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Abstract—We consider the problem of reconstructing densely
sampled light field (DSLF) from sparse camera views. In our
previous work, the DSLF has been reconstructed by processing
epipolar-plane images (EPI) employing sparse regularization in
shearlet transform domain. With the aim to avoid redundant
processing and reduce the overall reconstruction time, in this
article we propose algorithm modifications in three directions.
First, we modify the basic algorithm by offering a faster and more
stable iterative procedure. Second, we elaborate on the proper
use of color redundancy by studying the effect of reconstruction
of an average intensity channel and its use as a guiding mode for
colorizing the three color channels. Third, we explore similarities
between EPIs by their grouping and joint processing or by
effective decorrelation to get an initial estimate for the basic
iterative procedure. We are specifically interested in GPU-based
computations allowing an efficient implementation of the shearlet
transform. We quantify our three main approaches to accelerated
processing over a wide collection of horizontal- as well as full-
parallax datasets.

Index Terms—Light field reconstruction, Graphics processing
units, Densely sampled light field

I. INTRODUCTION

D visual scenes are completely represented by the light

field they emanate. Given that the light field is a con-
tinuous function, its capture and consequent reconstruction
is an important task, especially for visualization applications,
which require multiple perspective views (e.g. super multiview
displays [1]) or dense parallax (e.g. digitally printed holograms
[2]). Many other light field image processing applications,
such as depth estimation, compression, synthetic aperture
imaging would benefit from accurately reconstructed light
field [3]. A typical way of capturing light fields from real
world scenes is to use a set of identical parallel cameras
which are uniformly positioned on a plane. In order to support
continuous parallax, such capturing setup requires that the
cameras are densely positioned [4]. To overcome the demand
for synchronously controlled high amount of cameras, the
approach is to use a coarse set of cameras and to devise
a consecutive light field reconstruction method, which can
deliver densely sampled views from the coarse set of captured
ones.

The approaches for reconstructing dense intermediate views
from a given sparse set of views can be categorized into
two categories. First, those are methods aimed at extracting
geometry information about the scene in the of form of high
quality depth maps collocated with the given input images,
which can be used for depth-based view rendering [5] or
unstructured lumigraph rendering [6]. Such methods utilize
correspondences between images, found by block matching

[7], and employ some global optimization of cost functions
usually formed by data and smoothness terms [8], [9]. Apart
from having problems with occlusions, when using sparse
views, these methods result in over-smoothed depth estimates,
and for finding finest details aligned with object boundaries
they still need relatively densely positioned cameras [10].
Second category includes methods operating directly on the
light field and aimed at employing some sparsity priors for this
data. For example, the work [11] exploits sparse representation
of full parallax 4D light field in continuous Fourier domain
using a small number of 1D viewpoint trajectories.

For both categories, reconstructing a dense set of images
is a computationally demanding problem. Global optimization
methods aimed at obtaining multiple high quality depth maps
do not scale well with the number of images and their
resolution. The method in [10] targeted processing of 50 views
with overall of 21-megapixels and accounted of about 50 mins
of processing time. The runtime of the method in [11] ranged
from 2 to 3 hours using a cluster of machines.

Previously, we have proposed a method for light field
reconstruction which utilizes sparsification in shearlet trans-
form domain [12], [13]. The method reconstructs DSLF from
an undersampled light field captured by a small number of
wide-baseline cameras. It demonstrated superior performance
while compared with Motion Picture Experts Group’s depth
estimation reference software (DERS) [14] and view synthesis
reference software (VSRS) [15], and with the state of the
art in depth-from-stereo scene geometry reconstruction [16].
The method handles both horizontal and full-parallax capture
settings and is highly successful when reconstructing non-
Lambertian scenes formed by semi-transparent objects [13]. In
this article, we further develop the method by proposing com-
putational acceleration approaches based on inherent similar-
ities in the assumed data representation and further algorithm
tuning. Our aim is to decrease the necessary computational
time while keeping or even increasing the reconstruction
quality for a large set of test data.

The article is structured as follows: the light field parameter-
ization and a summary of light field reconstruction algorithm
from [13] are presented in Section II. Different acceleration
approaches are proposed in Section III. Computing and eval-
uation setup, algorithm implementation, experimental results
and discussions are presented in Section IV.

II. RECONSTRUCTION OF DENSELY SAMPLED LIGHT
FIELD

4D light field is parameterized by the so-called two-plane
parameterization L(u, v, s, t) (Fig. 1), where (s, ¢) and (u, v) cor-
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Fig. 1. Light field two-plane parameterization and corresponding discrete coarsely and densely sampled light field parameterizations.

respond to the camera plane and the image plane respectively
[17]. This parameterization allows to conveniently describe
and denote both the set of images (views) captured by a
multi-camera setup and the required dense set of images fully
representing the 3D scene of interest. For the sake of simpler
notations and easier illustrations, hereafter we consider the
case of horizontal parallax and explain the generalisations
to full parallax when needed. Fixing the camera motion to
horizontal direction only implies that the parameter s = so
corresponding to the vertical parallax can be omitted.

L(u, v, t) = L(u, v, 50, 1)

We aim at reconstructing continuous light field L(w, s, ¢)
from sampled views of 3D scenes. For such scenes and
corresponding light fields, we define the densely sampled light
field (DSLF), denoted by LG, J» k), as the light field having
a maximal disparity between adjacent views less than 1 pixel.
The k-th captured image I{'(i, j) = L%(i, j. k) corresponds to
an image of the L continuous light field sampled at 7 = kAtg.
The necessary parameter Aty for capturing DSLF can be
calculated based on camera intrinsic parameters and specifying
the minimum depth of the scene from the camera (capturing)
plane. The continuous light field can be reconstructed from
DSLF by linear interpolation [4]. Therefore, DSLF is a con-
venient representation and is in the core of many LF-based
algorithms, such as refocusing, free view-point rendering and
smooth-parallax visualization [3]. However, a direct capture
of views providing one-pixel disparity is impractical.

In our previous work we have presented a method for DSLF
reconstruction from coarsely sampled views [12]. A coarsely
sampled light field is assumed to be a decimated version of
DSLF, where the decimation factor is denoted by dinaux

LE( j, k) = LU, J, dmaxk).

Subsequently, the maximal disparity between adjacent coarsely
sampled views (i, j) = L°(i, j, k) is no more than dimgx. In
our previous work we presented an iterative algorithm which
reconstructs L from L¢ for dyx < 32. The algorithm works
in EPI domain. More specifically, DSLF L¢ is reconstructed
by reconstructing every densely sampled epipolar-plane image
(DSEPI) defined as

EX(k, j) = LU, j, k)

from the given decimated samples Ef such that Ef(k, j) =
Ei‘l(dmax k, j). An example of coarsely-sampled and densely-

sampled light fields is given in Fig. 1. Note how rows with step
size dinax form E€ out of E4. The specific value of dpax < 32
is related with image resolution and has been selected for prac-
tical reasons. The method can be applied for higher disparity
ranges too, however this would impose processing images with
higher resolution, which in turn would significantly increase
the required amount of memory [13]. Therefore, in this article
we consider the limit case of dpyax < 32.

Below, we summarize the algorithm for DSEPI reconstruc-
tion [13]. To simplify the notations, we denote the unknown
DSEPI matrix by f € RV*N_ The decimated EPI g € RV
has the same dimension and contains sensed values at each
dmax-th row while the other rows are set to 0. The relation
between the two EPIs is formalized by setting a binary
measurement matrix M € RN which has zero values
elsewhere than M(kdpax, j) = 1. Then, g = M © f, where ©
is element-wise matrix multiplication. The direct and inverse
shearlet transforms are denoted by § : RV*N — RI<NxN
and §* : RPN, RNXN ©regpectively, where 7 is the
number of all shears in all scales of the shearlet transform.
More details about the shearlet transform construction can be
found in [13]. The reconstruction of unknown rows of the
matrix g is formulated under the prior condition for having
sparse solution in the shearlet domain, i.e.

min_ [|S(/)llg, subjectto g =MO f

fE]KNXN

which can be efficiently solved through the following iterative
thresholding algorithm [13]:

Jar1 = 8 (Ta, (S(fa + @n(g = M O fa))). (1

where the acceleration parameter @, is chosen as follows

_ Bl
1M © SB35 2)
Bn =S, (y = MO fu),I'n = supp(fn),
and (Th f)(k) = { g(k)’ :);831 ij is a hard thresholding

operator. The initial value can be set to fo = S;(So(g)), where
So and § are direct and inverse transform using only low-pass
element in the shearlet transform. The thresholding parameter
A, 1s set to decrease with the iteration number #. In our case
we apply a linear decrease from A,uux t0 Ajpin, for L iterations
suchasn=0,...,L.

It is important to mention that one has to set a few
parameters while running the algorithm. These are the number
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of iterations L which directly influences the computational
time; the initial estimation f) which can reduce the necessary
number of iterations; and the threshold range [Ameaxs Amin]-

The generalization to full parallax is straightforward by
successively implementing the basic algorithm along the hor-
izontal and vertical camera axes. A more computationally-
efficient alternative, referred to as hierarchical reconstruction
[13], implements the reconstructions in a specific order, aimed
at reducing the maximum disparity between input views after
each iteration, thus reducing the required number of shearlet
transform scales and the related processing time.

III. ACCELERATED PROCESSING

The method in Section II is applicable for any EPI. A
preferable solution would use the same set of parameters
for every EPI and run the reconstructions independently. One
can select optimal thresholding parameters for the reconstruc-
tion algorithm as [A;%, A°'] and fix a common number
of iterations N for all EPIs. In this case, the computation
time linearly depends on the number of EPIs and the fixed
number of iterations. By distributing the required computations
equally between multiple GPUs, one can achieve the fastest
computational time for this independent processing. Further
acceleration can be achieved by speeding up the iterative
algorithm itself and by utilizing similarities between EPIs.

A. Faster convergence by double overrelaxation

In this section we propose a modification of the main iter-
ative algorithm aimed at its faster convergence. As presented
in (2), the convergence is controlled by the parameter «,,
which was originally designed to provide stability for varying
content for the price of increased computations [13]. As a
computationally less expensive alternative, here we propose
another update mechanism, based on the so-called double
overrelaxation (DORE), similar to the one presented in [18].
Assume the light field EPI matrices are reordered in column
vector form and assume the parameter @, = « is fixed. The
thresholding operation

Fo = SH(Ta, (S(fo + alg = MO ) 3)

is followed by a two-step overrelaxation

f:z = f; +ﬂ1(f; - fl“rl)
B = (g - ﬁi)TH(ﬁz = fa-1) 4)
(ﬁl - ﬁ1—1)TH(f:1 - fl‘z—l)7

Jost = fo+ Bl = fo2)
gy = 8= In) HUb — fo2) (5)
T (= ) TH(f = fum2)

where H € RV*N s a diagonal matrix containing the ele-
ments of the measuring matrix M along its main diagonal. For
additional stability we clamp the values of B, 82 € [0, 1]. The
role of the double over-relaxation is to tackle potential insta-
bilities by keeping the next iteration anchored to the previous
iterations. Eq. (4) and (5) provide closed-form solutions for

(a) (b)

Fig. 2. (a) Proposed window (green) for modelling guidance with respect to
reference pixel (orange). (b) Neighbourhood (green) for forming Laplacian
matrix entry with respect to reference pixel (orange).

the respective line search problems 31 = argmin||H(g — (f +
B

B = fa-)II* and B> = argmin| | H(g = (fu + B(/n = fi-2)II*.

This leads to finding an optimal linear combination between
consecutive solutions such that the error is minimized over the
given samples defined by the matrix H.

B. Color spaces and guided colorization

A trivial approach is to convert the RGB color channels into
YUV colour space and process EPIs there, while expecting
significantly less energy in the U and V colour channels.
Specifically, we apply reversible color transform (RCT [19])
without any quantization of values, i.e.

Y = (R + 2*G + B)/4
U=B-G
V=R-G

Usually, the spatial information in U and V channels is
highly redundant for natural images. Therefore, in the case
of processing in YUV colour space with given N number
of iterations, we reconstruct Y channel with N iterations
and U,V channels with N/2 iterations. Compared with the
reconstruction in RGB colour space, the overall number of
iterations is reduced from 3N to 2N.

Furthermore, we investigate the possibility of applying the
fully reconstructed Y-channel EPI as a guide in reconstructing
R, G and B color channels from their decimated EPI versions.
This type of problem can be solved by methods previously
developed for image colorization [20], [21]. It has been also
shown that colorization can be considered as a particular
case of the more general problem of alpha matting [22].
Specifically, we adopt the so called closed-form alpha matting
algorithm proposed in [23] and modify it for the purpose of
reconstructing color EPIs.

Following the notations in Section II, we denote the targeted
EPI color channel and its decimated version by f and g
respectively. Let us denote also the reconstructed Y-channel
EPI by E. Then, the targeted color channel pixels f; are
modelled as a linear function of the known (i.e. guiding) image
pixels E;, within a small window w

fi= aE;i + b View.
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For natural images, typically, the small window has been
assumed to be a square window of 3 X 3 pixels around the
reference pixel. For the case of EPI, we propose to use
a different window to leverage the directional information
presented in EPI. We show the proposed shape in Fig. 2(a).

The cost function minimization problem can be formulated
as follows

N2
J(f,a, b) = Z Z(ﬁ - a;E; - bj)2+sa]2- ,

Jj=1 \iew;

where the regularisation term £a? is added for numerical sta-
bility. In [23], it has bee shown that an equivalent minimization
problem can be formulated using matting Laplacian matrix A,
which removes the need to identify ¢ and b

Jf) = minJ(f.ab) ~ J(f) = fTAS,

where the entries of the matrix A € RN XN are calculated as
follows

NHENDY

k|(i.j)ew

&£

N

((5ij - é (1 + fo_]z(Ei — i )(Ej — ﬂk))) .

In the above equation, 6;; denotes the Kronecker delta, and N,
Hk o-,f denote the cardinality, the mean and the variance of the
window wy respectively. For the entry L(i, j), the summation
is done over all windows wy which contain pixels with indices
i and j. For a reference pixel at position i and for our choice
of window shape, the pixel positions j are shown in Fig. 2(b).
Given the true colors at the decimated EPI g, the problem is
reformulated as

minimize fTAf, st. Hf = g,

where H is the diagonally-arranged measurement matrix M.
The so-formulated problem is solved using the conjugated
gradient method.

C. Group Processing of Similar EPIs

Previously, we have presented an attempt to accelerate the
basic algorithm utilizing similarities between EPIs [24]. The
method suggested constructing a tree, which defines the order
of processing depending on similarity between EPIs. In the
constructed tree, each node corresponds to an EPI. The tree is
constructed by comparing EPIs for their similarity in terms of
12 norm and consecutively connecting the most similar pairs of
EPIs. Iterating over all EPIs, one obtains a connected graph.
Then, the processing is performed from top to bottom, and
the EPI being processed uses the reconstructed EPI at its
parent node as an initial estimate. Our hypothesis was that
the reconstruction over the graph would allow for adaptively
choosing the number of iterations for each EPI depending on
the similarity to its initial estimate. This approach heavily
depends on the threshold defining similarity between EPIs
and setting the same reconstruction parameters for different
datasets is problematic. Therefore, in this article we adopt
a more systematic approach toward exploring the EPI sim-
ilarities, which would allow an easier tuning of algorithm

Input dataset
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Reconstruction of every 1PI ( i
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1D Wavelet transform
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wansform with
7ero padding

Initial estimation ( 1)
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Fig. 3. Reconstruction flowchart using wavelet transform approximation
coefficient as an initial estimation.

parameters. First, we consider grouping of similar EPIs, done
by comparing /> distances between EPIs against a predefined
threshold #. Having the EPIs organized in groups, we fully
reconstruct the average EPI over each group and use it as a
guidance map to reconstruct the other EPIs in the group by
the approach proposed in Subsection III-B.

D. Initialization by Wavelet Transform

The redundancy between EPIs can be regarded as redun-
dancy in the vertical direction in the given multi-perspective
images. Instead of local grouping of similar EPIs as in
Subsection III-C, we consider the alternative of decorrelating
the vertical image lines by a fixed transform, e.g. a wavelet
transform. Namely, a wavelet transform is performed on
E{(--) along the i axis which is equivalent to performing
1D wavelet transform vertically on every input image I,f(i, 2
along i axis. By performing L level of 1D wavelet transform
between EPIs Ef,i = 1,..,, p, we expect to split them into EPIs
with small-magnitude detail coefficients and Ef, i=1,..p/ 2L
EPIs with higher-magnitude approximation coefficients. The
approximation coefficients gather most of the information of
the original set of EPIs. The reconstruction is then applied
directly on EPIs formed by wavelet transform approxima-
tion coefficients. The obtained set of densely sampled EPIs
E[.d,i =1,..p/ 2% contain a good amount of directional struc-
tures (more global ones), however, they still require further
processing to obtain desirable quality of reconstruction (add
details from the original set of EPIs). Therefore, the inverse
wavelet transform can be applied on the reconstructed EPIs
of the approximation coefficients with an appropriate padding
with zeros corresponding to detail coefficients. The obtained
set of EPIs /9,i = 1,...p is used as an initial estimate for
reconstruction of the original input Ef EPIs by performing
additional processing by the modified basic algorithm. The
processing times for the two steps can be set independently.
The flowchart of the approach is shown in Fig. 3.

IV. EXPERIMENTAL EVALUATION
A. Algorithm Implementation

We have implemented the core reconstruction algorithms,
on a GPU using CUDA Toolkit [25]. Since the shearlet trans-
form is a translation invariant transform, it can be efficiently
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Fig. 4. Computational time required to perform 50 iterations of a-adaptive
algorithm (left) and DORE (right) on 100 EPIs using different parallelization
between GPUs. Light green color represents the necessary time for initializa-
tion of the algorithm. For resolution 256 X 512 using more than one stream
per GPU doesn’t provide acceleration.

computed using the Fast Fourier Transform (FFT). In our case,
we used the cuFFT library to get an FFT implementation on
the GPU [26]. For generating our experimental results we have
used a system consisting of four Nvidia GeForce GTX Titan
X GPUs. The computational time for reconstructing an EPI
mainly depends on the number of overall iterations that have
to be performed. In order to achieve fastest computation for
a given set of input EPIs with a corresponding number of
iterations, the set has been distributed between GPUs such that
the overall number of iterations that has to be performed are
approximately equal for each GPUs. On the level of one GPU,
the whole iterative processing is performed independently
from other GPUs. Depending on the size of the processed
EPI, we get different occupation of GPU kernels at a time.
We consider EPIs with the size of 256 X 512 processed with
the shearlet transform at 5 scales using algorithm presented
in Sections II, III-A. In both cases, 100 EPIs are processed.
The computational times are presented in Fig. 4. Note that
reconstructing in the case of 256 X 512 with §° transform,
only one process per GPU is sufficient for both algorithms,
while DORE is significantly faster.

B. Evaluation

In our comparative tests, we have used datasets presented in
[27], [28] for horizontal parallax and in [29] for full parallax
datasets. In overall, 22 horizontal-parallax datasets and two
full-parallax datasets of various depth and spatial content have
been used. In all experiments, the input data is formed by
every second view of the test dataset. The other views form
the reference. The algorithm performance has been evaluated
by comparing the difference between the reconstructed and
the reference views in terms of PSNR (dB). J = 5 scale
levels have been considered for the shearlet transform (S°)
which corresponds to an intermediate view reconstruction,
where the maximum disparity between adjacent views is in
the range of [0, 32] pixels. The exact disparity ranges of each
scene as obtained from the ground truth disparity maps are
shown in Fig. 5. In order to shift the available (existing)
disparity ranges to [0, dnax — dmin], for each input dataset we
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Fig. 5. Illustration of the disparity ranges |dp.in, dmax] between adjacent
views for input dataset used in this paper (obtained from ground true disparity
maps).
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Fig. 6. Comparison of average performance between basic algorithm with
adaptive selection of the parameter @ and DORE with fixed @ = 20 for the
horizontal-parallax datasets.

perform first a horizontal shearing by —d,,;» on all EPIs. After
reconstructing dmax — dmin — 1 intermediate views, a shearing
by dinin /(dmax — dmin) is applied to return the imagery to the
original disparity range. In general, we evaluate algorithms
presented in Section III for different number of iterations
in order to compare trend of convergence speed of different
algorithms in average for all datasets.

In our first comparative test, we present the average re-
construction quality for the algorithm modification based on
DORE with a = 20 and the original o adaptive algorithm. The
comparison is done for 5, 10, 15,20,30, 50,75, 100 iterations
per EPL. The results for the horizontal parallax datasets are
shown in Fig. 6, while the reconstruction results for the full-
parallax datasets are shown in Fig. 7. The DORE algorithm
provides faster convergence for all datasets and results in
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Fig. 8. Comparison between reference algorithm (RGB), YUYV, and coloriza-
tion of RGB for the horizontal-parallax datasets.

better quality enjoying also faster processing. In all subsequent
experiments, we use the DORE algorithm with « = 20,
referring to it as the reference algorithm.

Next, we aim at quantifying the performance of the col-
orization algorithm. For the horizontal-parallax datasets, we
present the trend in reconstruction quality for different number
of iterations, see Fig. 8. The reference algorithm reconstructs
the three color channels, R, G, and B in an equal number of
iterations, while in YUYV, priority is given to the Y channel,
which is processed twice longer than the U and V' channels.
In the case of colorization, an average intensity channel is
formed as Y = (1/3) * (R+ G + B) and fully reconstructed in
varying number of iterations, then each of the color channels
is reconstructed by colorization using the reconstructed Y
channel as a guidance. As can be seen in the figure, the
prioritized processing brings some improvement over the ref-
erence algorithm and the algorithm based on colorization is
significantly faster as it processes a single channel only. All
three algorithms saturate in performance, which means that
after some number of iterations, no quality improvement is
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Fig. 9. Comparison between reference algorithm (RGB), and colorization of
RGB for the full-parallax datasets.

achieved. The colorization algorithm saturates at lower level,
which indicates that the structural differences in the three color
channels have not been fully reconstructed in the averaged
intensity channel. The reached values after 100 iterations for
each of the three algorithms are the following: RGB-37.22dB,
YUV —37.24dB, Col.RGB — 36.22dB. These results suggest
that the colorization algorithm is preferable in case of limited
computation time, since it converges faster, while for the case
of better computing resources, the best quality is achieved by
the YUV color space processing.

Fig. 9 presents the results for the full-parallax datasets.
For the Bunny dataset, the colorization shows a significant
improvement both in terms of time and quality, while for the
Truck dataset, the results are in agreement with the average
result over the horizontal-parallax datasets.

Fig. 8 presents the average results over the whole group
of test scenes. The result in terms of rate of convergence
vary substantially for the individual test scenes. In order
to further analyse the algorithm based on colorization, we
look at the saturation points for the reference algorithm and
the colorization algorithm for each individual dataset. The
two algorithms are run for increasing number of iterations
and saturation points are estimated at the iteration where
further improvement is negligible. Denote by E(k), T(k). k =
1,... the quality level (e.g. PSNR), and the corresponding
time in seconds for the running iteration k. We define
kmax = argmaxy E(k) and define the saturation point as

ksar = arg max (%’*E)W < 0.0015). The idea is illustrated

in Fig. 10 for the Teddy dataset, where the saturation points
are given by the circles around the corresponding iterations.
Having found two saturation points per dataset, one for
the reference and one for the colorization algorithm, one can
compare them in terms of quality variation (ISNR) and time
acceleration ratio. In other words, we compare the best achiev-
able quality per dataset for the two algorithms versus the time
acceleration ratio it brings. Fig. 11 presents this comparison
over the horizontal-parallax datasets. In the figure, each dot
represents one dataset, the x— axis represents the relative time
acceleration achieved by the colorization algorithm versus the
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Fig. 10. Saturation points for the reference and colorization algorithms for the
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1.5
" °
0.5-
o
o 9
= e © e ¢
-0.51
= ° e
-1F
7 ° °
L (]
Z) -1.5
2+ @ o
25 ©
3 : : : : :
1 1.5 2 25 3 3.5 4
Computation Time Acceleration Ratio
Fig. 11. Comparison of saturation points of the colorization and reference

algorithms for the horizontal-parallax test datasets.

reference one, and the y— axis represents the improvement in
the signal-to-noise ratio ISNR (dB). As seen in the figure, there
are a few sets, where the acceleration in time comes together
with improved quality, while for the majority of datasets, the
acceleration is achieved for the price of reduced quality.

Another way to illustrate the performance of the colorization
algorithm is to show the ISNR in comparison to the reference
algorithm for the same time, using interpolation between
iteration points. Fig. 12 gathers the performance for each
individual dataset, along with the mean and median values. For
short processing times, colorization is to be preferred as most
of the sequences show positive ISNR values. As the processing
time gets longer, the values cluster around the zero ISNR line
(as shown also by the mean and median curves), while there
are a few sequences still enjoying better performance with the
colorization method and other sequences showing worsening
results. Apparently, among the former group these are datasets
with relatively simpler color and depth distributions.

To simplify the next experiments, we limit the compar-
ison of algorithms exploring the inter-EPI similarities and
decorrelation to comparing the results for the ¥ channel only,
assuming that the RGB color channels can be efficiently
reconstructed by the ¥ channel.
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Fig. 12. ISNR of colorization versus reference algorithm for individual
sequences.
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Fig. 13. Comparison of the reconstruction trends depending on number of
iterations used for obtaining initial estimation in method utilizing wavelet
transform. In the legend of the figure presented corresponding number of
iterations used for processing initial estimations.

For the wavelet transform based acceleration approach,
presented in Section III-D, we perform L = 3 levels of the
CDF 9/7 transform. Here, the issue is to find the best propor-
tion between the processing time allocated for obtaining the
initial estimate and the processing time allocated for refining
the EPI reconstruction based on this initial estimate. In order
to illustrate the trend in convergence, we perform experiments
where the initial estimate is obtained by reconstructing the
coarse wavelet coefficients with 10,25,50,75 iterations. The
obtained initial estimate is then refined for the same number
of iterations, as the direct (reference) algorithm. Fig. 13 depicts
the trends. Naturally, the time needed for obtaining the initial
estimates, shift the initial curve points to the right, e.g. the
curve corresponding to 75 iterations allocated for getting the
initial estimate is the rightmost in the figure. Then, the curves
corresponding to wavelet-based initialization get better and
saturate faster, with the case of 50 iterations for the initial
estimate showing the best performance.

The algorithm based on grouping similar EPIs and process-
ing them together as presented in Section III-C does not show
consistent results for all datasets. This is to be attributed to the
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Fig. 15. Average reconstruction performance for the method utilizing

grouping based on similarity between EPIs for different datasets for fixed
thresholding value.

strong dependence on the threshold value, which determines
which EPIs are sufficiently similar. In general, increasing the
threshold value leads to increasing the size of formed groups
and therefore decreases the computation time. However, the
effect on quality is very much content-dependent. Results
for several datasets with different threshold values are pre-
sented in Fig. 14. For the dataset Laundry, one can get
significant acceleration, while e.g. for the dataset Moebius,
the reconstruction quality is always inferior compared with
the reference algorithm. Selecting one of the well-performing
thresholds, i.e. the value of 0.067, one can get the performance
for each individual dataset, as shown in Fig. 15.

Some examples of synthesized views are presented in
Fig. 16, 17 with the corresponding quality in terms of
PSNR. The DORE-based algorithm provides consistently bet-

ter convergence compared to the original method [13]. The
colorization-based algorithm achieves good reconstruction re-
sults when the Y channel manages to get the important
structure of the scene (edge information) existing in R, G and
B channels. For the particular scene Laundry, the algorithm
based on wavelet transform provides better convergence com-
pared to the reference RGB algorithm.

V. CONCLUSIONS

In this article, we have addressed the problem of accelerat-
ing the DSLF reconstruction algorithm, which originally uses
sparse camera views and works on each EPI independently
by employing regularized iterative reconstruction in shearlet
transform domain. In order to speed up the algorithm, we
proposed modifications in three categories. First, we aimed
at improving the algorithm itself by using double relaxation
in the iterative procedure. Second, we explored the similarities
between color channels within the same EPI in the flavor of
colorization based approaches. Third, we aimed at avoiding
redundant processing and reducing the overall reconstruction
time through exploiting similarities between EPIs. Further-
more, our implementation employed GPUs allowing for an
efficient parallelized computation of the iterative procedure
and the underlying shearlet transform.

We have generated experimental results on a wide set of
test sequences and analyzed the performance of the considered
approaches. The new reconstruction method based on double
overrelaxation shows better convergence speed in comparison
with the original algorithm. We favor the use of colorization
as the approach catches well the color dependences in natural
images. The benefit of using similarities between EPIs is very
much content dependent. The wavelet based approach shows a
marginal improvement in terms of convergence rate, which is
still worth employing. As of the algorithm based on grouping
of similar EPIs and group processing, it provides acceleration
only for scenes where significant amount of EPIs are similar.

The modifications employ structured similarities within EPI
and between EPIs were integrated within the DSLF recon-
struction algorithm. However, they are perfectly applicable
also in other LF image processing algorithms, where DSLF
reconstruction is not the main goal. Such potential applications
include LF depth estimation, compression, segmentation, and
matting.
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