GPU-
benchmarked with both PRUNE and the DAL framework,
which we use as a state-of-the-art reference.

The frame size used was 1920×1080, which resulted in the
token size becoming 1.98 megabytes. Due to the large token
size, the token rate was kept at 1 (in our previous publication
[6] that uses a preliminary version of PRUNE, resolution was
320x240 with a token rate of 4). GPU acceleration was applied
to Motion Detection by mapping the Gauss, Thres and Med
actors to the GPU.

2) Dynamic Predistortion Filtering: Dynamic Predistortion
(DPD) filtering (Fig. 8) was used as the second application use
case. The algorithm [28] is used in wireless communications
to mitigate transceiver impairments, and essentially consists of
10 parallel 10-tap complex-valued floating-point FIR filters.

DPD significantly differs from the Motion Detection ap-
plication in the sense that it features actors with dynamic
token rates: Fig. 8 shows the configuration (conf) actor that at
run-time periodically reconfigures the poly and Adder (add)
actors to select which set of the FIR filters is used to process
the input signal. The reconfiguration period was set to once
every 65536 samples, and the number of active filter actors is
allowed to change arbitrarily between 2 and 10. The run time



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 10

GPU

Select-
Pad

L1Conv
-Relu

L2Conv
-Relu

L3Mtx-
Mul

L3Relu
-L5

SinkSource

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Fig. 9: The Adaptive Deep Neural Network application.

reconfiguration used here is defined by an external input and
cannot be modeled e.g. by the CSDF MoC.

The DPD application computes on complex floating-point
numbers, which were represented as a pair of single precision
floats. To this end, all edges in Fig. 8 inside the ”GPU” box
represent a pair of edges, one for the real part and one for the
imaginary part. Hence, the total number of FIFO channels is
46 in this application.

3) Adaptive Deep Neural Network: The Deep Neural Net-
work (DNN) application for vehicle classification has first
been presented in [29], [30]. The neural network consists
of two convolutional layers followed by three dense layers.
The PRUNE implementation of the DNN consists of seven
actors, as depicted in Fig. 9. Here, the application has been
extended with adaptiveness that allows dynamically enabling
and disabling DNN processing for each frame to, e.g., save
on power when deployed to an energy-limited device.

The three GPU-mapped actors (Fig. 9) represent the neural
network core of the application and are demanding both in
terms of memory footprint and computational complexity.
Layer 1 convolution consists of 2400 floating-point weights,
layer 2 of 25600 weights and layer 3 matrix multiplication
of 1.8M weights. The input image is delivered in resolution
96×96 (RGB) and separated to 32 feature maps that are
convolved by 5×5 pixel kernels in layers 1 and 2.

The GPU-accelerated convolution layers perform simulta-
neous convolution and ReLU non-linearity computation, and
are processed as a 3-dimensional volume along feature map
index, image width and image height axes. Data was mapped
to tokens such that the data associated with one input image
was mapped to one token. Hence, due to the nature of the
algorithm, the token size varied considerably from one FIFO
to another. Benchmarking was performed with atr = 24 for
each FIFO channel, as this token rate provided the highest
throughput.

Adaptiveness was implemented to the DNN application by
introducing a bypass channel from the actor Select-Pad to the
actor L3Relu-L5. With the bypass channel the computation-
ally demanding DNN processing can be omitted for selected
frames, and instead of classification results, the bypass channel
provides constant values to the output to indicate omitted
classification.

In order to demonstrate the possibility for performing post-
analysis application optimizations, the configuration actor was
merged to the dynamic actor Select-Pad, preserving identical
application functionality. For the moment, the actor merging
needs to be done manually, however automatic approaches
exist [31].

Besides lack of dynamic token rates, implementation of

GPU accelerated DNN in DAL turned out to be unfeasible for
several reasons. First, DAL only supports 1-dimensional kernel
processing (OpenCL NDRange), and second, DAL provides no
direct means to deliver megabytes of fixed coefficients to GPU-
accelerated kernels. For these reasons, no GPU accelerated
DAL version of the application was created.

B. The Platforms

Table II shows the platforms that were used to benchmark
the PRUNE framework and the Distributed Application Layer,
which was used as a reference. The Carrizo chip features 4
CPU cores and an integrated graphics processor, a solution
that minimizes the data transfer times between the GPU and
the CPU cores. RX represents a conventional desktop system
with a 4-core CPU and a mid-range GPU that is connected
to the CPU over a PCI express bus. Finally, i7 represents a
laptop processor with OpenCL drivers that allow accelerating
data parallel workloads on the CPU cores.

C. Experimental Setup

For all use case applications, the PRUNE run-time library
was configured to implement triple-buffering of FIFOs (C = 3,
see Eq. 2), which provided equal FIFO memory sizes as
DAL. DAL applications were implemented to use high-speed
windowed FIFOs in communication between CPU cores. For
each platform and each use case application the execution time
was calculated from the average of 8 successive application
executions. Before measurements, it was ensured that the
processor cores were almost idle by closing unnecessary
applications in the OS.

In Motion Detection the OpenCL global work size was set
to 76800 for i7 and to 518400 for Carrizo and RX. The input
data file was a grayscale 300 frame uncompressed sequence
“Jockey” in resolution 1920×1080, which resulted in a file
size of 593 MB.

For the DPD application, OpenCL global work size was
equal to the actor input token rate, which was either 65527 or
65536 depending on the actor. The same work size was used
for all platforms. The DPD input data stream consisted of 67
megasamples, altogether 537 MBs of size.

For Adaptive DNN the OpenCL work size dimensions were
768×52×52 for L1Conv-Relu, 768×24×24 for L1Conv-Relu,
and 24×100 for L3Mtx-Mul. The input sequence consisted of
384 RGB frames that had a file size of 40.5 MB due to their
single-precision float data format.

D. Results

Table III shows that with the Motion Detection application
the PRUNE framework provided 2-9% higher throughput than
DAL on each platform, when no OpenCL acceleration was
used, but all processing was done by CPU cores (the columns
labeled “Multicore”). With OpenCL acceleration (“Hetero-
gen.” columns) the Motion Detection application throughput
increased 3× to 18× such that PRUNE was 6% to 11% faster
than DAL, depending on the platform. Under DAL the Intel
OpenCL drivers caused an error on the i7 that prohibited
benchmarking.



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 11

Multicore-only benchmarking of the Digital Predistortion
application revealed 8%-12% higher throughput for PRUNE
compared to DAL, as Table IV shows. OpenCL acceleration
increased the application performance by 3× to 6× under
PRUNE compared to multicore-only. DAL OpenCL results
could not be acquired, as DAL is restricted to static token
rates under OpenCL.

The Adaptive Deep Neural Network application revealed
(Table V) larger differences in throughput: under multicore-
only, PRUNE was 5% to 44% faster than DAL. OpenCL
acceleration was also remarkably powerful, as the application
speeded up between 14× to 30× by OpenCL on PRUNE. As
mentioned in Section VII-A3, OpenCL results could not be
acquired due to several restrictions of DAL.

VIII. DISCUSSION AND FUTURE WORK

The use case applications introduced in Section VII-A
demonstrate that the PRUNE Model of Computation is ex-
pressive enough for describing a wide variety of performance-
intensive signal processing applications, which are highly
relevant to the video processing, computer vision and wireless
communications fields. In contrast, the state-of-the-art frame-
work DAL could not provide means for OpenCL acceleration
of Digital Predistortion or Adaptive DNN applications, or
means for analyzing the consistency of the application graphs.

The results in Section VII-D show that the PRUNE runtime
framework is also remarkably efficient compared to the state-
of-the-art DAL framework: application performance on CPU
cores is up to 44% higher under PRUNE. PRUNE also
enables highly efficient simultaneous use of OpenCL devices:
performance increases up to 30× were measured compared to
CPU-only.

As future work for PRUNE, interfaces for importing signal
processing applications written for the DAL framework and
the Open-RVC-CAL Compiler [19] will be developed. This
will enable the novel capabilities for high performance signal
processing in PRUNE to be leveraged by applications.

IX. CONCLUSION

In this article the PRUNE Model of Computation and
framework has been presented. The dataflow oriented PRUNE
Model of Computation is expressive enough for describing
signal processing applications with dynamic token rates, yet
it provides at the same time decidable deadlock freedom and
memory boundedness analysis of applications.

The expressiveness of PRUNE has been demonstrated by
examples from three signal processing domains: computer
vision, video processing and wireless communications. Exper-
imental results have shown that besides decidability, PRUNE
also provides more expressiveness and higher performance
than the previously published state-of-the-art DAL framework.

ACKNOWLEDGMENT

This work was partially funded by the Academy of Finland
project 309693 UNICODE and by TEKES — the Finnish
Technology Agency for Innovation (FiDiPro project StreamPro
1846/31/2014).

REFERENCES

[1] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya,
“Functional DIF for rapid prototyping,” in IEEE/IFIP International
Symposium on Rapid System Prototyping (RSP), 2008, pp. 17–23.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp.
397–408, Feb 1996.

[3] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Compiler Construction, ser. Lecture Notes
in Computer Science, R. N. Horspool, Ed. Springer, 2002, vol. 2304,
pp. 179–196.

[4] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[5] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the par-
allelism of heterogeneous systems using dataflow graphs on top of
OpenCL,” in IEEE Symposium on Embedded Systems for Real-time
Multimedia (ESTIMedia), 2013, pp. 41–50.

[6] J. Boutellier and I. Hautala, “Executing dynamic data rate actor networks
on OpenCL platforms,” in IEEE International Workshop on Signal
Processing Systems (SiPS). IEEE, 2016, pp. 98–103.

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[8] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in Embedded Software:
First International Workshop, (EMSOFT), T. A. Henzinger and C. M.
Kirsch, Eds., 2001, pp. 166–184.

[9] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable Video
Coding standard [standards in a nutshell],” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 159–167, 2010.

[10] H. Berg, C. Brunelli, and U. Lucking, “Analyzing models of computation
for software defined radio applications,” in International Symposium on
System-on-Chip, 2008, pp. 1–4.

[11] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs
with bounded memory using the token flow model,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 1, April 1993, pp. 429–432 vol.1.

[12] E. A. Lee and E. Matsikoudis, “The semantics of dataflow with firing,”
in From Semantics to Computer Science: Essays in memory of Gilles
Kahn, G. Huet, G. Plotkin, J. Lévy, and Y. Bertot, Eds. Cambridge
University Press, 2009.

[13] A. Tretter, J. Boutellier, J. Guthrie, L. Schor, and L. Thiele, “Executing
dataflow actors as Kahn processes,” in International Conference on
Embedded Software (EMSOFT), 2015, pp. 105–114.

[14] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information processing, J. L. Rosenfeld, Ed. Stockholm,
Sweden: North Holland, 1974, pp. 471–475.

[15] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling for DSP systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 10, pp. 2408–2421, 2001.

[16] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applica-
tions,” in International Conference on Embedded Computer Systems
(SAMOS). IEEE, 2011, pp. 404–411.

[17] S. Lin, L.-H. Wang, A. Vosoughi, J. R. Cavallaro, M. Juntti, J. Boutellier,
O. Silvén, M. Valkama, and S. S. Bhattacharyya, “Parameterized sets
of dataflow modes and their application to implementation of cognitive
radio systems,” Journal of Signal Processing Systems, vol. 80, no. 1, pp.
3–18, 2015.

[18] G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-behaved dataflow
programs for DSP computation,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 5. IEEE,
1992, pp. 561–564.

[19] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in ACM
International Conference on Multimedia, 2013, pp. 863–866. [Online].
Available: http://doi.acm.org/10.1145/2502081.2502231

[20] H. P. Huynh, A. Hagiescu, O. Z. Liang, W.-F. Wong, and R. S. M. Goh,
“Mapping streaming applications onto GPU systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 9, pp. 2374–2385,
2014.

[21] V. Boulos, S. Huet, V. Fristot, L. Salvo, and D. Houzet, “Efficient
implementation of data flow graphs on multi-GPU clusters,” Journal
of Real-Time Image Processing, vol. 9, no. 1, pp. 217–232, 2014.

[22] A. Sbı̂rlea, Y. Zou, Z. Budimlı́c, J. Cong, and V. Sarkar, “Mapping a
data-flow programming model onto heterogeneous platforms,” in ACM



TRANSACTIONS ON SIGNAL PROCESSING, VOL. –, NO. –, —– —- 12

SIGPLAN/SIGBED International Conference on Languages, Compilers,
Tools and Theory for Embedded Systems (LCTES), 2012, pp. 61–70.

[23] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “XKaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in International Symposium on Parallel and Distributed Processing
(IPDPS), 2013, pp. 1299–1308.

[24] W. Lund, S. Kanur, J. Ersfolk, L. Tsiopoulos, J. Lilius, J. Haldin, and
U. Falk, “Execution of dataflow process networks on OpenCL plat-
forms,” in Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2015, pp. 618–625.

[25] J. Boutellier and T. Nyländen, “Programming graphics processing units
in the RVC-CAL dataflow language,” in IEEE Workshop on Signal
Processing Systems (SiPS), 2015, pp. 1–6.

[26] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), 2012, pp.
71–80.

[27] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds.,
Handbook of Signal Processing Systems, 2nd ed. Springer, 2013, iSBN:
978-1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online).

[28] M. Abdelaziz, A. Ghazi, L. Anttila, J. Boutellier, T. Lähteensuo, X. Lu,
J. R. Cavallaro, S. S. Bhattacharyya, M. Juntti, and M. Valkama, “Mobile
transmitter digital predistortion: Feasibility analysis, algorithms and
design exploration,” in Asilomar Conference on Signals, Systems and
Computers, 2013, pp. 2046–2053.

[29] H. Huttunen, F. S. Yancheshmeh, and K. Chen, “Car type recognition
with deep neural networks,” in IEEE Intelligent Vehicles Symposium,
2016, pp. 1016–1021.

[30] R. Xie, H. Huttunen, S. Lin, S. S. Bhattacharyya, and J. Takala,
“Resource-constrained implementation and optimization of a deep neural
network for vehicle classification,” in 24th European Signal Processing
Conference (EUSIPCO). IEEE, 2016, pp. 1862–1866.

[31] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and
O. Silvén, “Actor merging for dataflow process networks,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 10, pp. 2496–2508, May 2015.


