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Abstract.

Motivated by the recent experiments indicating superconductivity in metal-

decorated graphene sheets, we investigate their quasi-particle structure within the

framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-

like pairing terms for p-type order parameter. The normal state band structure of

graphene is modified not only through interaction with adsorbed metal atoms, but also

due to the folding of bands at Brillouin zone boundaries resulting from a
√

3×
√

3R30◦

reconstruction. Several different types of pairing symmetries are analyzed utilizing

Nambu-Gorkov Green’s function techniques to show that p + ip-symmetric nearest-

neighbor pairing yields the most enhanced superconducting gap. The character of the

order parameter depends on the nature of the atomic orbitals involved in the pairing

process and exhibits interesting angular and radial asymmetries. Finally, we suggest

a method to distinguish between singlet and triplet type superconductivity in the

presence of magnetic substitutional impurities using scanning tunneling spectroscopy.
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1. Introduction

Since its discovery, graphene has fascinated the scientific community with its remarkable

electronic properties, such as high electron mobility and the anomalous quantum Hall

effect. [1, 2, 3] Although pristine graphene seems to lack superconductivity (SC), it

can be induced via the proximity effect[4]. More notably, SC state has been found in

intercalated graphite structures, especially CaC6, where metal atoms reside in the space

between the loosely interacting graphene layers [5, 6, 7, 8, 9, 10]. Intriguingly, from

the point of view of their electronic structure, intercalated graphite structures have also

provided a promising platform for developing high capacity rechargeable batteries [11].

The findings of SC in these materials have motivated recent experiments, which indicate

that metal decoration might also induce SC in a single graphene sheet [9, 8], although

the nature of SC remains unclear.

An early theoretical study of metal-decorated graphene by Uchoa and Castro Neto

[12] considered various pairing symmetries in the presence of band folding effects of

a
√

3 ×
√

3R30◦ reconstruction. That study discusses electron-phonon and electron-

plasmon mediated SC, and suggests that the extended s-wave or p+ip -wave pairing

with nearest neighbor matrix elements is more feasible than s-wave pairing with onsite

matrix elements. Although Ref. [12] emphasizes the electron-plasmon mechanism, the

possibility of phonon mediated SC has attracted attention in intercalated graphene [10]

where ab initio electron-phonon coupling computations rule out multigap SC, but

support anisotropic pairing between electrons [13].

The purpose of this study is to examine spectroscopic signatures of different

symmetries of the superconducting order parameter (OP) in metal-decorated graphene.

We take CaC6 as an exemplar system, and focus on the quasiparticle (QP) and scanning

tunneling spectra (STS) associated with specific OPs. We do not attempt to assess the

nature of the mechanism mediating pairing, but rather seek to unfold the fingerprints of

different symmetries of OPs in QP dispersions and the related local densities of states.

While the emphasis is on variations of s- and p+ip-symmetric singlet superconductivity,

we also distinguish between singlet- and triplet-type pairing by introducing a magnetic

impurity into the system. Our analysis is carried out within the framework of an

effective tight-binding (TB) Hamiltonian, which we augment with appropriate pairing

matrix elements to model various OPs. The Hamiltonian is fitted to DFT calculations

in order to correctly capture the low-energy states and their orbital characters. The

realistic gap widths are of the order of 6− 11meV (see, e.g., [5]), but we exaggerate the

amplitudes of the anomalous terms in order to highlight pairing effects on the electronic

structure. This allows us to focus on the behavior of the salient consequences of different

superconducting order parameters.
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Figure 1. (Color online) (a) Geometry of the
√

3 ×
√

3R30◦ structure of CaC6.

The primitive cell is indicated as a parallellepiped. The range and direction of the

anomalous Hamiltonian matrix elements ∆R and ∆C are indicated as green and

red lines between nearest neighbor sites, respectively. (b) Reciprocal space of the√
3 ×

√
3R30◦ structure, along with the first Brillouin zone of pristine graphene

(red hexagon). (c) Folded band structure of pristine graphene along high symmetry

directions marked in (b). (d) Folded band structure of metal-decorated graphene.

2. Methodology

Our model Hamiltonian involves one s-orbital and three p-orbitals for each atom. The

electron, hole and spin degrees of freedom are incorporated as follows:

Ĥ =
∑
αβσ

(εαc
†
ασcασ + Vαβc

†
ασcβσ) + ĤSC + ĤMAG. (1)

Here c†ασ (cασ) is the real-space creation (annihilation) operator, α is a composite index

which encodes both the site and orbital information, and σ is the spin index. The on-site

orbital energy (εα) and the hopping integral between orbitals α and β (Vαβ) are obtained

within the Slater-Koster formalism [14, 15]. All parameters in the normal state part of

the TB Hamiltonian are fitted to the low-energy DFT band structure of CaC6 obtained

using the Quantum Espresso [16, 17] package. Fig. 1(a) and 1(b) depict the real space

structure of the system indicating the structures for pristine honeycomb lattice and the

lattice with the reduced symmetry. Fig. 1(c) Shows the folded band structure for the
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pristine graphene and, for comparison, 1(d) shows the effect of Ca decoration. A more

detailed analysis of the band structure is given in Appendix A.

For the SC part of the Hamiltonian, ĤSC , different OPs (anomalous matrix elements

of the Hamiltonian) ∆ασβσ′(λ) are modeled through the choices of atomic orbitals,

spin degrees of freedom, and the pairing symmetries (labeled λ, see also Appendix

B). However, in all cases, we have artificially enhanced the amplitudes of OP matrix

elements to better identify and highlight the gaps in QP dispersions and local densities

of states (LDOSs). Thus, we write the SC part of the Hamiltonian as

ĤSC =
∑
αβσ

(∆ασβσ′(λ)c†ασc
†
β−σ + ∆†βσ′ασ(λ)cβ−σcασ). (2)

It is important to distinguish between the symmetry of the order parameter λ and the

character of the involved atomic orbitals α and β. For example, if the matrix element

∆αβ(λ) has p+ ip-symmetry, its complex phase is the same as the phase of xαβ + iyαβ,

where x and y refer to the relative coordinates of the atoms with orbitals α and β. To

put it simple, we mainly use the symmetry choices of Ref. [12] where, in addition to

spherically symmetric onsite matrix elements of s-wave order parameter, there are also

nearest neighbour matrix elements which can expanded to follow ∝ kx + iky (see also

Refs. [18, 19]). The main novelty here is that in Ref. [12] the basis consists of pz orbitals

of carbon, but in our cases the basis is significantly larger (See also appendices A and

C).

We will find that the QP-dispersion of SC singlet and triplet pairings are

indistinguishable unless a spin-dependent perturbation is present. With this in mind,

we allow the possibility of introducing a substitutional magnetic impurity into the

Hamiltonian (1) via the term

ĤMAG = Umγ(c
†
γ↑cγ↑ − c

†
γ↓cγ↓). (3)

Here γ refers to the index of the orbital contributing to local magnetic moment. The

impurity is modeled by replacing one metal atom with a model atom (see Fig. 4(a)

insert), where the two spin states are split via differences in their on-site energies. In

order to create a visible effect, we have taken Umγ = ±1.0eV for the spin-up and

spin-down p-orbitals of the impurity atom, respectively.

We analyze the electronic structure generated by the Hamiltonian by utilizing

Bogoliubov-de Gennes equations and the associated tensor (Nambu-Gorkov) Green’s

function G[20, 21]:

G = G0 + GDG0, (4)

where G0 is the Nambu-Gorkov Green’s function without electron-hole interaction,

G =

(
Ge F

F † Gh

)
with cα =


cα↑
cα↓
c†α↑
c†α↓
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and

D =

(
0 τ

τ † 0

)
Here, Ge and Gh denote the spin-resolved Green’s functions for electrons and holes,

respectively‡, and the matrix elements of the operator τ represent the interaction terms

of the Hamiltonian of Eq. 1. As in Refs. [22, 23], the elements of Nambu-Gorkov Green’s

function provide us the local density of states

ρασ,βσ′ = − 1

2πi

(
G+ασ,βσ′ − G−βσ′,ασ

)
(5)

and the electron-hole pairing amplitude is

ρeh = Tr(FF †). (6)

The preceding equations allow us to obtain contributions to various quantities from

different orbitals, as well as from the electron, hole, or spin degrees of freedom. The

foremost use of the density matrix is different presentations of energy states as a function

of different degrees of freedom. For example the QP dispersion can be expressed as

ρ(E, k)-diagram, which is essentially the band diagram. Furthermore, one can take

a trace of ρ(E, k) over the electron part of the basis as is done in most of the QP

dispersions presented in this work, or to consider the anomalous electron-hole terms as

in Fig. 3. (c-f) (see also Ref. [23]).

Another use of the density matrix is simulations of scanning tunneling mi-

croscopy/spectroscopy (STM/STS), where we apply the Todorov-Pendry approach [24]

(see also Ref. [25]) in which the differential conductance σ between orbitals of the tip

(t, t′) and the sample (s, s′) is given by[26, 23]

σ =
dI

dV
=

2πe2

~
∑
tt′ss′

ρtt′(EF )Vt′sρss′(EF + eV )V †s′t. (7)

We will see that structural variations in the SC gap do not lead to variations

in the LDOS, which are pronounced enough to allow identification of the underlying

coupling mechanism via regular dI/dV-spectroscopy. We consider therefore the effect of

a local magnetic impurity to determine how this perturbation will be seen in STM/STS

under various pairing symmetries. In addition to the regular STM topographic maps,

we compute current polarization maps in constant current mode where the regular

dI/dV spectrum is scaled by the normal state spectrum and the polarized differential

conductance spectrum, Here, current polarization, following Ref. [27], is defined as:

PI =
I↑ − I↓
I↑ + I↓

(8)

where current can be obtained with numerical integration of equation 7. Still following

[27], the differential conductance polarization is

Pσ =

dI
dV ↑ −

dI
dV ↓

dI
dV ↑ + dI

dV ↓
. (9)

‡ Spin-flip terms are neglected in the present calculations.
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Note that these expressions refer to the case where components of spin are perpendicular

to the sample surface, although practical spin-resolved STM often involves filtering

components parallel to the surface [27, 28]. The modeling of the more complicated

case of spin-filtering in the presence of horizontal spin components will be considered

elsewhere.

3. Results

The following discussion will emphasize three main points: (1) Since the singlet p+ip-

wave symmetry of the OP ∆(λ) seems to be the most effective route toward forming

the SC gap, we will focus on different orbital combinations for creating a p+ip-wave

OP. (2) Concerning the normal-state band structure, the metal atoms lead to a Kekulé-

type folding [29, 30] of the π∗-band with a gap and, in addition, new conical non-folded

bands appear due to rehybridization of the p-orbitals of carbon and metal atoms, see

Appendix A for details. To determine how these folded and conical bands contribute to

SC and the OP, we consider OP matrix elements between the relevant atomic orbitals

in two scenarios: (a) Use pz orbitals of neighboring carbon atoms to construct π-type

OP or (b) use horizontal p-orbitals of carbon to construct σ- or π-type OP. In this

connection, we discuss the possibility of non-equivalent ∆R (radial) and ∆C (angular)

terms. (3) Finally, although we focus on singlet p + ip superconductivity, we consider

the possibility to experimentally distinguish between singlet and triplet cases in the

presence of magnetic impurity.

3.1. SC state: σ vs. π-type order parameter

We start by considering the effect on SC of different types of OPs with px+ipy symmetry

in terms of contributing atomic orbitals. As the first case, we scrutinize Hamiltonian

matrix elements ∆αβ(λ), where α and β are the pz orbitals of the two neighboring

carbon atoms. This can be characterized as p-type coupling with a π-type orbital-

orbital character. Such a matrix element opens up a gap with coherence peaks for the

π∗ bands under electron or hole doping, see Fig. 2(a), which is similar to the observations

in intercalated bulk CaC6 in Ref. [7]. Since these matrix elements directly couple only

with the pz(C)-orbitals, they have little effect on the conical bands and, as a result, they

remain essentially intact.

These interlayer bands (IL) (see Appendix A) with a Dirac point mainly involve

px/y(C) character, and therefore, we must also consider the p-wave matrix elements

∆αβ(λ), where α and β are linear combinations of the px and py orbitals of two

neighbouring carbon atoms. There are two possibilities: the orbitals can be combined

to make a σ-type combination, where the hybridized p-orbitals point along the bond

between the two carbon atoms or a π-type combination, where the orbital is oriented in

the perpendicular direction. Both these π and σ-type matrix elements open up an SC

gap uniformly at Γ when the Fermi-energy lies outside the gap of the folded π∗ band,



Spectroscopic signatures of superconducting metal-decorated graphene 7

see Fig. 2(b); when EF lies within the gap, the SC gap opens only due to the σ- but

not the π-type matrix element. This directional dependence is likely dependent on the

hybridization of the horizontal p-orbitals with pz(C)-orbitals, which contribute to the

conical bands only within the gap of the π∗ band (See discussion of orbital contributions

in Appendix A). §
The distinction between the two kinds of orbital contributions can also be seen in

Fig. 2(c), where an inspection of the pz(C) contribution to the partial density of states

(PDOS) shows the presence of a clear SC gap. If the horizontal p-orbital contribution

is taken into account as well, the PDOS projected onto px/y(C) also shows an SC gap

(see Fig. 2(d)), but the intensity is an order of magnitude smaller.

3.2. Anisotropy of order parameter ∆: radial vs. angular bonds

In constructing SC matrix elements, it is useful to make a distinction between the radial

bonds [∆R, Fig. 1(a)], which connect the two carbon atoms between the neighboring

metal atoms, and what may be called angular bonds [∆C , Fig. 1(a)], which connect

phenyl-ring-like hexagons around the metal atoms.

Our calculations indicate that the angular matrix element, ∆C , contributes strongly

to gap formation, see Figs. 3 (a) and (b), and that the radial matrix element alone is

not sufficient for opening an SC gap in the electronic spectrum. The E-k-dispersion

in Fig. 3 further indicates that the anomalous amplitudes |F |2 lead to some QP-

hybridization via both types of matrix elements, but the angular symmetry plays a

dominant role. Interestingly, however, there is little difference between the amplitudes

of the resulting outgoing radial and angular matrix elements of the anomalous Green’s

function, |FC |2 and |FR|2. Since the OP ∆ would be coupled self-consistently with F

[20, 21], the directional homogeneity of the anomalous Green’s function would indicate

connections between the symmetry of the OP and the bosonic mechanism underlying

SC. In particular, a directionally anisotropic OP can only be obtained if the related

bosonic modes are directionally anisotropic.

3.3. STM/STS and pairing mechanism in the presence of a magnetic impurity: singlet

vs. triplet pairing

As noted already, we expect little difference between the STS/STM spectra of CaC6

for singlet and triplet pairing. However, since a singlet Cooper pair has total spin

S = 0, and triplet has S = 1, a difference could be induced via a magnetic perturbation.

Accordingly, we consider the effects of substituting a Ca atom with a magnetic impurity.

Note that the STM corrugation map of Fig 4(a) shows the metal atoms as bright spheres,

and gives no hint of the magnetic perturbation. Similarly, scaled dI/dV spectra in Fig.

§ We have obtained the corresponding spectra for triplet pairing [33], but found no difference from the

singlet case. This is to be expected, since the Hamiltonian contains no spin-orbit coupling or magnetic

order. s-wave singlet pairing with an on-site matrix element can also lead to pairing around Γ, but

none of these pairing types affect the IL-bands.
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Figure 2. (Color online) QP dispersion for electron doped CaC6 when the matrix

elements of ∆ are between (a) pz-orbitals and (b) px/y-orbitals of neighbouring C

atoms. (c) Contribution from pz(C) to the density of states corresponding to the

parabolic bands in (a). (d) PDOS from pz(C) (red) and px(C)+py(C) in the region

near EF (blue line is multiplied by a factor of 10).

4(d) computed at various positions (see colored dots in Fig. 4(a)) show little variation

with position. Qualitatively, the same kind of scaled set of spectra are obtained for both

the singlet and the triplet case. We thus adduce that a regular STM/STS measurement

will not detect the presence of a magnetic impurity.

Fig. 4(b) shows that when we consider a map of polarized current, PI-map (Eq.

8), the magnetic impurity at the center of the figure is clearly detected, with the

perturbation extending essentially only to the neighboring Ca atoms. The polarization

is seen to be the strongest on the six carbon atoms surrounding the impurity, being

nearly as strong as it is on the impurity atom. A hexagonal pattern of slightly lower

(ferromagnetic) polarization is seen in the neighborhood of the six Ca atoms with the

magnetic effect rapidly dying out as we move further away from the impurity. Note that

this map is practically identical for both singlet- and triplet-case (Fig. 4(b) and (c)).

This indicates that the PI-map also cannot be used to distinguish between singlet and
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Figure 3. (Color online) QP dispersion for electron doped CaC6 when only (a) the

radial and (b) the angular matrix elements of ∆ are included for all p-orbitals. (c) and

(d) Energy-momentum dispersion of electron-hole pairing amplitudes corresponding to

(a) and (b), respectively. (e) and (f) Matrix elements |FR|2 (blue curves) and |FC |2
(red curves) of electron-hole pairing amplitudes, where (e) and (f) correspond to (a)

and (b), respectively.

triplet pairing, even though this map clearly shows the magnetic perturbation.

Figures 4(e) and (f) finally consider polarized differential conductance, Pσ, see Eq.

(9). The spectra are now seen to distinguish between singlet (solid lines) and triplet

(dashed line) pairing around the magnetic impurity. For the singlet case, polarization

changes abruptly around the coherence peaks and varies roughly linearly in the gap

region. In sharp contrast, in the triplet case, we see a minimum at the coherence peak

energies, and a maximum at energies between these peaks. These fingerprints of singlet

and triplet pairing should be observable in spin-polarized dI/dV-spectra, and allow thus

a handle on the underlying pairing mechanism.

4. Summary and Conclusions

We consider p+ip -wave singlet superconductivity in metal-decorated graphene within

the framework of a tight-binding Hamiltonian based on first-principles normal state

band structure, and discuss the characteristic spectroscopic fingerprints of different

superconducting order parameters.

Both the in-plane px/y(C)-orbitals and the out-of-the-plane pz(C)-orbitals are

needed to open up a superconducting gap. Anomalous matrix elements between the

pz-orbitals open a gap between the π∗-bands whereas matrix elements between the px/y-

orbitals are required to open the gap in the conical interlayer bands. Therefore, ARPES
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Figure 4. (Color online) (a) Simulated STM topographic map for CaC6 in the

presence of a magnetic impurity. Colored dots indicate the real space positions where

the corresponding computed STS spectra are shown in (d). The inset shows the

simulated primitive cell with C (blue) and Ca (yellow) atoms along with the impurity

atom (red). (b) and (c) Spin-polarized topographic map for the system in (a) for

singlet- and triplet-type pairing, respectively. (d) dI/dV spectra for the SC state

scaled by the normal state spectra at positions indicated in (a). Lines with various

colors correspond to tip positions given by the dots of the same color in (a). All spectra

have been scaled by the corresponding normal state spectra. (e) Spin-polarized dI/dV-

spectra computed at three different points along the horizontal line joining the impurity

atom in the inset in (a) with Ca. Results for singlet pairing (solid lines) and triplet

pairing (dashed lines) are shown. (f) Spin-polarized dI/dV-spectra computed at three

different points along the vertical line joining the two Ca atoms. Results for singlet

pairing (solid lines) and triplet pairing (dashed lines)

are shown.
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experiments with sufficiently high resolution could distinguish between superconducting

gaps in different bands, and could thus be used to identify the atomic orbitals involved

in the underlying pairing mechanism. On the other hand, although a few meV gap

expected in intercalated graphite [5] could be observed via STM/STS experiments as

indicated by the results of Fig. 2(c), one would not be able to distinguish between

different pairing symmetries from the measured spectra.

Due to the Kekulé structure induced by metal decoration, the order parameter is

anisotropic. As a result, the superconducting gap forms mainly due to the angular

matrix elements, which reflect the couplings between the neighboring carbons circling a

metal atom. Unfortunately, there is no direct way to experimentally detect directional

anisotropy in the order parameter. One could speculate about the possibility of

obtaining the anomalous QP spectrum through a measurement using a superconducting

STM tip, where the directional anisotropy might be reflected in the quasiparticle

interference (QPI) patterns.

Our analysis shows that the character of the SC gap depends on the nature

of the atomic orbitals at the Fermi energy involved in the pairing process, which

drive interesting angular and radial asymmetries in the SC order parameter. The

computed STM/STS spectra with and without a magnetic impurity indicate that a

magnetic impurity will essentially be invisible in a standard (spin-unresolved) spectrum.

This, however, is not the case in a spin-resolved STM/STS spectrum, where the

polarization around the impurity can be seen clearly, and singlet vs. triplet pairing

can be distinguished in the polarized differential conductance spectrum of Eq. 9.

Our study indicates that spin-polarized measurements would provide new insight into

the nature of the order parameter and its symmetry in metal-decorated graphene

systems. An interesting prospect is, if superconductivity of graphene could be tuned

with modulations in metal decoration. Based on the calculated effects of magnetic

impurity, as well as the dependence of the order parameter on the folded bands vs.

decoration induced conical band, we suggest STM/STS experiments on metal decoration

with magnetic and non-magnetic substitutional impurities.
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Appendix A. Geometric and electronic structure and normal state band

characters

Figs. 1(a) and (b) show how the
√

3×
√

3R30◦ reconstruction reduces lattice symmetry.

As a result, bands fold at the two inequivalent K-points of the large BZ of pristine

graphene to the Γ-point of the small BZ of the metal-decorated graphene sheet. The

new lattice of C atoms can also be viewed as a Kekulé-distorted graphene lattice (see

Refs. [29, 30]). This distortion opens a gap at the Dirac point of the π∗-type bands,

which is clearly seen in the band structures of Fig. 1(c) and (d). As is well known

[12, 10, 6], in addition to the π∗-bands, “hourglass”-like bands are formed from the sp2-

hybridized horizontal p-orbitals of C atoms and orbitals of the metal atoms. We refer

to these two types of bands as π∗- and interlayer-bands (IL-bands). This nomenclature,

however, is not followed consistently in the literature, and for this reason, we comment

further on this point.

Since the gapped or Kekulé-distorted bands are doubly degenerate (in addition

to spin degeneracy), they are folded from the graphene K-points. The LDOS

decomposition in Fig. A1 shows that these bands possess a strong pz(C)-character

especially in the vicinity of the gap; the Ca orbitals mix with these bands at higher

energies. The conical IL-band, on the other hand, merely possesses the spin-degeneracy

and it is, therefore, a genuine decoration-induced feature at the Γ-point. An analysis of

the wavefunction shows that IL-band is dominated by px/y(C) orbitals, which originate

from sp2-hybridization. Since orbitals of Ca atoms overlap weakly with the horizontal

p(C)-orbitals, Kekulé-distortion does not open a gap in these bands.

Appendix B. Implementation of singlet and triplet superconductivity in the

tight binding Hamiltonian

Here we consider anomalous matrix elements of the Hamiltonian in using the basis set:

(|α ↑〉, |β ↑〉, |α ↓〉, |β ↓〉). For a singlet configuration (s = 0), antisymmetric two-particle

states with ms = 0 are of the form |α ↑ β ↓〉 − |α ↓ β ↑〉. For a triplet (s = 1), the state

is symmetric with respect to spin flip, and hence |α ↑ β ↓〉 + |α ↓ β ↑〉 corresponds to

ms = 1, whereas |α ↑ β ↑〉 and |α ↓ β ↓〉 stands for cases ms = 1 and −1, respectively.

Construction of the order parameters then follow the derivation given in Refs. [33, 34]

for topological superconductors.

In constructing the order parameters, we assume that the combined angular

momentum is J = 0, which couples orbital and spin quantum numbers as: ml+ms = 0,

i.e., ml = −ms. For the singlet state we need an s-wave order parameter ∆(s) and a

sub-Hamiltonian for the four orbitals given by:
0 0 0 ∆(s)

0 0 ∆(s) 0

0 −∆(s) 0 0

−∆(s) 0 0 0
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Figure A1. (Color online) Contribution of various orbitals in the band structure of

Fig. 1(d) for decorated CaC6: (a) Horizontal p-orbitals of C; (b) Folded π∗ orbitals of

C; (c) Horizontal p-orbitals of Ca; (d) pz-orbitals of Ca.

since spin-flip changes the sign of the matrix element.

In addition to the symmetry with respect to the orbital/spin permutations, one

must also account for the directional dependence of the order parameter ∆. Define

xαβ = xα−xβ, and likewise for the other coordinates, the form apart from an amplitude

prefactor is as follows [∆(s) is just a complex number (totally symmetric)]:

∆(z) ∝ zαβ
rαβ

= cos (θαβ)

and

∆(±) ∝ (xαβ ± iyαβ)

rαβ
= sin (θαβ)e(±iϕαβ).

Hence, this scaling takes into account the dimensionality of the system by introducing

the appropriate rotational angles.

In the triplet case, we need a spatially antisymmetric wave function, i.e., we need p-

symmetric matrix elements. If we first look at the case ms = 0, we need a pz-symmetric

matrix element ∆(z). Since switching the order of the orbitals in the two-particle state

changes the sign, the sub-Hamiltonian goes into the form:
0 0 0 ∆(z)

0 0 −∆(z) 0

0 ∆(z) 0 0

−∆(z) 0 0 0

 .
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For ms = ±1, the symmetry of the matrix element is p∓ = px ∓ ipy. Following the

anticommutation arguments for matrix elements ∆(∓), we end up with the following

sub-Hamiltonian:
0 ∆(−) 0 0

−∆(−) 0 0 0

0 0 0 ∆(+)

0 0 −∆(+) 0

 .

Hence, these matrix elements consist of up-up and down-down terms. Finally, the total

electron-hole block will be:
0 ∆(−) 0 ∆(s) + ∆(z)

−∆(−) 0 ∆(s)−∆(z) 0

0 −∆(s) + ∆(z) 0 ∆(+)

−∆(s)−∆(z) 0 −∆(+) 0

 .

Appendix C. Parametrization of the Hamiltonian.

We utilize the Slater-Koster tables [14, 15] to determine the distance and directional

dependence of the Hamiltonian matrix elements, but their amplitudes are fitted to QE

calculated band structures especially at low energies. The amplitudes for the matrix

elements and the onsite terms are as follows:

Table C1. Amplitudes of the Slater-Koster terms.

overlap amplitude

ssσ -0.80

spσ 0.24

ppσ 3.24

ppπ -0.81

Table C2. Onsites and cut-off lenghts.

εs(C) εp(C) εs(Ca) εp(Ca) rC−C rCa−Ca rC−Ca

−13.6eV −0.610eV 6.89 7.39eV 1.48Å 4.30Å 2.52Å
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