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Abstract Two figures of merit for single transverse mode operation and an ac-
curate procedure for calculating the coupling coefficient in distributed feedback
lasers with laterally-coupled ridge-waveguide surface grating structures and in dis-
tributed Bragg reflector lasers with etched-through-ridge-waveguide surface grat-
ings are introduced. Based on the difference in optical confinement between the
pumped and un-pumped regions in the transverse plane, the single transverse mode
operation figures of merit are effective and easy to calculate, while the improved
coupling coefficient calculation procedure gives experimentally confirmed better
results than the conventional calculation approaches, particularly for surface grat-
ings with variable refractive index in the grating areas.

Keywords surface gratings · single transverse mode operation · grating coupling
coefficient

1 Introduction

Single transverse mode (STM) and single longitudinal mode (SLM) operation are
essential laser characteristics for a broad range of applications ranging from optical
communications to atomic clocks. The fabrication of conventional buried-grating
distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers requires
two or more epitaxial growth steps. Removing the epiwafer from the molecular
beam epitaxy reactor, processing the gratings, cleaning the processed surface and
overgrowing the structure with the remaining top epilayer structure is a com-
plicated fabrication process, which affects the device performance, decreases the
fabrication yield and reduces device reliability, ultimately increasing the device
cost. The reduction in reliability is mainly due to the fact that the defect-prone
processed interfaces are placed in regions with high operating temperatures and
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they interact strongly both with the carrier flow and with a high-intensity optical
field (the buried gratings must be placed in regions with high optical field inten-
sity in order to achieve good grating coupling coefficient values because they have
small refractive index contrast in the grating area).

Employing laterally-coupled ridge-waveguide (LC-RWG) surface gratings for
DFB lasers and etched-through-ridge-waveguide (ET-RWG) surface gratings for
DBR lasers avoids the problematic over-growth and enables the use of simple
epilayer structures. The LC-RWG and ET-RWG surface gratings, illustrated in
Fig. 1, are fabricated, without regrowth, on the complete/final epilayer structure,
are applicable to different semiconductor materials and can be easily integrated
in complex device structures without requiring a difficult epitaxial growth and
fabrication process. The surface gratings can achieve a relatively high grating cou-
pling coefficient without being placed in regions with high optical field intensity,
due to the fact that they have a high optical contrast in the grating area. They
are also placed somehow away from the laser regions with the highest tempera-
ture and imply a negligible interaction between the defect-prone processed grating
interfaces and the carriers. All these characteristics of LC-RWG and ET-RWG sur-
face gratings lead to more stable devices with better performances and increased
reliability.

Fig. 1 Sketches a), c) and SEM pictures b), d) of a laterally-coupled ridge-waveguide DFB
grating and of an etched-through-ridge-waveguide DBR grating, respectively

The STM operation is determined by the transverse modal gain discrimination
(Laakso et al, 2008) and by the difference between the grating coupling coefficients
of the transverse modes. A high modal gain in ridge waveguide lasers is ensured
by having a high under-the-ridge optical confinement factor (i.e. by having a high
confinement of the transverse optical field distribution in the electrically pumped
areas, which are under the ridge contact). Unfortunately, for LC-RWG (but less
for ET-RWG) surface gratings a high under-the-ridge optical confinement factor
implies reduced optical confinement factor in the grating areas and, hence, a re-
duced grating coupling coefficient (κ). Moreover, since the higher-order transverse
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modes are generally less confined transversely, they have a higher presence in the
surface grating areas and thus have a higher grating coupling coefficient than the
fundamental mode.

The proposed calculation procedures extend on previous work (Laakso et al,
2008), but neglect effects such as radiating waves, which have an effect on the
effective coupling coefficient (Millett et al, 2008). However, simplifying the model
enables a fast investigation over a large solution space in search of the range of
transverse structure dimensions that lead to the highest modal gain advantage
for the fundamental mode while also providing a high enough grating coupling
coefficient κ between the forward and backward propagating waves. In other work
the effect of grating depth on κ has been considered (Wang et al, 2005), but
STM operation is usually neglected and only certain structural parameters are
considered.

2 Calculation Procedures

2.1 Transverse Mode Discrimination

The transverse mode gain discrimination is given by the modal gain difference
between the fundamental mode and higher-order modes. The magnitude of the
modal gain Gm for the mth transverse mode is determined by the convolution of
the transverse distribution of the material gain g(x, y) and the transverse optical
field intensity distribution of the mth mode Ψ2

m(x, y) (Mroziewicz et al, 1991):

Gm =

∫∫
Ψ2
m(x, y) · g(x, y) dx dy∫∫
Ψ2
m(x, y) dx dy

. (1)

Fig. 2 Schematic 3D and top views of a LC-RWG grating. W: ridge width; D: flange lateral
extension; t: remaining un-etched cladding layer thickness; Λ: grating period; Λ1: flange width;
Λ2: trench width

Good approximate transverse optical field distributions for the guided modes
can be obtained with a Mode Solver applied to the longitudinally-averaged trans-
verse distribution of the refractive index. Using longitudinal averaging of the re-
fractive index transverse distribution is based on the continuity conditions at the
interfaces between grating slices and on the longitudinal periodicity of the optical
field variation, and assumes that the length of the grating period is comparable
with the wavelength. The longitudinal averaging is a valid approximation partic-
ularly when the perturbation induced by the grating to the effective refractive
index of the propagating modes is small, which is generally true for surface grat-
ings, due to the limited confineent of the optical field in the grating area. The
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weighted average has been used previously both in the transverse plane solutions
(Alman et al, 1992) and in the longitudinal direction averaging (Chen et al, 1996;
Jerry et al, 1996). The longitudinal averaging approximation has been indirectly
confirmed by the fitting between the experimental emission wavelengths and the
effective refractive index values calculated using the longitudinal averaging. The
longitudinal averaging simplifies the calculations, contributing to faster scanning
of a large structural parameter space. In a LC-RWG grating with rectangular lat-
eral corrugations (like in Fig. 2) the longitudinally-averaged transverse refractive
index distribution is obtained from the transverse refractive index distributions in
the successive wide-ridge and narrow-ridge grating slices:

navg(x, y) =
√
γ · n2

wide(x, y) + (1− γ) · n2
narrow(x, y) (2)

where γ is the grating filling factor (γ = Λ1/Λ from Fig. 2), navg, nwide and nnarrow
are the transverse distributions of the longitudinally-averaged refractive index and
of the refractive index in the wide (W+2D) ridge and narrow (W) ridge grating
slices, respectively.

Fig. 3 Schematic cross-section of a LC-RWG grating with a field intensity distribution illus-
trated with log-spaced contour lines. QW: quantum well

Since the local material gain distribution cannot be evaluated without signifi-
cant computational effort, we have employed two different approximations for the
material gain distribution that enable a fast evaluation of the transverse modal
gain discrimination. The first approximation assumes that the local material gain
is constant and positive (g(x, y) = g) in the pumped active region under-the-ridge
and contact and zero elsewhere. This step gain approximation assumes a step
lateral distribution of the current in the active region and non-absorbing high-
bandgap material outside the pumped area in all regions where the optical field
intensity is non-negligible. Under this step gain approximation the modal gain for
the mth transverse mode is given by:

Gm = g

∫∫
active region, under-the-ridge

Ψ2
m(x, y) dx dy

+∞∫∫
−∞

Ψ2
m(x, y) dx dy

= gΓ+
m, (3)

where Γ+
m is the under-the-ridge active region confinement factor for the mth

transverse mode.
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The step gain approximation is suited for deeply etched LC-RWG structures
since deep etching close to the active region implies a limited lateral current diffu-
sion. Also, since the absorbing regions outside the pumped area affect the higher
order modes more, this approximation is more likely to give a false negative than
a false positive STM evaluation. Moreover, the lateral current diffusion can be
taken into account by extending the pumped active region area laterally, beyond
the region placed strictly under the ridge and contact.

According to the step gain approximation, a stable STM-operation is associated
with the maximization of all the ratios of the following type:

Γ+
1m =

gΓ+
1 − gΓ

+
m

gΓ+
1

=
Γ+
1 − Γ

+
m

Γ+
1

. (4)

Since Γ+
2 is generally bigger than Γ+

4 , Γ+
6 , . . . and Γ+

3 is generally bigger
than Γ+

5 , Γ+
7 , . . ., a good STM-operation figure of merit under the step gain

approximation can be derived just from ratios Γ+
12 and Γ+

13:

Γ+
123 = Γ+

12 · Γ
+
13 =

Γ+
1 − Γ

+
2

Γ+
1

· Γ
+
1 − Γ

+
3

Γ+
1

=

(
Γ+
1 − Γ

+
2

)
·
(
Γ+
1 − Γ

+
3

)
(Γ+

1 )2

(5)

Because in many instances the higher-order mode loss is an important factor, a
STM operation figure of merit that also takes into account the loss discrimination
could be more effective. Such a gain-loss STM figure of merit can be derived from
the approximation that the constant gain in the under-the-ridge pumped area of
the active region is equal with the constant absorption loss in the un-pumped
area of the active region and zero elsewhere. The step gain-loss approximation
can be refined by adjusting the switching point between gain and loss regions
such that the approximated modal gain fits the modal gain calculated with an
accurate method. With this step gain-loss approximation, the modal gain for the
mth transverse mode (1) can be simplified to:

Gm = gΓ±m = gΓ+
m − gΓ−m , (6)

where Γ+
m and Γ−m are the “under-the-ridge" and “not-under-the-ridge" optical

confinement factors for the mth transverse mode in the pumped and un-pumped
active region areas, respectively.

The modal gain-loss discrimination figure of merit for achieving STM operation
is associated with a high gain-loss difference between the fundamental mode and
any higher order mode:

G1 −Gm = g · (Γ+
1 − Γ

−
1 )− g · (Γ+

m − Γ−m)

= g · (Γ+
1 − Γ

+
m) + g · (Γ−m − Γ−1 )

(7)

Because the fundamental mode is better confined in the active region under-
the-ridge while higher order modes have higher confinement in the active region
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not under-the-ridge, the gain-loss discrimination figure of merit between the fun-
damental mode and the mth mode can be normalized according to:

Γ±1m =
gΓ+

1 − gΓ
+
m

gΓ+
1

+
gΓ−m − gΓ−1

gΓ−m

=
Γ+
1 − Γ

+
m

Γ+
1

+
Γ−m − Γ−1

Γ−m
.

(8)

Moreover, since the second mode is generally better confined in the active
region under-the-ridge and less confined in the active regions not under-the-ridge
as compared with higher-order even modes, while a similar situation is encountered
in the comparison between the third mode and higher-order odd modes, the gain-
loss figure of merit for STM operation can be evaluated by studying the normalized
product of Γ±12 and Γ±13:

Γ±123 =
(
Γ±12 · Γ

±
13

)
· 1
4
, (9)

where division by 4 is used for normalization because each summand in Eq. (8)
has a maximum value of 1 and thus each factor in Eq. (9) has a maximum value
of 2. The normalization enables the comparison of the STM gain-loss figures of
merit for different structures.

It should be noted that the two modal gain discrimination figures of merit, Γ+
123

and Γ±123, are not based on accurate calculations of the modal gains but rather on
good enough evaluations of the modal gain ratios between the fundamental and
higher order modes. The good evaluation of the modal gain ratios is based on the
fact that the employed approximations affect all modal gains in a similar way.

2.2 Grating coupling coefficient evaluation

An accurate evaluation of the coupling coefficient (κ) is essential for designing
DFB and DBR lasers. Generally the coupling coefficient for the mth transverse
mode (κm) can be evaluated from the expression (Streifer et al, 1975):

κm =
k20
2βm

∫∫
∆ε(x, y)Ψm(x, y)2 dx dy∫∫

Ψm(x, y)2 dx dy
, (10)

where the integration is carried out over the whole (x, y)-plane, Ψm is the mth

transverse mode optical field distribution for the longitudinally averaged transverse
refractive index distribution, and ∆ε is the perturbation in the dielectric constant.
For the oth order rectangular gratings the perturbation term is (Agraval and Dutta,
1993):

∆εo(x, y) =
(
n2(x, y)

2 − n1(x, y)
2
)
· sin(πoγ)

πo
, (11)

where n1(x, y) and n2(x, y) are the transverse refractive index distributions in
the longitudinally alternating grating slices. It should be noted that the coupling
coefficient formula is based on small-signal analysis, and the longitudinal pertur-
bation of the effective dielectric constant (which is derived from the convolution



Transverse Structure Optimization 7

of ∆ε with the optical field intensity distribution) should always be much smaller
than the average values of the effective dielectric constants in different longitudinal
parts of the grating. Combining equations 10 and 11 yields:

κm =
k0

2neff,m

∫∫ (
n2(x, y)

2 − n1(x, y)
2
)
Ψm(x, y)2 dx dy∫∫

Ψm(x, y)2 dx dy
· sin(πoγ)

πo
, (12)

where neff,m is the effective refractive index corresponding to the mth transverse
mode, calculated for the longitudinally averaged transverse refractive index distri-
bution.

Because outside the grating area n2(x, y)
2 − n1(x, y)

2 = 0 and under the as-
sumption that the refractive index distributions are constant in the grating areas
of the grating slices (n1(x, y) = n1 and n2(x, y) = n2 in the grating areas), the
standard formula for the rectangular grating coupling coefficient results as:

κm =
k0

2neff,m
· (n2

2 − n2
1) · Γg,m ·

sin(πoγ)

πo
(13)

where o is the grating order and Γg,m is the optical confinement factor of the mth

transverse mode in the grating area.
An approximation which assumes that n1 + n2 ≈ 2 · neff,m is frequently used

in combination with the standard formula:

κm ≈
2 · (n2 − n1)

λ0
· Γg,m ·

sin(πoγ)

o
. (14)

This approximation is valid for conventional buried gratings, since for them
the alternating grating materials are semiconductors with refractive index values
close to neff,m. However, for the surface grating structures this approximation
overestimates κm, because n1 + n2 < 2 · neff,m as one of the alternating grating
materials is a dielectric with much lower refractive index but a small influence on
neff,m. A better calculation approach for the grating coupling coefficient, which
does not assume constant refractive index distributions in the grating areas of the
grating slices and is valid for all types of gratings, employs the effective refractive
index values for the two successive slices of the grating, neff,m:2 and neff,m:1:

κm =
k0

2neff,m

(∫∫
n2(x, y)

2Ψm(x, y)2 dx dy∫∫
Ψm(x, y)2 dx dy

−

∫∫
n1(x, y)

2Ψm(x, y)2 dx dy∫∫
Ψm(x, y)2 dx dy

)
· sin(πoγ)

πo

=
k0

2neff,m

(
n2
eff,m:2 − n2

eff,m:1

)
· sin(πoγ)

πo
.

(15)

The effective refractive index values corresponding to the grating slices (neff,m:2
and neff,m:1) cannot be calculated directly with a Mode Solver applied to the refrac-
tive distributions of the grating slices because this would imply boundary condition
violations in the longitudinal direction. A good approximate effective refractive
index calculation procedure for the grating slices is to use the convolution of the
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transverse optical field distribution (Ψm(x, y)), obtained for the longitudinally-
averaged transverse refractive index distribution, with the transverse refractive
index distributions in the grating slices, which leads to:

n2
eff,m:slice =

∫∫
Ψ2
m · n2

slice dx dy∫∫
Ψ2
m dx dy

−
∫∫

(∇Ψm)2 dx dy

k20 ·
∫∫
Ψ2
m dx dy

. (16)

This corresponds also to the derivation of the κ formula from coupled mode theory
(Dutta and Agrawal, 1993; Streifer et al, 1975) because the second term on the
right hand side of Eq. (16) is canceled in the effective refractive index contrast of
Eq. (15).

3 Results and Discussion

A comparison between the step gain approximation and the improved step gain-
loss approximation STM figures of merit can be made by comparing Fig. 4 with
Fig. 5, where both figures of merit are plotted as a function of un-etched cladding
thickness (t) and ridge width (W ) for different supplementary lateral extensions of
the "under-the-ridge" gain active area beyond the region strictly under the ridge
(as defined by the angle θ of lateral current divergence in the epilayer below the
etching depth, shown in the inset of Fig. 3).

Fig. 4 Variation of the STM figure of merit Γ+
123 as a function of ridge width (W ) and un-

etched cladding thickness (t) for different lateral current divergence angles below the etching
depth level θ: a) θ = 0◦, b) θ = 15◦, c) θ = 30◦, d) θ = 45◦

The structure for which the calculations have been done is a LC-RWG grating
designed for 780 nm operation with D=2.5 µm. From both Fig. 4 and Fig. 5 it can
be seen that the supplementary lateral extension of the "under-the-ridge" active
area does not influence significantly the figures of merit as long as the extension
does not exceed a value corresponding to the epilayer thickness between the grating
etching depth level and the active region depth level.
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Fig. 5 Variation of the STM figure of merit Γ±123 as a function of ridge width (W ) and un-
etched cladding thickness (t) for different lateral current divergence angles below the etching
depth level θ: a) θ = 0◦, b) θ = 15◦, c) θ = 30◦, d) θ = 45◦

The comparison between Fig. 4 and Fig. 5 shows that the step gain-loss figure of
merit gives a narrower range of transverse dimensions for the best STM operation.
The parameter combinations that correspond to a good/stable STM operation are
the ones that maximize the two figures of merit, but the absolute values of the
two different figures of merit, Γ+

123 and Γ±123, are not directly comparable.

Fig. 6 Comparison of κ variation as a function of grating filling factor (left panels) and grating
trench width (right panels) for three different structures. Top panels: buried grating; middle
panels: LC-RWG surface grating with W = 2.0 µm, D = 2.5 µm and t = 150 nm; bottom
panels: ET-RWG surface grating with W = 2.0 µm and t = 150 nm. In each panel the solid
line is for a first, the dashed line is for a second and the dotted line is for a third order grating
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Fig. 6 gives the variation of κ as a function of the grating filling factor γ and as
a function of the grating trench width for three different grating structures. The
buried grating κ changes symmetrically below and above 0.5 filling factor, because
the filling factor doesn’t change the transverse optical field profile considerably.
However, the variation of κ with the filling factor is strongly asymmetrical for the
surface gratings. This is due to the fact that a change in the filling factor of the
surface gratings induces a significant change in the transverse optical field profile,
which affects the confinement factor in the grating area and the effective refractive
indexes of the alternating slices. The dependencies of the grating coupling coeffi-
cient on the grating trench width, given in right panels of Fig. 6, illustrate that,
due to the particular interaction of the surface gratings with the optical field, a
high surface grating coupling coefficient is obtained for narrow grating trenches
irrespective of the grating order.

Fig. 7 Comparison of κ variation as a function of un-etched cladding thickness, calculated
with different procedures for a 1st-order LC-RWG grating with W = 2.0 µm, D = 2.5 µm and
γ=0.5. The solid line has been obtained using Eq. (15), the dashed line has been obtained using
the approximate Eq. (14), and the dotted line has been obtained by using PICS3D (Crosslight
Software Inc., 2005) (version 2006.11.01)

The coupling coefficient value dependencies on the un-etched cladding thick-
ness calculated for a 1st-order LC-RWG grating with W = 2.0 µm, D = 2.5 µm
and γ=0.5, using Eq. (15), using the approximate Eq. (14) and using PICS3D
are compared in Fig. 7. The difference between the experimentally confirmed val-
ues calculated with Eq. (15) and the values calculated with Eq. (14) are due to
the approximation n1 + n2 ≈ 2 · neff, which leads to an over-estimation of κ by
Eq. (14). PICS3D also uses the approximate Eq. (14), and the supplementary
over-estimation is due to the fact that the values calculated by Eq. (14) are de-
pendent on the very small value of the optical confinement factor in the grating
region, which is very sensitive to mesh variations. The calculations performed with
Eq. (15) do not imply any approximations, are more robust with respect to mesh
variations and provide the effective refractive index values for the grating slices,
which can be used in longitudinal transfer matrix simulations.
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4 Conclusions

Two figures of merit facilitating single transverse mode (STM) operation evaluation
based on step gain and on step gain-loss distribution approximations have been
introduced. The figures of merit are easy to calculate and enable a fast evaluation of
STM operation over a broad range of transverse structural parameters. The figure
of merit based on the step gain-loss distribution approximation gives narrower
ranges for the transverse structural parameters that lead to STM operation and
has been confirmed by numerous experiments with various RWG and LC-RWG
structures operating at different wavelengths.

The proposed coupling coefficient calculation does not imply the approxima-
tions used in the standard formulas, is applicable to grating structures with vari-
able refractive index across the grating area of the grating slices, is more accurate
and more robust to mesh variations, particularly for surface gratings.
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