
SIAM J. CONTROL OPTIM. c© 2017 Lassi Paunonen
Vol. 55, No. 3, pp. 1567–1597

ROBUST CONTROLLERS FOR REGULAR LINEAR SYSTEMS
WITH INFINITE-DIMENSIONAL EXOSYSTEMS∗

LASSI PAUNONEN†

Abstract. We construct two error feedback controllers for robust output tracking and distur-
bance rejection of a regular linear system with nonsmooth reference and disturbance signals. We
show that for sufficiently smooth signals the output converges to the reference at a rate that depends
on the behavior of the transfer function of the plant on the imaginary axis. In addition, we construct
a controller that can be designed to achieve robustness with respect to a given class of uncertainties in
the system, and we present a novel controller structure for output tracking and disturbance rejection
without the robustness requirement. We also generalize the internal model principle for regular linear
systems with boundary disturbance and for controllers with unbounded input and output operators.
The construction of controllers is illustrated with an example where we consider output tracking of a
nonsmooth periodic reference signal for a two-dimensional heat equation with boundary control and
observation, and with periodic disturbances on the boundary.
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1. Introduction. The purpose of this paper is to construct controllers for robust
output regulation of a regular linear system1 [38, 39, 36]

ẋ(t) = Ax(t) +Bu(t) +Bdw(t), x(0) = x0 ∈ X,(1.1a)

y(t) = CΛx(t) +Du(t)(1.1b)

on an infinite-dimensional Banach space X . The main goal in the control problem is
to achieve asymptotic convergence of the output y(t) to a given reference signal yref (t)
despite external disturbance signals w(t). In addition, it is required that the controller
is robust in the sense that output tracking is achieved even under perturbations and
uncertainties in the operators (A,B,Bd, C,D) of the plant. The class of regular linear
systems facilitates the study of robust output tracking and disturbance rejection for
many important classes of partial differential equations with boundary control and
observation with corresponding unbounded operators B, Bd, and C [8, 16, 47, 25].
In this paper we continue the work on designing robust controllers for regular linear
systems begun recently in [27].

The reference signal yref (t) and the disturbance signals w(t) considered in the
robust output regulation problem are assumed to be generated by an exosystem of
the form

v̇(t) = Sv(t), v(0) = v0 ∈W,(1.2a)

w(t) = Ev(t),(1.2b)

yref (t) = −Fv(t).(1.2c)
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In the case where the exosystem (1.2) is a system of ordinary differential equations on
a finite-dimensional space W , the class of reference and disturbance signals consists
of finite linear combinations of trigonometric functions and polynomially increasing
terms. In this paper we concentrate on output tracking and disturbance rejection
for a general class of nonsmooth periodic and almost periodic reference and distur-
bance signals. Such exogeneous signals can be generated with infinite-dimensional
exosystems on the Hilbert space W = �2(C) where S = diag(iωk)k∈Z is an unbounded
diagonal operator containing the frequencies {ωk}k∈Z that are present in the signals
yref (·) and w(·). In particular, any continuous τ -periodic signal can be generated with
an exosystem of the form (1.2) where S = diag

(
i 2kπτ

)
k∈Z

[19]. Output tracking and
disturbance rejection of nonsmooth signals with high accuracy have applications in
the control of motor and disk drive systems and in power electronics [10]. Output
tracking of signals generated by an infinite-dimensional exosystem have been studied
using state space methods in [20, 17, 28, 25, 30] and using frequency domain tech-
niques in [45, 34, 46, 22]. Robust tracking of nonsmooth periodic functions has also
been studied extensively in repetitive control [18, 44, 41], where the control objective
is to achieve precise tracking for a finite number of frequency components of yref (·).

As the main results of the paper we introduce two methods for constructing a
regular error feedback controller of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0 ∈ Z,(1.3a)

u(t) = KΛz(t)(1.3b)

to achieve robust output tracking and disturbance rejection for the regular linear
system (1.1). The internal model principle of linear control theory states that in
order to solve the robust output regulation problem it is both necessary and sufficient
for the feedback controller (1.3) to include a suitable number of independent copies
of the dynamics of the exosystem (1.2) and to achieve closed-loop stability. This
fundamental characterization of robust controllers was originally presented for finite-
dimensional linear systems by Francis and Wonham [15] and Davison [13] in 1970s,
and it was later generalized for infinite-dimensional linear systems with finite- and
infinite-dimensional exosystems in [28, 30]. The internal model principle also implies
that the robust controllers always tolerate a class of uncertainties and inaccuracies in
the parameters G2 and K and in certain parts of the operator G1 of the controller (1.3).
This property can be exploited in controller design as it sometimes allows the use of
approximations in defining G1, G2, and K, provided that the internal model property
is preserved and the closed-loop system achieves the necessary stability properties.

The two robust controllers constructed in this paper utilize two different internal
model based structures that are naturally complementary to each other. The first
construction is based on a new block-triangular controller structure that was first
introduced in [26, 27] for control of regular linear systems with finite-dimensional
exosystems. The second controller uses the observer-based structure that was used
to solve the robust output regulation problem for an infinite-dimensional exosystem
in [17] in the case where the plant had bounded input and output operators. In this
paper we generalize both of the controller structures to accommodate an infinite-
dimensional internal model and unbounded operators B, Bd, and C in the plant. In
particular, this requires the use of new techniques in the analysis of the well-posedness
and stability of the resulting closed-loop systems. The constructions we present allow
the use of unbounded feedback and output injection operators in achieving exponential
stability of the pairs (A,B) and (C,A).
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The two controllers that we construct possess slightly differing properties. In the
case of an infinite-dimensional exosystem the reference and disturbance signals are
required to have a certain minimum level of smoothness in order for the robust output
regulation problem to be solvable, and the exact level depends on the behavior of the
transfer function P (λ) = CΛR(λ,A)B + D of the plant at the frequencies λ = iωk

of the exosystem [21, 17]. More precisely, faster growth of the norms ‖P (iωk)
†‖ of

the Moore–Penrose pseudoinverses of P (iωk) as |k| → ∞ leads to a higher minimal
level of smoothness for yref (t) and w(t). Our results demonstrate that the required
level of smoothness is in general lower in the case of the new controller structure than
in the case of the observer-based controller structure. Moreover, the new controller
structure can be used in a situation where the plant has a larger number of inputs than
outputs, whereas the construction of the second observer-based controller requires that
the input and output spaces of the plant are isomorphic.

Since the output operator C of the plant is in general unbounded, the regulation
error e(t) = y(t) − yref (t) is not guaranteed to converge to zero as t → ∞. In this
paper the convergence of the regulation error is instead considered in the sense that∫ t+1

t

‖y(s)− yref (s)‖ds→ 0 as t→∞.(1.4)

This condition is equivalent to requiring that the averages 1
ε

∫ t+ε

t
‖e(s)‖ds of the error

over the intervals [t, t + ε] for any fixed ε > 0 converge to zero as t → ∞. The as-
sumption that the exosystem (1.2) is infinite-dimensional further leads to a situation
where the regulation error is not guaranteed to decay at an exponential rate. How-
ever, it has been observed in [31, 7] that under suitable assumptions on the plant (1.1)
with bounded operators B and C it is possible to achieve rational decay of the reg-
ulation error for sufficiently smooth reference and disturbance signals. In this paper
we present new results that establish a priori decay rates for the regulation error
for sufficiently smooth reference and disturbance signals. The results we present are
based on a new method for nonuniform stabilization of the infinite-dimensional inter-
nal model in the controller, and on the subsequent analysis of the closed-loop system
using recent results on nonuniform stability of semigroups of operators [23, 4, 6, 3].
Beyond obtaining decay rates for the regulation error for the particular controllers,
we introduce a general methodology for applying the theory of nonuniform stability
of semigroups in the study of regular linear control systems.

The following theorem presents a simplified version of the main result regarding
the nonuniform decay rates of the regulation error. The result demonstrates that
the rate of decay of the regulation error is dependent on the rate of growth of the
norms ‖P (iωk)

†‖ as |k| → ∞. For the detailed assumptions on the system (1.1), the
exosystem (1.2), and the controller (1.3), see section 2. A more general version of
Theorem 1.1 is presented in section 6. Here we denote by ‖x‖D(A) = ‖Ax‖+ ‖x‖ the
graph norm of a linear operator A.

Theorem 1.1. Assume B and Bd are bounded, supk∈Z‖R(iωk, A)‖ <∞, and the
pair (CΛ, A) can be stabilized with bounded output injection.

If there exist M,α0 > 0 such that ‖P (iωk)
†‖ ≤M(1 + |ωk|α0) for all k ∈ Z, then

for any α > 2α0 + 1 the controllers in this paper can be constructed in such a way
that ∫ t+1

t

‖e(s)‖ds ≤M e
e

(
log t

t

) 1
α (‖x0‖D(A) + ‖z0‖D(G1) + ‖v0‖D(S)

)
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for some M e
e > 0 and for all v0 ∈ D(S), x0 ∈ D(A), and z0 ∈ D(G1).

If ‖P (iωk)
†‖ ≤ Meα0|ωk| for some M,α0 > 0 and for all k ∈ Z, then for any

α > α0 the controllers can be constructed in such a way that∫ t+1

t

‖e(s)‖ds ≤ αM e
e

log t

(‖x0‖D(A) + ‖z0‖D(G1) + ‖v0‖D(S)

)
for some M e

e > 0 and for all v0 ∈ D(S), x0 ∈ D(A), and z0 ∈ D(G1).
The new controller structure used in this paper was introduced in [26] to solve the

robust output regulation problem in the situation where robustness is only required
with respect to a given class O0 of perturbations. This is the case, for example, if a
single controller is required to regulate a set {P1(λ), . . . , PN (λ)} of plants or states
of the same plant, or when only some of the parameters of the plant are known to
contain uncertainty. In such a situation it is possible that the internal model in the
controller can be replaced with a reduced order internal model containing smaller
numbers of copies of some of the frequencies of the exosystem [29]. In this paper
we generalize the controller achieving robustness with respect to a given class O0 of
perturbations presented in [26, 27] for regular linear systems with infinite-dimensional
exosystems. Finally, we use the new controller structure to construct a novel controller
that achieves output tracking and disturbance rejection without the requirement for
robustness with respect to perturbations in the parameters of the plant.

Controller design for robust output regulation for regular linear systems with
finite-dimensional exosystems has been studied previously in [35, 27]. The output
tracking and disturbance rejection for regular linear systems without the robustness
requirement have been studied in [25, 43]. In this paper we also extend the charac-
terization of the controllers achieving output regulation via the regulator equations
and the internal model principle for regular linear systems in the situation where
the operator Bd is unbounded and the controller (1.3) is a regular linear system.
These results generalize those in [30, 35], where Bd was assumed to be bounded, and
in [25], where feedforward control was studied. The controllers constructed in this
paper are infinite-dimensional due to the full order observers and the internal models
of the exosystem (1.2). Using model reduction methods to find finite-dimensional
approximations of the presented controllers is an important topic for future research.

The paper is structured as follows. In section 2 we state the standing assumptions
on the plant, the exosystem, the controller, and the closed-loop system. In section 3 we
formulate the main control problems and present a generalization of the internal model
principle. The robust controller based on the new controller structure is constructed
in section 4. Subsequently, the same structure is used to construct a controller with
a reduced order internal model in section 4.1 and a controller for output regulation
without the robustness requirement in section 4.2. The observer-based controller is
constructed in section 5. In section 6 we study the nonuniform decay rates for the
state of the closed-loop system and the regulation error. The example on robust
output regulation for a two-dimensional heat equation is studied in section 7.

2. The system, the controller, and the closed-loop system. If X and Y
are Banach spaces and A : X → Y is a linear operator, we denote by D(A), N (A),
and R(A) the domain, kernel, and range of A, respectively. The space of bounded
linear operators from X to Y is denoted by L(X,Y ). If A : X → X , then σ(A),
σp(A), and ρ(A) denote the spectrum, the point spectrum, and the resolvent set of
A, respectively. For λ ∈ ρ(A) the resolvent operator is R(λ,A) = (λ − A)−1. The
inner product on a Hilbert space is denoted by 〈·, ·〉. For two sequences (fk)k∈Z ⊂ X
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and (gk)k∈Z ∈ R+ we denote ‖fk‖ = O(gk) if there exist Mg, Ng > 0 such that
‖fk‖ ≤ Mggk whenever |k| ≥ Ng. Similarly, for f : I ⊂ R → X and g : R+ → R+

we denote ‖f(t)‖ = O(g(|t|)) if there exist Mg, Tg > 0 such that ‖f(t)‖ ≤ Mgg(|t|)
whenever |t| ≥ Tg. We denote f(t) � g(t) and fk � gk if there exist M1,M2 > 0 such
that f(t) ≤M1g(t) and fk ≤M2gk for all values of the parameters t and k.

Throughout the paper we assume that the plant (A,B,Bd, C,D) in (1.1) is a
regular linear system [38, 39, 36] with state x(t) ∈ X , input u(t) ∈ U , output y(t) ∈ Y ,
and external disturbance w(t) ∈ Ud. The spaces X and Ud are Banach spaces and
U and Y are Hilbert spaces. The operator A : D(A) ⊂ X → X generates a strongly
continuous semigroup T (t) on X . For a fixed λ0 ∈ ρ(A) we define the scale spaces
X1 = (D(A), ‖(λ0 − A)·‖) and X−1 = (X, ‖R(λ0, A)·‖) (the completion of X with
respect to the norm ‖R(λ0, A)·‖) [37], [14, sec. II.5]. Also the extensions of the
operator A and the semigroup T (t) to the space X−1 are denoted by A : X ⊂ X−1 →
X−1 and T (t), respectively. The input and output operators B ∈ L(U,X−1), Bd ∈
L(Ud, X−1), and C ∈ L(X1, Y ) are admissible with respect to A and D ∈ L(U, Y ).

The admissibility of B, Bd, and C means that
∫ t

0 T (t−s)(Bu(s)+Bdw(s))ds ∈ X for
all t > 0, u ∈ L2(0, t;U), and w ∈ L2(0, t;Ud), and that for all t > 0 there exists κ > 0

such that
∫ t

0 ‖CT (s)x‖2ds ≤ κ2‖x‖2 for all x ∈ D(A). We define the Λ-extension
CΛ of C as CΛx = limλ→∞ λCR(λ,A)x with D(CΛ) consisting of those x ∈ X for
which the limit exists. If C ∈ L(X,Y ), then CΛ = C. The system (A,B,Bd, C,D)
is defined to be regular if R(R(λ0, A)[B,Bd]) ⊂ D(CΛ) for one/all λ0 ∈ ρ(A) and if
CΛR(λ,A)(Bu+Bdw)→ 0 as λ→∞ with λ > 0 for all u ∈ U and w ∈ Ud. For every
x0 ∈ X , u ∈ L2

loc(0,∞;U), and w ∈ L2
loc(0,∞;Ud) the system (1.1) has a well-defined

mild state, and its output y(t) is given by

y(t) = CΛT (t)x0 + CΛ

∫ t

0

T (t− s)(Bu(s) +Bdw(s))ds +Du(t)

for almost all t ≥ 0. The transfer functions P (λ) and Pd(λ) from û to ŷ and from ŵ
to ŷ, respectively, are given by [36, sec. 4]

P (λ) = CΛR(λ,A)B +D and Pd(λ) = CΛR(λ,A)Bd

for all λ ∈ ρ(A). We define XB = D(A) +R(R(λ0, A)B) ⊂ D(CΛ), XBd
= D(A) +

R(R(λ0, A)Bd) ⊂ D(CΛ), and X(B,Bd) = XB +XBd
= D(A) +R(R(λ0, A)[B, Bd]),

all of which are independent of the choice of λ0 ∈ ρ(A).

Assumption 2.1. The pairs (A,B) and (C,A) are exponentially stabilizable and
detectable, respectively, in the sense that there exist admissible operatorsK ∈ L(X1, U)
and L ∈ L(Y,X−1) for which (

A,
[
B, L, Bd

]
,

[
C
K

])
(2.1)

is a regular linear system and the semigroups generated by (A + BKΛ)|X and (A +
LCΛ)|X are exponentially stable.

We pose the assumption on the regularity of (2.1) since K and L are allowed
to be unbounded. More details on stabilizability and detectability of regular linear
systems can be found in [33, 40]. For techniques for choosing K and L, see, for
instance, [32, 42, 12].



1572 LASSI PAUNONEN

The reference and disturbance signals are generated by an exosystem (1.2) on a
separable Hilbert space W = �2(Z;C). We denote by {φk}k∈Z the canonical orthonor-
mal basis of W . The operator S : D(S) ⊂W → W is defined as

Sv =
∑
k∈Z

iωk〈v, φk〉φk, v ∈ D(S) = { v ∈ W
∣∣ ∑
k∈Z

|ωk|2|〈v, φk〉|2 <∞},
where the eigenvalues {iωk}k∈Z ⊂ iR of S are distinct and have a uniform gap, i.e.,
infk �=l|ωk − ωl| > 0. The operator S generates an isometric group TS(t) on W . We
finally assume that E ∈ L(W,X) and F ∈ L(W,Y ) are Hilbert–Schmidt operators,
i.e., (Eφk)k∈Z ∈ �2(Ud) and (Fφk)k∈Z ∈ �2(Y ).

All the results presented in this paper also trivially apply to the situation where
W = Cq for some q ∈ N and S = diag(iωk)

q
k=1 is a diagonal matrix.

Assumption 2.2. The operatorsK and L in Assumption 2.1 can be chosen in such
a way that

PK(iωk) = (CΛ +DKΛ)R(iωk, A+BKΛ)B +D,

PL(iωk) = CΛR(iωk, A+ LCΛ)(B + LD) +D

are surjective for all k ∈ Z.

Assumption 2.2 requires that none of the frequencies {iωk}k ⊂ σ(S) is a trans-
mission zero of the transfer functions PK(λ) or PL(λ) of the stabilized systems
(A + BKΛ, B, CΛ + DKΛ, D) and (A + LCΛ, B + LD,CΛ, D), respectively. Since
transmission zeros are invariant under state feedback and output injection, Assump-
tion 2.2 is satisfied whenever {iωk}k ⊂ ρ(A) and P (iωk) are surjective, and if it is
satisfied for some K and L, then it is satisfied for all stabilizing operatorsK and L. In
the case {iωk}k ⊂ ρ(A) the surjectivity of P (iωk) has been shown to be necessary for
robust output regulation; see [9, Cor. V.3], [25, Thm. V.2], and [30, sec. 5]. However,
Assumption 2.2 can also be used if {iωk}k ∩ σ(A) �= ∅, which is the case, e.g., for the
heat system in section 7. For examples on verifying Assumption 2.2 and locating the
zeros of infinite-dimensional systems, see [21, sec. 5], [17, sec. 9], and [11].

In this paper we will solve the robust output regulation problem with a dynamic
error feedback controller (1.3) on a Banach space Z. We assume that G1 : D(G1) ⊂
Z → Z generates a semigroup on Z, and G2 ∈ L(Y, Z−1) and K ∈ L(Z1, U) are
admissible, and (G1,G2,K) is a regular linear system. We denote by KΛ the Λ-
extension of K and for λ0 ∈ ρ(G1) we define ZG2 = D(G1)+R(R(λ0,G1)G2) ⊂ D(KΛ).
Also the extension of G1 to the space Z−1 is denoted by G1 : Z ⊂ Z−1 → Z−1.

The system and the controller can be written together as a closed-loop system on
the Banach space Xe = X×Z. This composite system with state xe(t) = (x(t), z(t))T

can be written on X−1 × Z−1 as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0,

e(t) = CeΛxe(t) +Dev(t),

where e(t) = y(t)− yref (t) is the regulation error, xe0 = (x0, z0)
T ,

Ae =

[
A BKΛ

G2CΛ G1 + G2DKΛ

]
, Be =

[
BdE
G2F

]
,
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Ce =
[
CΛ, DKΛ

]
, and De = F . We also denote B0

e =
[
Bd

0
0
G2

]
∈ L(Ue, X−1 × Z−1)

where Ue = Ud × Y so that Be = B0
e

[
E
F

]
. We choose the domain of Ae as

D(Ae) =

{[
x
z

]
∈ XB × ZG2

∣∣∣∣∣
{

Ax+BKΛz ∈ X
G1z + G2(CΛx+DKΛz) ∈ Z

}
.(2.2)

Theorem 2.3. The closed-loop system (Ae, Be, Ce, De) is a regular linear system.
For every λ ∈ ρ(Ae) we have R(B0

e ) ⊂ R(λ−Ae
e) and R(λ,Ae)B

0
e = R(λ,Ae

e)B
0
e where

Ae
e =
[

A
G2CΛ

BKΛ

G1+G2DKΛ

]
: Xe → X−1 × Z−1 with domain D(Ae

e) = X(B,Bd) × ZG2 .

Proof. The results in [39, sec. 7] imply that (Ae, B
0
e , Ce) is regular, since it is part

of a system obtained from the regular linear system([
A 0
0 G1

]
,

[
B Bd 0
0 0 G2

]
,

[
CΛ 0
0 KΛ

]
,

[
D 0 0
0 0 0

])

with admissible output feedback K̂ =
[
0
I
0
0
I
0

]T
, and thus (Ae, Be, Ce, De) is regular as

well. Moreover, the resolvent identities in [39, Prop. 6.6] and a straightforward com-
putation show that for λ ∈ ρ(Ae) with large Reλ we have R(λ,Ae)B

0
e = R(λ,Ae

e)B
0
e .

Together with the resolvent identity, this implies the last claim of the theorem.

2.1. The class of perturbations. In this paper the parameters of the plant
are perturbed in such a way that the operators A, B, Bd, C, and D are changed
to Ã : D(Ã) ⊂ X → X , B̃ ∈ L(U, X̃−1), B̃d ∈ L(U, X̃−1), C̃ ∈ L(X̃1, Y ), and
D̃ ∈ L(U, Y ), respectively. Here X̃1 and X̃−1 are the scale spaces of X related to the
operator Ã. We assume that (Ã, B̃, B̃d, C̃, D̃) is a regular linear system. Moreover, the
operators E and F are perturbed in such a way that Ẽ ∈ L(W,X) and F̃ ∈ L(W,Y )
are Hilbert–Schmidt. For λ ∈ ρ(Ã) we denote by P̃ (λ) = C̃ΛR(λ, Ã)B̃ + D̃ and
P̃d(λ) = C̃ΛR(λ, Ã)B̃d the transfer functions of the perturbed plant.

Definition 2.4. The class O of considered perturbations consists of operators
(Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) satisfying the above assumptions. In particular, the class O
contains the nominal plant, i.e., (A,B,Bd, C,D,E, F ) ∈ O.

We denote the operators of the closed-loop system consisting of the perturbed
plant and the controller by C̃e =

[
C̃Λ, D̃KΛ

]
, D̃e = F̃ , and

Ãe =

[
Ã B̃KΛ

G2C̃Λ G1 + G2D̃KΛ

]
, B̃e =

[
B̃dẼ

G2F̃
]
.

3. The robust output regulation problem. The main control problem stud-
ied in this paper is defined in the following.

The robust output regulation problem. Choose (G1,G2,K) in such a way
that the following are satisfied:

(a) The semigroup Te(t) generated by Ae is strongly stable.
(b) For all initial states xe0 ∈ Xe and v0 ∈W the regulation error satisfies∫ t+1

t

‖e(s)‖ds→ 0 as t→∞.(3.1)

(c) If (A,B,Bd, C,D,E, F ) are perturbed to (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O in such a
way that the perturbed closed-loop system is strongly stable, then for all initial
states xe0 ∈ Xe and v0 ∈W the regulation error satisfies (3.1).
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If B and C are bounded, then the property (3.1) in the control problem is equiv-
alent to ‖e(t)‖ → 0 as t→∞ (see the proof of Theorem 3.3 for details). In section 6
we will in addition consider rates of convergence of the integrals in (3.1).

Definition 3.1. We call a controller robust with respect to a given perturbation
(Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O for which the perturbed closed-loop system is strongly stable

if for these perturbed operators the regulation error satisfies
∫ t+1

t
‖e(s)‖ds → 0 as

t→∞ for all xe0 ∈ Xe and v0 ∈W .

Remark 3.2. Although not considered explicitly in the problem, robust controllers
also tolerate perturbations in G2 and K as long as the closed-loop stability and any
additional conditions are satisfied. This is advantageous in control design, because it
sometimes allows replacing K and G2 with sufficiently accurate approximations.

The control problem without the robustness requirement is referred to as the
output regulation problem.

The output regulation problem. Choose the controller (G1,G2,K) in such
a way that parts (a) and (b) of the robust output regulation problem are satisfied.

The following theorem characterizes the controllers solving the output regulation
problem in terms of the solvability of the so-called regulator equations [15, 9, 17].
The assumption that the Sylvester equation ΣS = AeΣ + Be has a solution Σ ∈
L(W,Xe) satisfyingR(Σ) ⊂ D(CeΛ) guarantees that for all initial states v0 ∈W of the
exosystem the closed-loop state and the regulation error have well-defined behavior
as t → ∞. The expressions for Ae, Be, Ce, and De can be used to formulate the
regulator equations using the parameters of the plant (1.1) and the controller (1.3).

Theorem 3.3. Assume the controller (G1,G2,K) stabilizes the closed-loop system
strongly in such a way that the Sylvester equation ΣS = AeΣ + Be on D(S) has a
solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(CeΛ). Then the following are equivalent:

(a) The controller (G1,G2,K) solves the output regulation problem.
(b) The regulator equations

ΣS = AeΣ +Be,(3.2a)

0 = CeΛΣ+De(3.2b)

on D(S) have a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(CeΛ).

Proof. Similarly as in the proof of [30, Lem. 4.3], equation (3.2a) implies

∫ t

0

Te(t− s)BeTS(s)vds = ΣTS(t)v − Te(t)Σv

for all v ∈ D(S), and since the operators on both sides of the equation are in L(W,Xe)
and D(S) is dense in W , the identity holds for all v ∈ W . Thus for all xe0 ∈ Xe and
v0 ∈ W the mild state of the closed-loop system has the form xe(t) = Te(t)(xe0 −
Σv0) + ΣTS(t)v0. Since the closed-loop system is regular, we have that Te(t)(xe0 −
Σv0) ∈ D(CeΛ) for almost all t ≥ 0, and the property R(Σ) ⊂ D(CeΛ) implies
ΣTS(t)v0 ∈ D(CeΛ). For almost all t ≥ 0 the regulation error is thus given by

e(t) = CeΛxe(t) +Dev(t) = CeΛTe(t)(xe0 − Σv0) + (CeΛΣ+De)TS(t)v0.(3.3)

If (b) is satisfied, then the regulator equations (3.2) have a solution. The for-
mula (3.3) and the regulation constraint CeΛΣ+De = 0 imply e(t) = CeΛTe(t)(xe0 −
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Σv0) for almost all t ≥ 0. The admissibility of Ce implies that there exists κ > 0 such

that
∫ 1

0 ‖CeΛTe(s)x‖ds ≤ κ‖x‖ for all x ∈ Xe. Since Te(t) is strongly stable, we have

∫ t+1

t

‖e(s)‖ds =
∫ 1

0

‖CeΛTe(s)Te(t)(xe0 − Σv0)‖ds ≤ κ‖Te(t)(xe0 − Σv0)‖ → 0

as t→∞. Thus the controller solves the output regulation problem and (a) holds.
Assume now that (a) is satisfied and the controller solves the output regulation

problem. By assumption, there exists Σ ∈ L(W,Xe) such that (3.2a) is satisfied. Our
aim is to show CeΛΣ +De = 0, which will imply that (b) holds. The formula (3.3)
implies (CeΛΣ +De)TS(t)v0 = e(t)− CeΛTe(t)(xe0 − Σv0), and since the closed-loop
system is strongly stable and (3.1) holds, we have

∫ t+1

t

‖(CeΛΣ +De)TS(s)v0‖ds ≤
∫ t+1

t

‖CeΛTe(s)(xe0 − Σv0)‖ds+
∫ t+1

t

‖e(s)‖ds→ 0

as t → ∞ for all v0 ∈ W and xe0 ∈ Xe. If k ∈ Z, v0 = φk ∈ W , and xe0 ∈ Xe, then
TS(s)φk = eiωksφk for all s ≥ 0 and

‖(CeΛΣ+De)φk‖ =
∫ t+1

t

‖(CeΛΣ+De)TS(s)φk‖ds→ 0 as t→∞,

which implies (CeΛΣ+De)φk = 0. Since k ∈ Z was arbitrary and {φk}k∈Z is a basis
of W , we have CeΛΣ +De = 0, and thus Σ is a solution of (3.2).

The proof of Theorem 3.3 shows that even in a more general situation where S
is a generator of a general strongly continuous semigroup TS(t) on a Banach space
W , the regulation error has the form (3.3) whenever ΣS = AeΣ + Be has a solution
Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(CeΛ). In this situation the regulator equations
are sufficient for the solution of the robust output regulation problem. The regulator
equations are also necessary whenever TS(t) satisfies a condition of the form

∫ t+1

t

‖QTS(s)v0‖ds t→∞−→ 0 ⇒ Qv0 = 0

for any Q ∈ L(W,Y ) and v0 ∈ W . This is in particular true for all finite-dimensional
exosystems with σ(S) ⊂ C+ as well as for infinite block-diagonal exosystems.

If Bd and G2 are bounded, then Σ in (3.2a) satisfies Σ(D(S)) ⊂ D(Ae). In this
situation (3.3) implies that if equations (3.2) are satisfied, then for all xe0 ∈ D(Ae)
and v0 ∈ D(S) the regulation error decays to zero pointwise, i.e., ‖e(t)‖ → 0 as
t→∞.

The following lemma presents a sufficient condition for the solvability of (3.2a).

Lemma 3.4. Assume the closed-loop system is strongly stable, {iωk}k∈Z ⊂ ρ(Ae),
and (R(iωk, Ae)Beφk)k∈Z ∈ �2(Xe). Then the Sylvester equation ΣS = AeΣ +Be on
D(S) has a unique solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(CeΛ).

Proof. Define Σ : D(Σ) ⊂ W → Xe by Σv =
∑

k∈Z
〈v, φk〉R(iωk, Ae)Beφk

for all v ∈ D(Σ). By [17, Lem. 6] the operator Σ ∈ L(W,Xe,−1) is the solution
of the Sylvester equation ΣS = AeΣ + Be, and (R(iωk, Ae)Beφk)k∈Z ∈ �2(Xe)
clearly implies Σ ∈ L(W,Xe). To show R(Σ) ⊂ D(CeΛ), we note that the re-
solvent identity R(iωk, Ae) = R(1 + iωk, Ae) + R(1 + iωk, Ae)R(iωk, Ae) implies
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(〈v, φk〉CeΛR(iωk, Ae)Beφk)k∈Z ∈ �1(Y ). For all v ∈W and λ > 0 we have

λCeR(λ,Ae)Σv0 =
∑
k∈Z

〈v0, φk〉λCeR(λ,Ae)R(iωk, Ae)Beφk

=
∑
k∈Z

λ〈v0, φk〉
λ− iωk

CeΛR(iωk, Ae)Beφk − CeΛR(λ,Ae)B
0
e

∑
k∈Z

λ〈v0, φk〉
λ− iωk

[
Eφk

Fφk

]

−→
∑
k∈Z

〈v0, φk〉CeΛR(iωk, Ae)Beφk

as λ→∞ since (Ae, B
0
e , Ce) is regular and since E and F are Hilbert–Schmidt. Thus

Σv ∈ D(CeΛ) by definition.

3.1. The internal model principle. We conclude this section by presenting
the internal model principle that characterizes the controllers solving the robust out-
put regulation problem. We use the following two alternate definitions for an internal
model.

Definition 3.5. A controller (G1,G2,K) is said to satisfy the G-conditions if
R(iωk − G1) ∩R(G2) = {0} ∀k ∈ Z,(3.4a)

N (G2) = {0}.(3.4b)

Definition 3.6. Assume dimY < ∞. A controller (G1,G2,K) is said to in-
corporate a p-copy internal model of the exosystem S if for all k ∈ Z we have
dimN (iωk − G1) ≥ dim Y .

Our first result characterizes the robustness of a controller with respect to in-
dividual perturbations (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O. The internal model principle is
presented in Theorem 3.8.

Theorem 3.7. Assume the controller solves the output regulation problem. Let
(Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O be such that the perturbed closed-loop system is strongly
stable, {iωk}k∈Z ⊂ ρ(Ã), and Σ̃S = ÃeΣ̃ + B̃e has a solution. Then the controller
is robust with respect to (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) if and only if for every k ∈ Z the
equations

P̃ (iωk)KΛzk = −P̃d(iωk)Ẽφk − F̃ φk,(3.5a)

(iωk − G1)zk = 0(3.5b)

have solutions zk ∈ D(G1). If equations (3.5) have a solution zk ∈ D(G1), then it is
unique.

Proof. The proof can be completed exactly as the proof of [30, Thm. 5.1] (where
we replace E by BdE) since R(iωk, Ãe)B̃eφk = R(iωk, Ã

e
e)B̃eφk by Theorem 2.3.

Theorem 3.8. Assume (G1,G2,K) stabilizes the closed-loop system strongly in
such a way that {iωk}k∈Z ⊂ ρ(Ae) and (R(iωk, Ae)Beφk)k∈Z

∈ �2(Xe). If the con-
troller satisfies the G-conditions in Definition 3.5, then it solves the robust output
regulation problem. The controller is guaranteed to be robust with respect to all per-
turbations for which the perturbed closed-loop system is stable, {iωk}k∈Z ⊂ ρ(Ãe), and
ΣS = ÃeΣ + B̃e has a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(C̃eΛ).

Moreover, if {iωk}k∈Z ⊂ ρ(A), then the following hold.
(a) The controller solves the robust output regulation problem if and only if it

satisfies the G-conditions.
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(b) If dimY = p <∞, the controller solves the robust output regulation problem
if and only if it incorporates a p-copy internal model of the exosystem, i.e.,
dimN (iωk − G1) ≥ p for all k ∈ Z.

In both cases the controllers are guaranteed to be robust with respect to perturbations
for which the perturbed closed-loop system is stable, {iωk}k∈Z ⊂ ρ(Ã) ∩ ρ(Ãe), and
ΣS = ÃeΣ + B̃e has a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(C̃eΛ).

Proof. Since (R(iωk, Ae)Beφk)k∈Z
∈ �2(Xe), we have from Lemma 3.4 that ΣS =

AeΣ+Be has a solution Σ ∈ L(W,Xe) such thatR(Σ) ⊂ D(CeΛ). Let (Ã, B̃, B̃d, C̃, D̃,
Ẽ, F̃ ) ∈ O be such that {iωk}k∈Z ⊂ ρ(Ãe) and ΣS = ÃeΣ + B̃e has a solution Σ =
(Π,Γ)T ∈ L(W,Xe) satisfying R(Σ) ⊂ D(C̃eΛ). If k ∈ Z, then ΣSφk = ÃeΣφk+B̃eφk

implies (iωk− Ãe)Σφk = B̃eφk. By Lemma 2.3 we have (Πφk,Γφk)
T ∈ X(B̃,B̃d)

×ZG2

and

[
(iωk − Ã)Πφk − B̃KΛΓφk

−G2C̃ΛΠφk + (iωk − G1)Γφk − G2D̃KΛΓφk

]
=

[
B̃dẼφk

G2F̃ φk

]
.

The second line implies (iωk − G1)Γφk = G2(C̃ΛΠφk + D̃KΛΓφk + F̃ φk), and the
G-conditions further imply C̃eΛΣφk + D̃eφk = C̃ΛΠφk + D̃KΛΓφk + F̃ φk = 0. Since
k ∈ Z was arbitrary and {φk}k∈Z is a basis of W , we have that C̃eΛΣ+ D̃e = 0. Since
the perturbations in O were arbitrary, we have from Theorem 3.3 that the regulation

errors for the nominal and the perturbed systems satisfy
∫ t+1

t ‖e(s)‖ds→ 0 as t→∞.

Under the assumptions {iωk}k∈Z ⊂ ρ(A) and {iωk}k∈Z ⊂ ρ(Ã), the rest of the
theorem can be proved using Theorem 3.7 exactly as in [30].

Lemma 3.9. If the operators (G1,G2) satisfy the G-conditions, and if K : D(K) ⊂
Z → Y is such that N (iωk − G1) ⊂ N (K) for all k ∈ Z, then also R(iωk − G1 +
G2K) ∩R(G2) = {0} for all k ∈ Z.

Proof. Let w = (iωk − G1 − G2K)z = G2y for some k ∈ Z, z ∈ D(K), and
y ∈ Y . This implies (iωk − G1)z = G2(y + Kz) ∈ R(iωk − G1) ∩ R(G2), and we
thus have z ∈ N (iωk − G1). Due to our assumptions we then also have Kz = 0 and
w = (iωk − G1)z = G2y, which finally imply w = 0 due to (3.4a).

Lemma 3.10. Assume the controller (G1,G2,K) satisfies the G-conditions, and let
(Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O. If k ∈ Z and iωk ∈ ρ(Ã) ∩ ρ(Ãe), then

R(iωk, Ãe)Beφk =

[
R(iωk, Ã)(B̃Kzk + B̃dẼφk)

zk

]
,

where zk ∈ Z is the unique element such that zk ∈ N (iωk − G1) and P̃ (iωk)Kzk =
−P̃d(iωk)Ẽφk − F̃ φk.

Proof. By Theorem 2.3 we have that (xk, zk)
T = R(iωk, Ãe)B̃eφk is the unique

element (xk, zk)
T ∈ X(B̃,B̃d)

× ZG2 satisfying

{
(iωk − Ã)xk = B̃KΛzk + B̃dẼφk,

(iωk − G1)zk = G2(C̃Λxk +DKΛzk + F̃ φk).

Thus xk = R(iωk, Ã)(B̃KΛzk+B̃dẼφk) and the G-conditions (3.4) imply zk ∈ N (iωk−
G1) and 0 = C̃Λxk + D̃KΛzk + F̃ φk = P̃ (iωk)KΛzk + P̃d(iωk)Ẽφk + F̃ φk.
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4. The new controller structure. In this section we construct a robust con-
troller using the general internal model based structure introduced in [27, 26]. The
construction of the controller is completed in steps, and the required properties of the
parts of the controller are verified in the proof of Theorem 4.1.

Step 1◦. The state space of the controller is chosen as Z = Z0 × X , and we
choose the structures of the operators (G1,G2,K) as

G1 =

[
G1 G2(CΛ +DK2Λ)
0 A+BK2Λ + L(CΛ +DK2Λ)

]
, G2 =

[
G2

L

]
,

and K = [K1, −K2Λ]. Due to Assumption 2.1 concerning the stabilizability of (A,B)
and the detectability of (C,A), we can choose K2 ∈ L(X1, U) and L1 ∈ L(Y,X−1)
in such a way that (A + BK2Λ)|X and (A + L1CΛ)|X generate exponentially stable
semigroups and

(
A, [B, L1, Bd],

[
C
K2

]
, D
)
is regular. For λ ∈ C+ we define

PL(λ) = CΛR(λ,A+ L1CΛ)(B + L1D) +D.

We have from [39, sec. 7] that (A+L1CΛ, B+L1D,CΛ, D) is a regular linear system,
and thus supω∈R‖PL(iω)‖ <∞.

Step 2◦. The operator G1 is the internal model of the exosystem (1.2), and it is
defined by choosing Z0 = �2(Y ), and

G1 = diag
(
iωkIY

)
k∈Z

, D(G1) = { (zk)k∈Z ∈ Z0 | (ωkzk)k∈Z ∈ �2(Y ) }.

The operator K1 =
(
. . . ,K1,−1,K10,K11, . . .) ∈ L(Z0, U) is assumed to be Hilbert–

Schmidt (i.e., (‖K1k‖)k∈Z ∈ �2(C), which is in particular always true if dimU <∞),
and G2 = (G2k)k∈Z ∈ L(Y, Z0). We choose the components K1k ∈ L(Y, U) of K1

in such a way that PL(iωk)K1k ∈ L(Y ) are boundedly invertible. This is possible
since PL(iωk) are surjective by Assumption 2.2. For example, we can choose K1k =

γk
PL(iωk)

†

‖PL(iωk)†‖ for all k ∈ Z and for a sequence (γk)k∈Z ⊂ �2(C) satisfying γk �= 0 for all

k ∈ Z. For more concrete choices of K1k, see Corollary 4.3.
If iωk ∈ ρ(A) for some k, then PL(iωk) = (I − CΛR(iωk, A)L1)

−1P (iωk) im-
plies that PL(iωk)K1k is boundedly invertible if and only if P (iωk)K1k is boundedly
invertible.

Step 3◦. We define H ∈ L(Z0, X) by

Hz =
∑
k∈Z

R(iωk, A+ L1CΛ)(B + L1D)K1kzk for z = (zk)k∈Z ∈ Z0.

Step 4◦. We choose G2 ∈ L(Y, Z0) as

G2 = (G2k)k∈Z = (−(PL(iωk)K1k)
∗)k∈Z.

Finally, we define L = L1 +HG2 ∈ L(Y,X−1) and choose the domain of G1 to be

D(G1) = D(G1)×D((A + (B + LD)K2Λ + LCΛ)|X).

The following theorem presents conditions for the solvability of the robust output
regulation problem. It should be noted that (‖PL(iωk)K1k‖)k∈Z ∈ �2(C) implies
‖(PL(iωk)K1k)

−1‖ → ∞ as |k| → ∞, and thus the condition (4.1) requires that
‖Eφk‖ and ‖Fφk‖ decay sufficiently fast as |k| → ∞.
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Theorem 4.1. If E ∈ L(W,Ud) and F ∈ L(W,Y ) satisfy(‖CΛR(iωk, A+ L1CΛ)Bd‖‖(PL(iωk)K1k)
−1‖‖Eφk‖

)
k∈Z
∈ �2(C),(4.1a) (‖(PL(iωk)K1k)

−1‖‖Fφk‖
)
k∈Z
∈ �2(C),(4.1b)

then the controller solves the robust output regulation problem.
The controller is then guaranteed to be robust with respect to all perturbations in O

for which the strong closed-loop stability is preserved, {iωk}k∈Z ⊂ ρ(Ãe), {iωk}|k|≥N ⊂
ρ(Ã) for some N ∈ N, P̃ (iωk)K1k are invertible whenever |k| ≥ N , and for which(

‖R(iωk, Ã)
(
B̃dẼφk − B̃K1k(P̃ (iωk)K1k)

−1ỹk

)
‖
)
|k|≥N

∈ �2(C),(4.2a) (
‖(P̃ (iωk)K1k)

−1ỹk‖
)
|k|≥N

∈ �2(C),(4.2b)

where ỹk = P̃d(iωk)Ẽφk + F̃ φk.

In the proof of Theorem 4.1 we will see that if {iωk}k∈Z ⊂ ρ(A), then the condi-
tions (4.1) can alternatively be replaced with conditions (4.2) for the nominal plant.
However, the condition (4.1) has the advantage that the condition only involves the
resolvent and the transfer function of the stabilized plant. This is an advantage if
iωk /∈ ρ(A) for some k, as is the case in the example in section 7. In the situation
where sup|k|≥N‖R(iωk, A)‖ < ∞ for some N ∈ N, also the norms ‖R(iωk, A)B‖ and
‖R(iωk, A)Bd‖ are uniformly bounded with respect to k ∈ Z with |k| ≥ N , and the
condition (4.2) simplifies to the following form.

Corollary 4.2. If there exists N ∈ N such that {iωk}|k|≥N ⊂ ρ(A) and
sup|k|≥N‖R(iωk, A)‖ <∞, then the conclusions of Theorem 4.1 hold if

(‖(P (iωk)K1k)
−1‖(‖Pd(iωk)Eφk‖+ ‖Fφk‖)

)
|k|≥N

∈ �2(C)

and the controller is guaranteed to be robust with respect to perturbations in O for
which the strong closed-loop stability is preserved, {iωk}k∈Z ⊂ ρ(Ãe), {iωk}|k|≥N ⊂
ρ(Ã), sup|k|≥N‖R(iωk, Ã)‖ <∞, and

(
‖(P̃ (iωk)K1k)

−1‖(‖P̃d(iωk)Ẽφk‖+ ‖F̃φk‖)
)
|k|≥N

∈ �2(C).

It should also be noted that if ‖CΛR(iωk, A)L1‖ is uniformly bounded for large
|k|, then the asymptotic rate of ‖PL(iωk)

†‖ is at most equal to the rate of ‖P (iωk)
†‖.

Due to our assumptions the norms ‖CΛR(iωk, A+L1CΛ)Bd‖ are uniformly bounded
with respect to k ∈ Z, and it is possible that ‖CΛR(iωk, A + L1CΛ)Bd‖ → 0 as
k → ±∞. Thus the summability condition for (‖Eφk‖)k∈Z in (4.1) is in general weaker
or equivalent compared to the summability condition for the sequence (‖Fφk‖)k∈Z.

The following corollary presents specific choices ofK1 in the cases where ‖PL(iωk)
†‖

are either polynomially or exponentially bounded.

Corollary 4.3. The following hold.
(a) If ‖PL(iωk)

†‖ = O(|ωk|α) for some α > 0 and (γk)k∈Z ∈ �2(C), the choice

K1k = γk
PL(iωk)

†

‖PL(iωk)†‖(4.3)
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solves the robust output regulation problem for operators E and F that satisfy( |ωk|α
|γk| (‖CΛR(iωk, A+ L1CΛ)Bd‖‖Eφk‖+ ‖Fφk‖)

)
k∈Z

∈ �2(C).

If we in particular choose γk = |ωk|−β for some β > 1/2 whenever ωk �= 0,
then |ωk|α/|γk| = |ωk|α+β whenever ωk �= 0.

(b) If ‖PL(iωk)
†‖ = O(eα|ωk|) for some α > 0 and (γk)k∈Z ∈ �2(C), the choice (4.3)

solves the robust output regulation problem for operators E and F that satisfy(
eα|ωk|

|γk| ‖CΛR(iωk, A+ L1CΛ)Bd‖(‖Eφk‖+ ‖Fφk‖)
)

k∈Z

∈ �2(C).

We begin the proof of Theorem 4.1 by considering the stability properties of the
semigroup generated by G1 −G2G

∗
2. If dimYk <∞, the stability follows from [5].

Lemma 4.4. Assume U and Yk for k ∈ Z are Hilbert spaces. Consider Z0 =
{ (zk)k∈Z ∈ ⊗k∈ZYk |

∑
k∈Z
‖zk‖2Yk

<∞} with inner product 〈z, v〉 =∑k∈Z
〈zk, vk〉Yk

for z = (zk)k and v = (vk)k. Assume {iωk}k∈Z has no finite accumulation points, and
let G1 = diag(iωkIYk

)k∈Z on Z0 with domain D(G1) = { (zk)k∈Z ∈ Z0 | (ωkzk)k ∈ Z0 }
and G2 = (G2k)k∈Z ∈ L(U,Z0). If the components G2k ∈ L(U, Yk) of G2 are surjective
and G∗

2k have closed ranges for all k ∈ Z, then the semigroup generated by G1−G2G
∗
2

is strongly stable and iR ⊂ ρ(G1 −G2G
∗
2).

Moreover, if G2k are boundedly invertible for all k ∈ Z, then ‖R(iωk, G1 −
G2G

∗
2)G2‖ = ‖G−1

2k ‖ for all k ∈ Z.

Proof. Since G1 generates a contraction semigroup, the same is true for G1 −
G2G

∗
2 [14, Cor. III.2.9], and σ(G1−G2G

∗
2) ⊂ C−. The strong stability of the semigroup

follows from the Arendt–Batty–Lyubich–Vũ Theorem [1, 24] once we show iR ⊂
ρ(G1 −G2G

∗
2).

Let iω ∈ iR be such that ω �= ωk for all k ∈ Z. We have iω ∈ ρ(G1), and if
I +G∗

2R(iω,G1)G2 is boundedly invertible, then the Woodbury formula

R(iω,G1 −G2G
∗
2) = R(iω,G1)[I −G2(I +G∗

2R(iω,G1)G2)
−1G∗

2R(iω,G1)]

implies that iω−G1+G2G
∗
2 has a bounded inverse. Since G∗

2R(iω,G1)G2 is bounded
and skew-adjoint, we have 1 ∈ ρ(−G∗

2R(iω,G1)G2) and iω ∈ ρ(G1 −G2G
∗
2).

Assume now that iω = iωn for some n ∈ Z. We will first show that there exists
c > 0 such that ‖(iωn − G1 + G2G

∗
2)z‖ ≥ c‖z‖ for all z ∈ D(G1 − G2G

∗
2). If this is

not true, there exists a sequence (zk)k∈N ⊂ D(G1 −G2G
∗
2) such that ‖zk‖ = 1 for all

k ∈ N and ‖(iωn − G1 + G2G
∗
2)zk‖ → 0 as k → ∞. Since iωn −G1 is skew-adjoint,

we have

‖(iωn −G1 +G2G
∗
2)zk‖ ≥ |Re〈(iωn −G1 +G2G

∗
2)zk, zk〉)| = ‖G∗

2zk‖2,
and thus ‖G∗

2zk‖ → 0 as k → ∞. For every k ∈ N denote zk = z1k + z2k where
z1k ∈ R(iωn −G1), z

2
k ∈ N (iωn −G1), and 1 = ‖zk‖2 = ‖z1k‖2 + ‖z2k‖2. There exists

c1 > 0 such that ‖(iωn −G1)z
1
k‖ ≥ c1‖z1k‖ for all k ∈ N. Thus

c1‖z1k‖ ≤ ‖(iωn −G1)zk‖ ≤ ‖(iωn −G1 +G2G
∗
2)zk‖+ ‖G2‖‖G∗

2zk‖ → 0

as k →∞. Moreover, ‖G∗
2z

2
k‖ ≥ ‖(G∗

2n)
†‖−1‖z2k‖, and

‖(G∗
2n)

†‖−1‖z2k‖ ≤ ‖G∗
2z

2
k‖ ≤ ‖G∗

2zk‖+ ‖G∗
2z

1
k‖ → 0
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as k → ∞. We have now shown that z1k → 0 and z2k → 0, but this contradicts the
assumption that ‖zk‖2 = 1 for all k ∈ N and thus shows that iωn − G1 + G2G

∗
2 is

lower bounded. In particular, we now have iωn /∈ σp(G1 +G2G
∗
2) and that the range

of G1 +G2G
∗
2 is closed. Finally, the Mean Ergodic Theorem [2, sec. 4.3] implies that

the range of G1 +G2G
∗
2 is dense, and we thus have iωn ∈ ρ(G1 +G2G

∗
2).

The structure of G1 and the assumption that the components G2k of G2 are
boundedly invertible imply that N (G2) = {0} and R(iωk − G1) ⊕ R(G2) = Z0 for
all k ∈ Z. Let k ∈ Z and u ∈ U , and denote z = R(iωk, G1 − G2G

∗
2)G2u. Then

R(iωk −G1) ∩R(G2) = {0} and N (G2) = {0} imply

(iωk −G1)z = G2(u−G∗
2z) ⇔

{
(iωk −G1)z = 0,
u = G∗

2z.

Thus z = (zl)l∈Z ∈ N (iωk − G1) is such that zl = 0 for all l �= k, and zk = G−∗
2k u,

which further implies ‖z‖Z0 = ‖G−∗
2k u‖Y . Since u ∈ U was arbitrary, this implies that

‖R(iωk, G1 −G2G
∗
2)G2‖ = ‖G−1

2k ‖.
Proof of Theorem 4.1. We can complete the proof by showing that the controller

(G1,G2,K) constructed in section 4 has the following properties:
(i) The controller (G1,G2,K) is regular, and it satisfies the G-conditions (3.4).
(ii) The operator G1 +G2(CΛH +DK1) generates a strongly stable semigroup.
(iii) The semigroup generated by Ae is strongly stable, and σ(Ae) ⊂ C−.
(iv) There exists Me ≥ 0 such that

‖R(iωk, Ae)Beφk‖ ≤Memax
{‖Eφk‖, ‖Fφk‖,

‖(PL(iωk)K1k)
−1‖(‖CΛR(iωk, A+ L1CΛ)Bd‖‖Eφk‖+ ‖Fφk‖)

}
.

(v) (‖R(iωk, Ãe)B̃eφk‖) ∈ �2(C) if and only if conditions (4.2) are satisfied.
The results in [39, sec. 7] show that the controller (G1,G2,K) is a regular linear

system on Z = Z0 ×X since it is a part of the system obtained from⎛
⎝[G1 0

0 A

]
,

[
G2 0
L B

]
,

⎡
⎣K1 −K2Λ

0 CΛ

0 K2Λ

⎤
⎦ ,
⎡
⎣0 0
0 D
0 0

⎤
⎦
⎞
⎠ ,

with admissible output feedback K̂ =
[
0
0
I
0
0
I

]
. It is also straightforward to verify that

for all λ ∈ ρ(G1) we have R(λ,G1)G2 = R(λ,Ge1)G2, where Ge1 : D(Ge1) ⊂ Z → Z0×X−1

is the operator G1 with domain D(Ge1) = D(G1)×X(B,L).
We will now show that (G1,G2,K) satisfies the G-conditions. The operatorG2 is of

the form G2 = (G2k)k∈Z, and its components G2k = −(PL(iωk)K1k)
∗ are boundedly

invertible for all k ∈ Z. This implies N (G2) = {0} and also further shows that
N (G2) = {0}. Let n ∈ Z be arbitrary, and assume (w, v)T = (iωn − G1)(z, x)T =
G2y ∈ R(iωn − G1) ∩ R(G2) for some (z, x)T ∈ Z × X and y ∈ Y . The property
R(λ,G1)G2 = R(λ,Ge1)G2 implies that (z, x) ∈ D(G1)×X(B,L) and[

w
v

]
=

[
(iωn −G1)z −G2CKx

(iωn −A−BK2Λ − LCK)x

]
=

[
G2y
Ly

]
,

where CK = CΛ +DK2Λ. The first line implies (iωn −G1)z = G2(CKx + y), which
means that in particular G2n(CKx+y) = (iωn−iωn)zn = 0. Since G2n is injective, we
must have CKx+y = 0. Using this, the second line above implies (iωn−A−BK2Λ)x =
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L(CKx+ y) = 0, and since iωn ∈ ρ((A+BK2Λ)|X), we must have x = 0. Using this,
we get y = −CKx = 0, and thus also (w, v)T = G2y = 0. This concludes that
R(iωn−G1)∩R(G2) = {0}. Since n ∈ Z was arbitrary, the G-conditions are satisfied.

The system (A+ L1CΛ, B + L1D,CΛ, D) is exponentially stable and regular [39,
sec. 7] and R(λ,A+L1CΛ)R(B+L1D) ⊂ XB by [39, Prop. 6.6]. There exists M ≥ 0
such that ‖PL(iωk)‖ ≤M and ‖R(iωk, A+L1CΛ)(B+L1D)‖ ≤M for all k ∈ Z, and
thus G2 ∈ L(Y, Z0) and H ∈ L(Z0, X).

Denote AL = A+L1CΛ and BL = B+L1D. If z ∈ Z and λ > 0, then analogously
as in the proof of Lemma 3.4 we have λCR(λ,AL)Hz →∑k∈Z

CΛR(iωk, AL)BLK1kzk
as λ→∞ since (AL, BL, C) is regular and since (K1kzk)k∈Z ∈ �2(U). Thus R(H) ⊂
D(CΛ), and similarly R(H) ⊂ D(K2Λ). These properties imply that we can define
C1 = CΛH +DK1 ∈ L(Z0, Y ) and

CΛHz +DK1z =
∑
k∈Z

(CΛR(iωk, AL)BL +D)K1kzk =
∑
k∈Z

PL(iωk)K1kzk.

Thus G2 = −C∗
1 . The fact that K1k were chosen so that PL(iωk)K1k are boundedly

invertible implies that the components G2k of G2 are boundedly invertible for all
k ∈ Z. We thus have from Lemma 4.4 that the semigroup generated by G1 +G2C1 =
G1 − G2G

∗
2 is strongly stable, iR ⊂ ρ(G1 + G2C1), and ‖R(iωk, G1 + G2C1)G2‖ =

‖(PL(iωk)K1k)
−1‖ for all k ∈ Z.

We will now show that the closed-loop system is strongly stable and iR ⊂ ρ(Ae).
With the chosen controller (G1,G2,K) the operator Ae becomes

Ae =

⎡
⎣ A BK1 −BK2Λ

G2CΛ G1 +G2DK1 G2CΛ

LCΛ LDK1 A+BK2 + LCΛ

⎤
⎦

with domain D(Ae) equal to

D(Ae) =

{⎡⎣ x
z1
x1

⎤
⎦ ∈ XB ×D(G1)×X(B,L)

∣∣∣∣∣
{

Ax+BK1z1 −BK2Λx1 ∈ X,
(A+BK2Λ + LCΛ)x1 + LCΛx+ LDK1z1 ∈ X

}
.

If we choose a similarity transform Qe ∈ L(X × Z0 ×X)

Qe =

⎡
⎣

I 0 0
0 I 0
−I H −I

⎤
⎦ = Q−1

e ,

we can define Âe = QeAeQ
−1
e on X ×Z0×X . The operator H is the unique solution

of the Sylvester equation HG1 = (A + L1CΛ)H + (B + L1D)K1. Analogously as in
the proof of [27, Thm. 12] we can see that

D(Âe) =

{⎡⎣ x
z1
x1

⎤
⎦ ∈ XB ×D(G1)×XL

∣∣∣∣∣
{

(A+BK2Λ)x +B(K1 −K2ΛH)z1 +BK2Λx1 ∈ X,
(A+ L1CΛ)x1 ∈ X

}
,
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where we have denoted XL = D(A) +R(R(λ0, A)L) = D(A) +R(R(λ0, A)L1). For
xe = (x, z1, x1)

T ∈ D(Âe) a direct computation using L = L1 +HG2, C1 = CΛH +
DK1, and HG1z1 = (A+ L1CΛ)Hz1 + (B + L1D)K1z1 yields

Âexe =

⎡
⎣(A+BK2Λ)x +B(K1 −K2ΛH)z1 +BK2Λx1

(G1 +G2(CΛH +DK1))z1 −G2CΛx1

(A+ L1CΛ)x1

⎤
⎦

=

⎡
⎣A+BK2Λ B(K1 −K2ΛH) BK2Λ

0 G1 +G2C1 −G2CΛ

0 0 A+ L1CΛ

⎤
⎦
⎡
⎣ x
z1
x1

⎤
⎦ .

Since G1 +G2C1 is strongly stable and iR ⊂ ρ(G1 +G2C1), and since (A+BK2Λ)|X
and (A + L1CΛ)|X generate exponentially stable semigroups and K2ΛH ∈ L(Z0, U),
the semigroup generated by Âe is strongly stable and iR ⊂ ρ(Âe). Due to similarity,
the same is true for Ae, and thus the closed-loop system is strongly stable.

To guarantee the solvability of the Sylvester equation ΣS = AeΣ + Be we need
to estimate ‖R(iωk, Ae)Beφk‖ for k ∈ Z. By Theorem 2.3 we have R(iωk, Ae)Beφk =
R(iωk, A

e
e)Beφk, where Ae

e is the operator Ae with the domain D(Ae
e) = X(B,Bd) ×

ZG2 = X(B,Bd) × D(G1) × X(B,L). This further implies that for any k ∈ Z the
element xe = R(iωk, Ae)Beφk is obtained with xe = Q−1

e x̂e from the solution of the
triangular system (iωk − Âe

e)x̂e = QeBeφk, where Âe
e is the operator Âe with domain

D(Âe
e) = X(B,Bd) ×D(G1)×D(CΛ). A direct estimate using exponential stability of

(A + BK2Λ)|X and (A + L1CΛ)|X and the admissibility properties of the operators
B, Bd, C, L1, and K2 shows that for all k ∈ Z we have

‖R(iωk, Â
e
e)QeBeφk‖ � max

{‖Eφk‖, ‖Fφk‖,
‖R(iωk, G1 +G2C1)G2‖(‖CΛR(iωk, AL)Bd‖‖Eφk‖+ ‖Fφk‖)

}
.

The condition (4.1) for the solvability of the robust output regulation problem now
follows from ‖R(iωk, G1 +G2C1)G2‖ = ‖(PL(iωk)K1k)

−1‖.
Finally, we will show that under the additional assumptions on the perturbations

the conditions (5.2) are equivalent to (‖R(iωk, Ãe)B̃eφk‖)|k|≥N ∈ �2(C). Due to the

assumption {iωk}k∈Z ⊂ ρ(Ãe) this is further equivalent to (‖R(iωk, Ãe)B̃eφk‖)k∈Z ∈
�2(C). Let k ∈ Z be such that |k| ≥ N . We begin by characterizing N (iωk −G1). Let
zk = (zk1 , x

k
1)

T ∈ N (iωk − G1), and denote CK = CΛ +DK2Λ. Then using the fact
that (G1, G2) satisfy the G-conditions in Definition 3.5, we get

[
(iωk −G1)z

k
1 −G2CKxk

1

(iωk − A−BK2Λ)x
k
1 − LCKxk

1

]
=

[
0
0

]
⇔

⎧⎨
⎩

CKxk
1 = 0,

(iωk −G1)z
k
1 = 0,

(iωk −A−BK2Λ)x
k
1 = 0,

and since iωk ∈ ρ((A + BK2Λ)|X), we have zk = (zk1 , 0)
T , where zk1 ∈ N (iωk −G1).

This immediately implies that the restriction of the operator P̃ (iωk)K to the subspace
N (iωk − G1) is given by P̃ (iωk)K1k, which is boundedly invertible by assumption. If
we denote ỹk = P̃d(iωk)Ẽφk + F̃φk, Lemma 3.10 implies

R(iωk, Ãe)B̃eφk =

⎡
⎣R(iωk, Ã)(B̃dẼφk − B̃K1k(P̃ (iωk)K1k)

−1ỹk)
z̃k
0

⎤
⎦ ,

where z̃k = (z̃lk)l∈Z ∈ Z0 is such that z̃kk = −(P̃ (iωk)K1k)
−1ỹk and z̃lk = 0 for all

l �= k. This immediately implies that (‖R(iωk, Ãe)B̃eφk‖)|k|≥N ∈ �2(C) if and only
if (4.2) are satisfied.
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4.1. Controller with a reduced order internal model. In this section we
modify the internal model in the controller in section 4 to design a controller that is
robust with respect to a predefined class O0 ⊂ O of perturbations. In this section
we assume that {iωk}k∈Z ⊂ ρ(A) and P (iωk) are boundedly invertible for all k ∈ Z.
In particular, we then have that either both U and Y are infinite-dimensional, or
dimY = dimU . The class of admissible perturbations O0 ⊂ O may be chosen freely,
but it is assumed that all its perturbations (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O0 are such that
iωk ∈ ρ(Ã) and P̃ (iωk) is boundedly invertible for all k ∈ Z. For such O0 the
construction of the reduced order internal model begins by defining

Sk = span
{
P̃ (iωk)

−1(P̃d(iωk)Ẽφk + F̃ φk)
∣∣∣ (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O0

}
⊂ U

and pk = dimSk for k ∈ Z. The number of copies of each frequency iωk of the
exosystem that we include in the reduced order internal model is equal to pk. Let

Z0 =
{
(zk)k∈Z

∣∣ zk ∈ Yk ∀k and
∑
k∈Z

‖zk‖2 <∞},
where Yk = Cpk if pk < dimY and Yk = Y if pk = dimY or pk = ∞. Define
G1 : D(G1) ⊂ Z0 → Z0 by

G1 = diag
(
iωkIYk

)
k∈Z

, D(G1) =
{
(zk)k∈Z ∈ Z0

∣∣ ∑
k∈Z

|ωk|2‖zk‖2 <∞},
and choose K1 ∈ L(Z0, U) such that K1 = (K1k)k∈Z with

K1k =

⎧⎪⎨
⎪⎩

γkQk ∈ L(Cpk , U) if pk < dimY,

γk
P (iωk)

−1

‖P (iωk)−1‖ ∈ L(Y, U) if pk = dimY or pk =∞.

Here Qk = [u1
k, . . . , u

pk

k ] ∈ L(Cpk , U), where {ul
k}pk

l=1 ⊂ U are bases of the subspaces
Sk normalized in such a way that supk‖Qk‖L(Cpk ,U) < ∞, and (γk)k∈Z ∈ �2(C) with
γk > 0. We then have that (‖K1k‖)k∈Z ∈ �2(C) and thus K1 ∈ L(Z0, U). Finally,
we define G2 = (−(PL(iωk)K1k)

∗)k∈Z ∈ L(Y, Z0). The structure and the rest of the
parameters of (G1,G2,K) are chosen as in the beginning of section 4.

Theorem 4.5. Assume P (iωk) are invertible for all k ∈ Z. Assume further that
E ∈ L(W,Ud) and F ∈ L(W,Y ) satisfy

(‖R(iωk, A)
(
BdEφk −BP (iωk)

−1yk
)‖)

k∈Z
∈ �2(C),(4.4a) (

γ−1
k ‖Q†

kP (iωk)
−1yk‖

)
k∈J
∈ �2(C),(4.4b) (

γ−1
k ‖P (iωk)

−1‖‖yk‖
)
k∈Z\J ∈ �2(C),(4.4c)

where yk = Pd(iωk)Eφk + Fφk and J ⊂ Z is the set of indices for which Yk �= Y .
Then the controller solves the robust output regulation problem for the class O0 of
perturbations.

In particular, the controller is robust with respect to all perturbations in O0 for
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which the strong closed-loop stability is preserved, {iωk}k∈Z ⊂ ρ(Ãe), and(
‖R(iωk, Ã)

(
B̃dẼφk − B̃P̃ (iωk)

−1ỹk

)
‖
)
k∈Z

∈ �2(C),(4.5a) (
γ−1
k ‖Q†

kP̃ (iωk)
−1ỹk‖

)
k∈J
∈ �2(C),(4.5b) (

γ−1
k ‖P (iωk)

−1‖‖P (iωk)P̃ (iωk)
−1ỹk‖

)
k∈Z\J

∈ �2(C),(4.5c)

where ỹk = P̃d(iωk)Ẽφk + F̃ φk.

Proof. The strong stability of the closed-loop system and the property iR ⊂
ρ(Ae) can be verified similarly as in the proof of Theorem 4.1 since we again have
C1 = CΛH + DK1 = −G∗

2 and the components G2k ∈ L(Y, Yk) of G2 are either
boundedly invertible or surjective finite rank operators.

Let (Ã, B̃, B̃d, C̃, D̃, Ẽ, F̃ ) ∈ O0 and k ∈ Z be arbitrary, and denote ỹk =
P̃d(iωk)Ẽek+F̃ ek. We begin by showing that the equations (3.5) in Theorem 3.7 have
a solution for every k ∈ Z, i.e., there exists zk ∈ N (iωk−G1) such that P̃ (iωk)KΛzk =
−ỹk. If k ∈ Z is such that Yk = Y , we can choose zk =

[
z1k
0

]
with z1k = (zl1k)l∈Z ∈ Z0

such that zl1k = 0 for l �= k and zk1k = − 1
γk
‖P (iωk)

−1‖P (iωk)P̃ (iωk)
−1ỹk. Then

clearly
[
z1k
0

] ∈ N (iωk − G1) and

P̃ (iωk)KΛ

[
z1k
0

]
= P̃ (iωk)K1kz1k = −P̃ (iωk)P̃ (iωk)

−1ỹk = −ỹk.

It remains to consider the situation Yk �= Y . We have P̃ (iωk)
−1ỹk ∈ Sk = R(Qk) by

definition. Choose zk =
[
z1k
0

]
with z1k = (zl1k)l∈Z such that zl1k = 0 for all l �= k and

zk1k = − 1
γk
Q†

kP̃ (iωk)
−1ỹk ∈ Yk = Cpk . Then clearly

[
z1k
0

] ∈ N (iωk − G1) and

P̃ (iωk)KΛ

[
z1k
0

]
= P̃ (iωk)K1kz

k
1k = −P̃ (iωk)QkQ

†
kP̃ (iωk)

−1ỹk = −ỹk.

Thus the equations (3.5) in Theorem 3.7 have a solution for all k ∈ Z.
To prove that the Sylvester equation ΣS = ÃeΣ + B̃e has a solution satisfying

R(Σ) ⊂ D(C̃eΛ) whenever (4.5) holds, we will construct the solution Σ = (Π,Γ)T ex-
plicitly. Let k ∈ Z, choose zk as above, and define Πφk = R(iωk, Ã)(B̃KΛzk+B̃dẼφk)
and Γφk = zk. Then the properties Γφk = zk ∈ N (iωk − G1) and P̃ (iωk)KΛzk =
−ỹk = −P̃d(iωk)Ẽφk − F̃ φk imply

(iωk − Ãe)Σφk =

[
(iωk − Ã)Πφk − B̃KΛΓφk

(iωk − G1)Γφk − G2(C̃ΛΠφk + D̃KΛΓφk)

]
= B̃eφk,

or ΣSφk = ÃeΣφk+B̃eφk. By Lemma 3.4 we have Σ ∈ L(W,Xe) andR(Σ) ⊂ D(C̃eΛ)
if (‖Σφk‖)k∈Z = (‖R(iωk, Ãe)B̃eφk‖)k∈Z ∈ �2(C). If k ∈ Z is such that Yk = Y , then

‖Σφk‖ � ‖Πφk‖+ ‖Γφk‖ = ‖R(iωk, Ã)(B̃K1kz
k
1k + B̃dẼφk)‖+ ‖zk1k‖

= ‖R(iωk, Ã)(B̃dẼφk − B̃P̃ (iωk)
−1ỹk)‖+ ‖P (iωk)P̃ (iωk)

−1ỹk‖
γk‖P (iωk)−1‖−1

.

On the other hand, if k ∈ Z is such that Yk = Cpk , then

‖Σφk‖ � ‖R(iωk, Ã)(B̃K1kz
k
1k + B̃dẼφk)‖+ ‖zk1k‖

= ‖R(iωk, Ã)(B̃dẼφk − B̃P̃ (iωk)
−1ỹk)‖+ ‖Q

†
kP̃ (iωk)

−1ỹk‖
γk

.
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Thus (‖Σφk‖)k∈Z ∈ �2(C) is satisfied if conditions (4.5) are satisfied. In the case of
the nominal plant, the conditions (4.5) reduce to (4.4).

4.2. A new controller structure for output regulation. We can also use the
new controller structure to achieve output tracking and disturbance rejection in the
situation where the controller is not required to be robust. In this section we assume
{iωk}k∈Z ⊂ ρ(A), but it is not required that Assumption 2.2 on the surjectivity of the
transfer functions is satisfied. Instead, we only need to assume that yk ∈ R(P (iωk))
for all k ∈ Z, where yk = Pd(iωk)Eφk + Fφk.

Let G1 have the same general structure as in section 4. Choose Z0 = W = �2(C)
and G1 = S = diag(iωk)k∈Z, and choose K1 = (K1k)k∈Z : Z0 → U with K1k = γk

uk

‖uk‖
where (γk)k∈Z ∈ �2(C) with γk �= 0 and where uk ∈ U are such that{

P (iωk)uk = yk if yk �= 0,

uk /∈ N (P (iωk)) if yk = 0,

where yk = Pd(iωk)Eφk + Fφk. If P (iωk) has a closed range, we can in particular
choose uk = P (iωk)

†yk. We have (‖K1k‖)k∈Z
∈ �2(C) and thus K1 ∈ L(Z0, U).

We define G2 = (−(PL(iωk)K1k)
∗)k∈Z ∈ L(Y, Z0). The rest of the parameters of

(G1,G2,K) are chosen as in the beginning of section 4.

Theorem 4.6. Assume E ∈ L(W,Ud) and F ∈ L(W,Y ) satisfy

(‖R(iωk, A)BdEφk −R(iωk, A)Buk‖)k∈J ∈ �2(C),(4.6a) (
γ−1
k ‖uk‖

)
k∈J
∈ �2(C), and (‖R(iωk, A)BdEφk‖)k∈Z\J ∈ �2(C),(4.6b)

where yk = Pd(iωk)Eφk+Fφk and where J ⊂ Z is the set of indices for which yk �= 0.
Then the controller solves the output regulation problem.

Proof. We have PL(iωk)K1k �= 0 for all k ∈ Z. The strong stability of the closed-
loop system and iR ⊂ ρ(Ae) can be shown similarly as in the proof of Theorem 4.1
since C1 = CΛH +DK1 = −G∗

2, and G2k ∈ L(Y,C) are rank one and nonzero.
It remains to show that the regulator equations (3.2) have a solution Σ ∈ L(W,Xe)

satisfying R(Σ) ⊂ D(CeΛ). We will construct the solution Σ = (Π,Σ)T explicitly by
defining Πφk and Γφk. Let k ∈ Z. If yk �= 0, then define Γφk =

[
z1k
0

]
, where

z1k = (zl1k)l∈Z with zl1k = 0 for all l �= k and zk1k = − ‖uk‖
γk

. Then Γφk ∈ N (iωk − G1).
Moreover, define Πφk = R(iωk, A)(BKΓφk +BdEφk) ∈ X(B,Bd). Then

CeΛΣφk +Deφk = CΛΠφk +DKΛΓφk + Fφk = −P (iωk)uk + yk = 0.

Moreover, since Γφk ∈ N (iωk−G1), we have that CΛΠφk+DKΛΓφk = −Fφk implies

(iωk −Ae)Σφk =

[
(iωk −A)Πφk −BKΛΓφk

(iωk − G1)Γφk − G2(CΛΠφk +DKΛΓφk)

]
= Beφk,

or equivalently ΣSφk = AeΣφk + Beφk. Alternatively, if k ∈ Z is such that yk = 0,
we choose Γφk = 0 and Πφk = R(iωk, A)BdEφk. Then we can similarly see that
CeΛΣφk + Deφk = 0 and ΣSφk = AeΣφk + Beφk. It remains to show that Σ is
bounded and R(Σ) ⊂ D(CeΛ). By Lemma 3.4 the operator Σ has these properties if
(‖Σφk‖)k∈Z = (‖R(iωk, Ae)Beφk‖)k∈Z ∈ �2(C). If yk �= 0, we have

‖Σφk‖ � ‖Πφk‖+ ‖Γφk‖ = ‖R(iωk, A)(BK1kz
k
1k + BdEφk)‖+ ‖zk1k‖

= ‖R(iωk, A)BdEφk −R(iωk, A)Buk‖+ ‖uk‖
γk

.
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Similarly, if yk = 0, then

‖Σφk‖ � ‖R(iωk, A)(BK1kz
k
1k +BdEφk)‖ + ‖zk1k‖ = ‖R(iωk, A)BdEφk‖.

We thus have (‖Σφk‖)k∈Z ∈ �2(C) due to the conditions (4.6). By Theorem 3.3 the
controller solves the output regulation problem.

5. The observer-based controller. In this section we construct an observer-
based controller that solves the robust output regulation problem. For this controller
structure it is necessary to assume that PK(iωk) are boundedly invertible for all k ∈ Z.
This in particular implies that dimU = dimY if dimY <∞.

Step 1◦. We begin by choosing the state space of the controller as Z = Z0 ×X
and choosing the structure of (G1,G2,K) as

G1 =

[
G1 0

(B + LD)K1 A+BK2Λ + L(CΛ +DK2Λ)

]
, G2 =

[
G2

−L
]
,

and K = [K1, K2Λ]. By Assumption 2.1 we can choose K21 ∈ L(X1, U) and L ∈
L(Y,X−1) in such a way that (A+BK21Λ)|X and (A+LCΛ)|X generate exponentially
stable semigroups and the system

(
A, [B, L, Bd],

[
C

K21

]
, D
)
is regular. We define

PK(λ) = (CΛ +DK21Λ)R(λ,A +BK21Λ)B +D, λ ∈ ρ(A+BK21Λ).

We assume that PK(iωk) are boundedly invertible for all k ∈ Z.
Step 2◦. The operators (G1, G2) make up the internal model of the exosys-

tem (1.2), and they are defined by choosing Z0 = �2(Y ), and

G1 = diag
(
iωkIY

)
k∈Z

, D(G1) = { (zk)k∈Z ∈ Z0 | (ωkzk)k∈Z ∈ �2(Y ) }.

We choose G2 = (G2k)k∈Z in such a way that the components G2k ∈ L(Y ) are
boundedly invertible and (‖G2k‖)k∈Z ∈ �2(C). In particular, it is possible to choose
G2k = g2kIY , where (g2k)k∈Z ∈ �2(C) and g2k �= 0 for all k ∈ Z. For more concrete
choices of G2k, see Corollary 5.3.

Step 3◦. We define H : R([B, Bd]) ⊂ X−1 → Z0 such that

Hx = (G2k(CΛ +DK21Λ)R(iωk, A+BK21Λ)x)k∈Z ∀x ∈ R([B,Bd]).

Since we have from [39, sec. 7] that (A+BK21Λ, B,Bd, CΛ +DK21Λ, D) is a regular
linear system, it is immediate that H is well defined and H ∈ L(X,Z0).

Step 4◦. We choose the operator K1 ∈ L(Z0, U) in such a way that

K1 = −
∑
k∈Z

(G2kPK(iωk))
∗zk

for all z = (zk)k∈Z ∈ Z0. We define K2 = K21Λ + K1H ∈ L(X1, U), which is an
admissible observation operator for A and K2Λ = K2. Finally, we choose the domain
of the operator G1 as

D(G1) =
{[

z1
x1

]
∈ D(G1)×X(B,L)

∣∣∣ (A+ LCΛ)x1 + (B + LD)(K1z1 +K2Λx1) ∈ X
}
.

Theorem 5.1. If E ∈ L(W,Ud) and F ∈ L(W,Y ) satisfy(‖PK(iωk)
−1G−1

2k ‖2(‖Eφk‖+ ‖Fφk‖)
)
k∈Z
∈ �2(C),(5.1)
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then the controller solves the robust output regulation problem.
The controller is guaranteed to be robust with respect to all perturbations in O for

which the strong closed-loop stability is preserved, {iωk}k∈Z ⊂ ρ(Ãe), {iωk}|k|≥N ⊂
ρ(Ã) for some N ∈ N, P̃ (iωk) are invertible whenever |k| ≥ N , and for which(

‖R(iωk, Ã)
(
B̃dẼφk − B̃P̃ (iωk)

−1ỹk

)
‖
)
|k|≥N

∈ �2(C),(5.2a) (
‖(G2kPK(iωk)

∗)−1(I −K2ΛR
k
LBL)P̃ (iωk)

−1ỹk‖
)
|k|≥N

∈ �2(C),(5.2b) (
‖Rk

LBLP̃ (iωk)
−1ỹk‖

)
|k|≥N

∈ �2(C),(5.2c)

where ỹk = P̃d(iωk)Ẽφk + F̃ φk, R
k
L = R(iωk, A+ LCΛ) and BL = B + LD.

If {iωk}k∈Z ⊂ ρ(A), (5.1) can again be replaced with (5.2) for the nominal plant.

Corollary 5.2. If there exists N ∈ N such that {iωk}|k|≥N ⊂ ρ(A) and
sup|k|≥N‖R(iωk, A)‖ <∞, then the conclusions of Theorem 4.1 hold if(‖(G2kPK(iωk)

∗)−1‖‖P (iωk)
−1‖(‖Pd(iωk)Eφk‖+ ‖Fφk‖)

)
|k|≥N

∈ �2(C)

and the controller is guaranteed to be robust with respect to perturbations in O for
which the strong closed-loop stability is preserved, {iωk}k∈Z ⊂ ρ(Ãe), {iωk}|k|≥N ⊂
ρ(Ã), sup|k|≥N‖R(iωk, Ã)‖ <∞, and(

‖(G2kPK(iωk)
∗)−1‖‖P̃ (iωk)

−1‖(‖P̃d(iωk)Ẽφk‖+ ‖F̃φk‖)
)
|k|≥N

∈ �2(C).

Corollary 5.3. The following hold.
(a) If ‖PK(iωk)

−1‖ = O(|ωk|α) for some α > 0 and (γk)k∈Z ∈ �2(C), the choice
G2k = γkIY solves the robust output regulation problem for E and F satisfying( |ωk|2α

|γk|2 (‖Eφk‖+ ‖Fφk‖)
)

k∈Z

∈ �2(C).

If we in particular choose γk = |ωk|−β for some β > 1/2 whenever ωk �= 0,
then |ωk|2α/|γk|2 = |ωk|2(α+β) whenever ωk �= 0.

(b) If ‖PK(iωk)
−1‖ = O(eα|ωk|) for some α > 0 and (γk)k∈Z ∈ �2(C), the choice

G2k = γkIY solves the robust output regulation problem for E and F satisfying(
e2α|ωk|

|γk|2 (‖Eφk‖+ ‖Fφk‖)
)

k∈Z

∈ �2(C).

Proof of Theorem 5.1. The proof can be completed similarly to the proof of Theo-
rem 4.1. The regularity of the controller follows from [39], and the G-conditions can be
verified similarly as in [27, Thm. 15]. The operator B1 = HB+G2D ∈ L(U,Z0) is well
defined, and B1 = (B1k)k∈Z = (G2kPK(iωk))k∈Z. Thus B1 = −K∗

1 , and Lemma 4.4
implies that the semigroup generated by G1 +B1K1 = G1 −B1B

∗
1 is strongly stable,

iR ⊂ ρ(G1 +B1K1), and ‖K1R(iωk, G1 +B1K1)‖ = ‖PK(iωk)
−1G−1

2k ‖ for all k ∈ Z.
If we choose a similarity transform

Qe =

⎡
⎣−I 0 0
H I 0
−I 0 I

⎤
⎦ = Q−1

e
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and use the fact thatH is a solution of the Sylvester equation G1H = H(A+BK21Λ)+
G2(CΛ +DK21Λ), then we can see that Âe = QeAeQ

−1
e , where

Âe =

⎡
⎣A+BK21Λ −BK1 −BK2Λ

0 G1 +B1K1 B1K2Λ

0 0 A+ LCΛ

⎤
⎦

with the natural domain. The properties of G1 +B1K1 and the exponential stability
of (A + BK21Λ)|X and (A + LCΛ)|X imply that the closed-loop system is strongly
stable and iR ⊂ ρ(Ae). Later in Lemma 6.3 it is shown that ‖R(iωk, G1 −G2G

∗
2)‖ =

O(1 + ‖PK(iωk)
−1G−1

2k ‖2). A direct estimate using the admissibility of B, Bd, C,
L, and K2 and the boundedness of HBd shows that (‖R(iωk, Ae)Beφk‖)k∈Z ∈ �2(C)
if (5.1) is satisfied.

Finally, we will show that, under the additional assumptions on the perturbations,
the conditions (5.2) are equivalent to (‖R(iωk, Ãe)B̃eφk‖)k∈Z ∈ �2(C). Let k ∈ Z be
such that |k| ≥ N , and denote ỹ = P̃d(iωk)Ẽφk + F̃ φk. By Lemma 3.10 we have

R(iωk, Ãe)B̃eφk =

[
R(iωk, Ã)(B̃dẼφk + B̃Kz)

z

]
,

where z ∈ N (iωk − G1) is such that Kz = −P̃ (iωk)
−1ỹ. Since (iωk − G1)z = 0,

we have that z = (z1, x1)
T ∈ D(G1) × X(B,L), and denoting BL = B + LD and

RL = R(iωk, A+ LCΛ) we have[
iωk −G1 0
−BLK1 iωk −A− LCΛ −BLK2Λ

] [
z1
x1

]
= 0

⇔
{

(iωk −G1)z1 = 0,

x1 = RLBLK1z1 +RLBLK2Λx1 = RLBLKz = −RLBLP̃ (iωk)
−1ỹ.

Thus z1 ∈ N (iωk−G1), and z1 = (zl1)l∈Z is such that zl1 = 0 for all l �= k and K1z1 =
K1kz

k
1 . The above equations imply K1kz

k
1 = Kz −K2Λx1 = (I −K2ΛRLBL)Kz and

thus zk1 = K−1
1k (I −K2ΛRLBL)Kz = −K−1

1k (I −K2ΛRLBL)P̃ (iωk)
−1ỹ. Now

R(iωk, Ãe)B̃eφk =

⎡
⎣R(iωk, Ã)(B̃dẼφk − B̃P̃ (iωk)

−1ỹ)
z1

−RLBLP̃ (iωk)
−1ỹ

⎤
⎦

andK1k = −(G2kPK(iωk))
∗ and ‖z1‖ = ‖(G2kPK(iωk)

∗)−1(I−K2ΛRLBL)P̃ (iωk)
−1ỹ‖

imply that (‖R(iωk, Ãe)B̃eφk‖)k∈Z ∈ �2(C) if and only if conditions (5.2) are satis-
fied.

6. Nonuniform stability of the closed-loop semigroup and decay rates
for e(t). In this section we derive decay rates for the orbits t �→ Te(t)xe0 of the closed-
loop system and the regulation error e(t) corresponding to initial states xe0 ∈ D(Ae)
and v0 ∈ D(S). These results are based on the theory of nonuniform stability of semi-
groups developed in [23, 4, 6, 3]. It should also be noted that the following theorem is
not limited to the controller structures used in this paper, but instead it applies to any
robust controller for which the closed-loop system satisfies ‖R(iω,Ae)‖ = O(g(|ω|)).

Theorem 6.1. Assume the controller (G1,G2,K) solves the output regulation prob-
lem, and assume g : R+ → [1,∞) is a continuous and monotonically increasing func-
tion such that ‖R(iω,Ae)‖ = O(g(|ω|)). In particular, for the controllers in sections 4
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and 5 we can choose g(·) for which there exists Mg, ωg > 0 such that | ddω 1
g(ω) | ≤ Mg

for all ω > ωg and
(a) ‖(PL(iωk)K1k)

−1‖2 ≤ g(|ωk|) for all k ∈ Z for the controller in section 4;

(b) ‖PK(iωk)
−1G−1

2k ‖2 ≤ g(|ωk|) for all k ∈ Z for the controller in section 5;

(c) ‖(PL(iωk)K1k)
†‖2 ≤ g(|ωk|) for all k ∈ Z for the controller in section 4.1;

(d) ‖uk‖2|γk|−2‖PL(iωk)uk‖−2 ≤ g(|ωk|) for all k ∈ Z for the controller in sec-
tion 4.2.

Then there exist M0,Me > 0 and 0 < c < 1 such that

‖Te(t)xe0‖ ≤ Me

M−1
log (ct)

‖Aexe0‖ ∀xe0 ∈ D(Ae),(6.1)

where M−1
log is the inverse of the function

Mlog(ω) = M0g(ω)(log(1 +M0g(ω)) + log(1 + ω)), ω > 0.

Furthermore, there exists M e
e ≥ 1 such that for all v0 ∈ D(S) and for all initial states

of the form xe0 = x̃e0 −A−1
e Bev0 where x̃e0 ∈ D(Ae) the regulation error satisfies∫ t+1

t

‖e(s)‖ds ≤ M e
e

M−1
log (ct)

‖Aex̃e0 − ΣSv0‖,(6.2)

where Σ ∈ L(W,Xe) is the solution of the regulator equations (3.2).

The function M−1
log (t) has particularly simple forms in the most important situa-

tions where g(·) is either a polynomial or an exponential function, i.e., when the norms
‖(PL(iωk)K1k)

−1‖ and ‖PK(iωk)
−1G−1

2k ‖ grow either polynomially or exponentially
fast when |ωk| is large. In particular, if g(ω) = M0ω

α for some α,M0 > 0, then
M−1

log (ct) ∼ (t/ log t)1/α [3, Ex. 1.7], and thus (6.1) and (6.2) simplify to

‖Te(t)xe0‖ ≤Me

(
log t

t

) 1
α

‖Aexe0‖,
∫ t+1

t

‖e(s)‖ds ≤M e
e

(
log t

t

) 1
α

‖Aex̃e0 − ΣSv0‖.

In addition, if X is a Hilbert space, then it follows from [6] that the logarithm in the
above inequalities can be omitted, and we have

‖Te(t)xe0‖ ≤ Me

t1/α
‖Aexe0‖,

∫ t+1

t

‖e(s)‖ds ≤ M e
e

t1/α
‖Aex̃e0 − ΣSv0‖.

Moreover, if g(ω) = M0e
αω for some α,M0 > 0, then M−1

log (ct) ∼ 1
α log t [4, Ex. 1.6],

and (6.1) and (6.2) simplify to

‖Te(t)xe0‖ ≤ αMe

log t
‖Aexe0‖,

∫ t+1

t

‖e(s)‖ds ≤ αM e
e

log t
‖Aex̃e0 − ΣSv0‖.

In the case where the operator Bd and the operator L in the controller are
bounded, the convergence rate (6.2) is achieved for all v0 ∈ D(S) and xe0 ∈ D(Ae),
since in this case we have Be ∈ L(W,Xe) and A−1

e Bev0 ∈ D(Ae). The norm on the
right-hand side of (6.2) can then be estimated by

‖Aex̃e0 − ΣSv0‖ ≤ ‖Aexe0‖+ ‖Σ‖‖Sv0‖+ ‖Be‖‖v0‖.
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In the further particular case where also the operator B is bounded, we have D(Ae) =
D(A) × D(G1) = D(A) × D(G1) × D(A) for both of the controller structures. Then
an easy estimate using the admissibility of C and K leads to the following corollary.
Here ‖x‖D(A) = ‖Ax‖+ ‖x‖, and ‖z0‖G1 and ‖v0‖D(S) are defined analogously.

Corollary 6.2. If B, Bd, and L are bounded operators and the assumptions of
Theorem 6.1 are satisfied, then there exists M̃ e

e > 0 such that for all initial states
v0 ∈ D(S), x0 ∈ D(A), and z0 ∈ D(G1)∫ t+1

t

‖e(s)‖ds ≤ M̃ e
e

M−1
log (ct)

(‖x0‖D(A) + ‖z0‖D(G1) + ‖v0‖D(S)

)
.

In particular, for the controllers in sections 4, 4.1, 4.2, and 5 there exists M̃ e
e > 0 such

that for all initial states v0 ∈ D(S), x0 ∈ D(A), and z0 = (z01 , x
0
1)

T ∈ D(G1)×D(A)∫ t+1

t

‖e(s)‖ds ≤ M̃ e
e

M−1
log (ct)

(‖x0‖D(A) + ‖z01‖D(G1) + ‖x0
1‖D(A) + ‖v0‖D(S)

)
.

Finally, if the operators C and K are bounded, then the proof of Theorem 6.1

shows that the regulation error e(t) decays at a rate ‖e(t)‖ ≤ Me
e

M−1
log (ct)

‖Aex̃e0−ΣSv0‖.
The nonuniform stability properties described in Theorem 6.1 are based on the

following result on the behavior of the resolvent of the stabilized internal model.
Theorem 6.3 in particular implies that the semigroup generated by G1 − G2G

∗
2 is

nonuniformly stable in the sense of [4, 6, 3].

Theorem 6.3. Assume U and Yk for k ∈ Z are Hilbert spaces. Consider Z0 =
{ (zk)k∈Z ∈ ⊗k∈ZYk |

∑
k∈Z
‖zk‖2Yk

<∞} with inner product 〈z, v〉 =∑k∈Z
〈zk, vk〉Yk

for z = (zk)k and v = (vk)k. Assume {iωk}k∈Z has a uniform gap, and let G1 =
diag(iωkIYk

)k∈Z on Z0 with domain D(G1) = { (zk)k∈Z ∈ Z0 | (ωkzk)k ∈ Z0 } and
G2 = (G2k)k∈Z ∈ L(U,Z0).

Assume further that G2k ∈ L(U, Yk) of G2 are surjective and G∗
2k have closed

ranges for all k ∈ Z, and assume g : R+ → [1,∞) is a continuous and monotonically

increasing function such that ‖G†
2k‖2 ≤ g(|ωk|) for all k ∈ Z, and there exist Mg, ωg >

0 such that | ddω 1
g(ω) | ≤Mg for all ω > ωg. Then the semigroup generated by G1−G2G

∗
2

is strongly stable, iR ⊂ ρ(G1 −G2G
∗
2), and there exists M > 0 such that

‖R(iω,G1 −G2G
∗
2)‖ ≤Mg(|ω|), |ω| > ωg.(6.3)

Proof. The strong stability of the semigroup and iR ⊂ ρ(G1 − G2G
∗
2) follow

from Lemma 4.4. The approach in the remaining part of the proof is inspired by the
technique used in [23, Ex. 1–3]. If the estimate (6.3) does not hold for anyM > 0, then
there exists (sn)n∈N ⊂ R satisfying |sn| ≥ 1, and |sn| → ∞ as n→∞, and (zn)n∈N ⊂
D(G1) with ‖zn‖ = 1 for all n ∈ N such that g(|sn|)‖(isn − G1 + G2G

∗
2)zn‖ → 0 as

n→∞. For all n ∈ N we then also have

0← Re〈g(|sn|)(isn −G1 +G2G
∗
2)zn, zn〉 = g(|sn|)‖G∗

2zn‖2,
which further implies√

g(|sn|)‖(isn −G1)zn‖ ≤ g(|sn|)‖(isn −G1 +G2G
∗
2)zn‖+

√
g(|sn|)‖G∗

2zn‖ → 0

as n→∞.
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For each n ∈ N denote mn = argmink|sn−ωk| ∈ Z. Since d = infk �=l|ωk−ωl| > 0,
we have that |sn − ωk| ≥ d/2 for all k �= mn. Denote zn = (zkn)k∈Z, where zkn ∈ Y .
For any 0 < δ < 1/2 there exists Nδ ∈ N such that for all n ≥ Nδ we have

δ2 ≥ g(|sn|)‖(isn −G1)zn‖2 = g(|sn|)
∑
k∈Z

|sn − ωk|2‖zkn‖2

≥ g(|sn|)|sn − ωmn |2‖zmn
n ‖2 + g(|sn|)d

2

4

∑
k �=mn

‖zkn‖2.

Since |sn| → ∞ as n→∞, we can assume that |ωmn | ≥ ωg +1 for all n ≥ Nδ. Define
yn = (ykn)k∈Z ∈ Z0 such that ymn

n = zmn
n and ykn = 0 for k �= mn. Then

g(|sn|)‖zn − yn‖2 = g(|sn|)
∑

k �=mn

‖zkn‖2 ≤
4δ2

d2
,(6.4a)

‖zmn
n ‖2 = ‖zn‖2 −

∑
k �=mn

‖zkn‖2 ≥ 1− 4δ2

d2
.(6.4b)

The above estimates also imply

δ2 ≥ g(|sn|)|sn − ωmn |2‖zmn
n ‖2 ≥ |sn − ωmn |2

(
1− 4δ2

d2

)
,

and thus |sn − ωmn |2 ≤ δ2/(1 − 4δ2/d2) ≤ 2δ2 if δ2 < d2/8 and n ≥ Nδ. This means
that the points sn approach the points in the set {ωk}k∈Z as n→∞. Now

√
g(|sn|)‖G∗

2zn‖ =
√

g(|sn|)‖G∗
2yn +G∗

2(zn − yn)‖ ≥
√
g(|sn|)‖G∗

2yn‖ −
2δ

d
‖G2‖

due to (6.4a). Since | ddω 1
g(ω) | is bounded for ω > ωg and since |sn − ωmn | → 0 as

n → ∞, there exists N2 ∈ N such that g(|sn|)
g(|ωmn |) ≥ 1/2 for all n ≥ N2. Using (6.4b)

and ‖(G∗
2mn

)†‖2 = ‖G†
2mn
‖2 ≤ g(|ωmn |), we get

g(|sn|)‖G∗
2yn‖2 ≥

g(|sn|)
‖(G∗

2mn
)†‖2 ‖z

mn
n ‖2 ≥

g(|sn|)
g(|ωmn |)

(
1− 4δ2

d2

)
≥ 1

2

(
1− 4δ2

d2

)

for all n ≥ max{Nδ, N2}. Combining the above estimates, we see that for a small
enough δ > 0 we thus have

√
g(|sn|)‖G∗

2zn‖ ≥
√
g(|sn|)‖G∗

2yn‖ − ‖G2‖2δ
d
≥ 1√

2

(
1− 4δ2

d2

) 1
2

− ‖G2‖2δ
d

> 0

for all n ≥ max{Nδ, N2}. This contradicts the property
√
g(|sn|)‖G∗

2zn‖ → 0 as
n→∞, and therefore the proof is complete.

Proof of Theorem 6.1. The triangular structure of the operators Âe in the proofs
of Theorems 4.1, 4.5, 4.6, and 5.1 imply that if the function g : R+ → [1,∞) is
chosen so that ‖(PL(iωk)K1k)

†‖2 ≤ g(|ωk|) for the controllers in sections 4, 4.1,
and 4.2, or so that ‖(G2kPK(iωk))

†‖2 ≤ g(|ωk|) in the case of the controller in sec-
tion 5, then ‖R(iω,Ae)‖ = O(g(|ω|)). Moreover, (PL(iωk)K1k)

† = (PL(iωk)K1k)
−1
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in part (a), (G2kPK(iωk))
† = PK(iωk)

−1G−1
2k in part (b), and ‖(PL(iωk)K1k)

†‖ =
‖uk‖
|γk| ‖PL(iωk)uk‖−1 in part (c). The decay rate (6.1) follows from [4, Thm. 1.5].

It remains to consider the behavior of the regulation error. Assume v0 ∈ D(S)
and xe0 = x̃e0 −A−1

e Bev0, where x̃e0 ∈ D(Ae). Then ΣSv0 = AeΣv0 +Bev0 implies

Ae(xe0 − Σv0) = Aex̃e0 −Bev0 − ΣSv0 +Bev0 = Aex̃e0 − ΣSv0 ∈ Xe,

and thus xe0 − Σv0 ∈ D(Ae). Since Ce is admissible, there exists κ > 0 such that∫ 1

0
‖CeΛTe(s)x‖ds ≤ κ‖x‖ for all x ∈ Xe. Because Σ is the solution of the regulator

equations (3.2), the proof of Theorem 3.3 and the nonuniform decay of Te(t) imply

∫ t+1

t

‖e(s)‖ds =
∫ 1

0

‖Te(s)Te(t)(xe0 − Σv0)‖ds ≤ κ‖Te(t)(xe0 − Σv0)‖

≤ κMe

M−1
log (ct)

‖Ae(xe0 − Σv0)‖ = κMe

M−1
log (ct)

‖Aex̃e0 − ΣSv0‖.

7. Robust control of a two-dimensional heat equation. In this section we
construct a controller that achieves robust output tracking and disturbance rejection
for a two-dimensional heat equation

xt(ξ, t) = Δx(ξ, t), x(ξ, 0) = x0(ξ),(7.1a)

∂x

∂n
(ξ, t)|Γ1 = u(t),

∂x

∂n
(ξ, t)|Γ2 = d(t),

∂x

∂n
(ξ, t)|Γ0 = 0,(7.1b)

y(t) =

∫
Γ3

x(ξ, t)dξ(7.1c)

on the unit square ξ = (ξ1, ξ2) ∈ Ω = [0, 1]×[0, 1]. Here u(t) is the Neumann boundary
control input and d(t) is the external disturbance signal. The control and disturbance
are located on the parts Γ1 and Γ2 of the boundary ∂Ω, where Γ1 = { ξ = (ξ1, 0) |
0 ≤ ξ1 ≤ 1 } and Γ2 = { ξ = (0, ξ2) | 0 ≤ ξ2 ≤ 1/2 }, and the remaining part of
the boundary is denoted by Γ0 = ∂Ω \ (Γ1 ∪ Γ2). The observation is on the part
Γ3 = { ξ = (1, ξ2) | 0 ≤ ξ2 ≤ 1 } of the boundary of the square.

The controlled heat equation can be written as an abstract linear system on
X = L2(Ω) by choosing A = Δ with D(A) = { x ∈ H2(Ω) | ∂x

∂n = 0 on ∂Ω } and
choosing operators B,Bd ∈ L(C, X−1) and C ∈ L(X1,C) such that B = δΓ1(·),
Bd = δΓ2(·), and Cx =

∫ 1

0
x(0, ξ2)dξ2 [8]. We have from [8, Cor. 1] that the controlled

heat equation (7.1) is a regular linear system with D = 0 ∈ C.
We construct a robust controller using the method presented in section 4. Our

aim is to achieve output tracking of a continuously differentiable periodic reference
signal (depicted in Figure 1 in black) generated by an exosystem on W = �2(C)
with S = diag(ik)k∈Z. If (φk)k∈Z denotes the canonical basis of W and if we choose
F ∈ L(W,C) such that Fφ0 = 0 and Fφk = yr(k)|k|3/5 for k �= 0, where yr(k) are
the complex Fourier coefficients of yref (t), then yref (t) is generated with the initial
state v0 = (v0k)k∈Z with v00 = 1 and v0k = |k|−3/5 for k �= 0. The Fourier coefficients
yr(k) of yref (t) satisfy |yr(k)| = O(|k|−3), and thus |Fφk| = O(|k|−12/5).

7.1. Stabilization and controller parameters. Since 0 ∈ σp(A), the uncon-
trolled heat equation is unstable. If we choose L1 ∈ L(C, X) and K2 ∈ L(X,C) such
that K2x = −π2

∫
Ω x(ξ)dξ, and L1 = −π2 · 1, where 1(ξ) = 1 for all ξ ∈ Ω, then
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(A,
[
CΛ

K2

]
, [B, L1, Bd]) is a regular linear system and the semigroups generated by

A + L1CΛ and (A + BK2)|X are exponentially stable. In this example the transfer
function of the plant has an explicit formula P (λ) = 1

λ for all λ ∈ C+ \ {0}, and
PL(λ) = (I − CR(λ,A)L1)

−1P (λ) = (λ+ π2)−1.
Since dim Y = 1, we choose the internal model to contain one copy of the exo-

system so that Z0 = W = �2(Z;C) and G1 = S, and as suggested in Step 4◦ and in
Corollary 4.3, we choose K1 ∈ L(Z0,C) with components

K1k =
γ0

1 + |k|1/2+κ

PL(iωk)
−1

|PL(iωk)−1| =
γ0

1 + |k|1/2+κ

ik + π2

√
k2 + π4

,

G2k = −(PL(iωk)K1k)
∗ = − γ0

(1 + |k|1/2+κ)
√
k2 + π4

,

where κ > 0 is fixed and small, and γ0 > 0. Then ‖(PL(iωk)K1k)
−1‖ = O(|k|3/2+κ).

Moreover, we define L ∈ L(C, X−1) in such a way that

L = L1 +HG2 = L1 +
∑
k∈Z

R(iωk, A+ L1CΛ)BK1kG2k

= −π2 · 1− γ2
0

∑
k∈Z

R(iωk, A+ L1CΛ)B

(1 + |k|1/2+κ)2(π2 − ik)
.

7.2. Solvability of the robust output regulation problem. Since we have
supω∈R‖R(iω,A)‖ <∞, we can apply Corollary 4.2. For all k �= 0

|(P (iωk)K1k)
−1| = |k|(1 + |k|

1/2+κ)

γ0
.

For our yref (t), ‖Fφk‖ = O(|k|−12/5) and |(P (iωk)K1k)
−1|‖Fφk‖ = O(|k|−9/10+κ),

and thus
(|(P (iωk)K1k)

−1|‖Fφk‖
)
k �=0
∈ �2(C) and the output tracking of yref (t) is

achieved whenever 0 < κ < 2/5.
Since (A,Bd, C) is regular, |Pd(iωk)| � |ωk|−1 = |k|−1 for all k �= 0, and

|(P (iωk)K1k)
−1||Pd(iωk)||Ẽφk| � |k|1/2+κ|Ẽφk|.

By Corollary 4.2 the controller rejects all disturbance signals that can be expressed
with Ẽφk satisfying |Ẽφk| � |k|−β for any exponent β > 1 + κ and corresponding to
the initial state v0 = (v0k)k �=0 with v00 = 1 and v0k = |k|−3/5 for k �= 0. This includes

any d(t) whose Fourier coefficients satisfy ŵ(k) = |k|−β̃ for any β̃ > 8/5 + κ.

7.3. Numerical approximation and simulation. The controlled heat equa-
tion was simulated using a finite difference approximation with a 16× 16 grid on the
square Ω = [0, 1] × [0, 1]. In the simulation the infinite-dimensional exosystem was
approximated using a 21-dimensional truncation of the operator S. The controller
parameters were set to κ = 1/8 and γ0 = 12.

For simulation the resolvent operators R(iωk, A + L1CΛ) appearing in L were
approximated numerically using a more accurate finite difference approximation with
a 41×41 grid, and the infinite sum was approximated with a truncation corresponding
to the truncation of the exosystem.

The behavior of the controlled system was simulated for an external disturbance
signal d(t) = cos(4t) + 1

2 sin(t). Initial states of the plant and the controller are
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4π 8π 12π

−1

0

1

Fig. 1. Output y(t) of the controlled plant.

0 4π 12π 20π
0.0

0.1

Fig. 2. Behavior of the error integrals.

1

0

−1

1

ξ2

0 6π
8π 10π 12π

Fig. 3. State of the controlled heat equation on Γ3.

chosen to be zero. Figures 1 and 2 depict the output y(t) of the controlled plant

on the interval [4π, 12π] and the behavior of the integrals
∫ t+1

t ‖e(s)‖ds, respectively.
Finally, Figure 3 depicts the behavior of the state of the controlled system on Γ3.
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