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Transfer Learning using a Nonparametric Sparse Topic Model

Ali Faisal1,∗, Jussi Gillberg, Gayle Leen2,, Jaakko Peltonen1,

Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

Abstract

In many domains data items are represented by vectors of counts; count data arises for example in bioinformatics or analysis of text

documents represented as word count vectors. However, often the amount of data available from an interesting data source is too

small to model the data source well. When several data sets are available from related sources, exploiting their similarities by trans-

fer learning can improve the resulting models compared to modeling sources independently. We introduce a Bayesian generative

transfer learning model which represents similarity across document collections by sparse sharing of latent topics controlled by an

Indian Buffet Process. Unlike a prominent previous model, Hierarchical Dirichlet Process (HDP) based multi-task learning, our

model decouples topic sharing probability from topic strength, making sharing of low-strength topics easier. In experiments, our

model outperforms the HDP approach both on synthetic data and in first of the two case studies on text collections, and achieves

similar performance as the HDP approach in the second case study.
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1. Introduction

Traditionally machine learning methods learn models for

data from a single data source, for example learning a model

of news articles posted to a newsgroup or scientific papers sub-

mitted to a conference track. Learning the model can be called

a task. In particular, we consider learning models for count

data, a prominent type of data that arises in bag-of-words rep-

resentations of text documents, in bioinformatics for example

as counts of active genes over pathways, and in other domains.

Latent structure in count data has often been modeled with topic

models [1], in domains from document collections [2] to bioin-

formatics [3, 4].

When few training samples are available for the learning

task, methods may overfit or have too little information to infer

complicated models. To gain more information for the learn-

ing task, transfer learning [5] methods transfer knowledge from

earlier tasks to a new one, and multi-task learning [6] methods

learn several tasks together from their respective data sets, ex-

ploiting their underlying relationships. For example, the data

of these related tasks may be articles from other newsgroups or

papers from other tracks in the conference.

A particular interesting setting is the case when one task is

more interesting than others: in the text data case this could cor-

respond to focusing on creating a model for a particular news-

group which could be of strong interest to advertisers analyzing
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the newsgroup that correspond to their business field. Similarly

a model for articles from a particular conference section would

interest researchers whose research topic matches well with the

conference section. In some cases the task of interest may be

a new task (a recent newsgroup or conference track) for which

less data is available, and multi-task learning is then crucial to

learn a good model for it.

When set in the probabilistic modeling framework, transfer

learning or multi-task learning approaches typically build a hi-

erarchical model describing how model parameters vary among

tasks; models for all tasks are then learned simultaneously. The

success of transfer learning and multi-task learning models de-

pends on whether the assumed kinds of relationships between

data sources match the real relationships.

In this paper we introduce a multi-task learning (transfer

learning) method for an unsupervised multi-task learning prob-

lem, generative modeling of count data in multiple tasks, such

as bag-of-words text documents from several collections. We

will model each data source with the topic model family. We

propose a nonparametric extension where both the number of

topics and their strengths are learned from data. To model shar-

ing of information among tasks, we allow topics to be shared

among tasks. We use an Indian Buffet Process (IBP; [7]) to

model how many topics are active overall and which topics each

task uses to model its respective documents; we allow a further

sparsity-inducing step to turn off some topics from each task.

Finally we generate the strengths of active topics in each task

from a Gamma prior. We use Bayesian inference (MCMC sam-

pling) to infer the posterior over topics and make predictions

about new documents as in any Bayesian model.

The most relevant earlier work is the Hierarchical Dirichlet
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Process model (HDP; [8]) which extends the single-task Latent

Dirichlet Allocation model (LDA; [1]) and learns the number

of topics from data by a Dirichlet Process (DP) prior; it is also

extended to multi-task problems by modeling topic strengths in

each task as draws from an upper-level Dirichlet Process prior;

we denote the multi-task version by MT-HDPLDA.

Due to the way topic strengths are hierarchically drawn from

Dirichlet Processes, MT-HDPLDA implicitly assumes that the

topics most likely to be shared are also the strongest topics,

(contributing most of the words in documents). This neglects

the possibility of sharing weak topics, and can make it hard to

learn such weak shared topics from data. Here “weak shared

topics” denotes shared topics that are either weak overall so

that they in total contribute only few words in documents, or

topics whose overall strength is moderate but whose strength is

relatively small in some subset of tasks. The term “weak shared

topic” is used only as an informal description of why HDP may

poorly represent sharing of some topics; the above described

implicit assumption in HDP affects strength and sharing of all

topics, and the weaker a shared topic is in some tasks, the harder

it may be to represent it properly in an HDP model.

In contrast to MT-HDPLDA, our IBP-based sharing sepa-

rates the choice of which topics to share from generation of

topic strengths, allowing more flexible sharing between multi-

ple tasks. In experiments our model outperforms MT-HDPLDA

on several data domains. Another related model is the single-

task model in [9], which uses an IBP prior to control which

topics are active in each document and draws strengths of ac-

tive topics from Gamma priors. The model in [9] is for single-

task learning only. Our model can be seen as a multi-task

counterpart, where the “IBP+Gamma” type generation of topic

strengths is used across multiple tasks rather than across docu-

ments in one task.

This paper extends our conference paper [10]; the main

changes in this journal version are a comparative analysis of our

proposed model with the multi-task HDP based LDA approach

under varying number of total tasks in a simulation study, a

new comparison between the two models on newsgroup data, a

discussion of the topics learned by our model for a multi-task

collection of scientific articles, and an extended description of

the method including detailed equations and derivations for the

model inference.

The rest of the paper is organized as follows: Section 2 de-

scribes related earlier models, Section 3 describes our model,

Section 4 details the inference scheme and equations, Section 5

explains the experimental results while Section 7 concludes the

paper.

2. Background

In this section we discuss selected prominent earlier mod-

els for count data. We first describe the basic single-task topic

model, then describe a nonparametric model where the number

of available topics is not restricted, and lastly describe a multi-

task extension of the nonparametric model which we will use

as a comparison method.

2.1. Single-task topic model

The basic single-task topic model Latent Dirichlet Allocation

(LDA; [1]) generates a document through activity of latent top-

ics; to generate a document d, a topic distribution πd is drawn

from a prior so that πd ∼ Dirichlet(α), and then the words are

generated one by one. To generate the nth word in the doc-

ument, a topic index zd,n is drawn from the topic distribution

so that zd,n ∼ Multinomial(πd), and the word is then drawn

from a topic-wise word distribution: wd,n ∼ Multinomial(βzd,n
)

where βk = {βw|k}w are probabilities of each word w in the kth

topic. The available topics are the same for all documents. Typ-

ically the topic-wise word distributions are drawn from a prior

βk ∼ Dirichlet(η), where η is the topic hyperparameter. A plate

diagram for this generative process is presented in Figure 1.

Note that in LDA each word is generated independently given

the topic and the order of the word occurrences does not matter;

LDA is thus suitable for count data such as bag-of-words rep-

resentations of text, where only the overall occurrence count of

each different word is observed.

D: Documents

Nd: Words
K: Topics

wd,n πd αzd,n

β η

Figure 1: Plate diagram for the basic single task topic model (Latent Dirich-

let Allocation). Topic-to-word distributions β are first sampled from Dirichlet

priors governed by η, then for each document d, topic proportions (topic proba-

bilities) πd are sampled from another Dirichlet prior governed by α, and finally

the words in the document are generated by sampling a topic zd,n and sampling

the word wd,n itself from the corresponding topic-to-word distribution. Dark

shade denotes that the observed variables are counts of how many times each

word in the vocabulary appears in a document.

Given a data set of documents, the LDA model can be fitted

to the data by maximum a posteriori methods. Note that when

the LDA topic model is learned from a data set, the Dirichlet

priors for the word distribution somewhat mitigate overfitting

when large vocabularies are used, so that words that do not ap-

pear in the training set are still assigned some probability to

appear in future documents.

The use of Dirichlet priors in LDA stems from convenient

properties of the Dirichlet distribution, in particular it has finite

dimensional sufficient statistics, and is conjugate to the multi-

nomial distribution. These properties allow some of the pa-

rameters to be integrated out analytically when fitting an LDA

model; similarly, we will use these properties of Dirichlet dis-

tribution in development of inference and parameter estimation

algorithms for our model in Section 3.

The LDA model assumes the number K of available topics

to be specified in advance. This restriction can be problematic

especially for complicated count data sets, where the number of

actual underlying topics can be large, and expert knowledge for

choosing the correct number of topics may not be available. If
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the number of topics is chosen to be too small, fitting the model

effectively forces the model to merge some of the real topics in

the data. On the other hand, if the number of topics is chosen to

be at least as large as the true number of topics, then the model

can in principle represent the data correctly; however, fitting the

model by maximum likelihood methods will in practice overfit

to the limited number of documents and will effectively split

some of the real topics according to artifacts in the observed

data.

2.2. Nonparametric model for count data: Hierarchical

Dirichlet Process

The Hierarchical Dirichlet Process (HDP; [8]) is a Bayesian

hierarchical nonparametric model that can be used to general-

ize LDA to learn the number of topics from data, and can also

be used to model multiple document collections (data sets). We

first discuss the mathematical form of the hierarchical Dirichlet

process and discuss how it is used to create a single-task topic

model. We then discuss the multi-task version in the next sub-

section.

Preliminary: the (hierarchical) Dirichlet process. The Hier-

archical Dirichlet Process is a nonparametric prior based on

Dirichlet processes (DP; [11]). Dirichlet processes are prior

distributions over probability measures; intuitively it is an infi-

nite dimensional generalization of Dirichlet distribution. Mea-

sures drawn from a Dirichlet process are discrete with probabil-

ity one, meaning that the measure gives nonzero probability to

a finite number of discrete choices, but the number of available

choices can differ between different draws from the Dirichlet

process.

The Dirichlet process is defined based on a ‘base measure’,

and a draw from a Dirichlet process effectively redistributes

weight among the choices in the base measure, possibly shut-

ting off some of those choices. The choices in a draw from the

Dirichlet process are a subset of the choices in the base mea-

sure. The draw itself can be used as a base measure for another

Dirichlet process.

Formally, a Dirichlet process has two parameters: a base

probability measure H, which defines the mean of draws from

the process, and a strength parameter γ > 0 that controls the

variability around H. A draw G0 from a DP is represented as

G0 ∼ DP(γ,H) and with probability one G0 can be represented

as G0 =
∑∞

k=1 πkδβk
, where the βk are random variables dis-

tributed according to H and δβk
is an atom at βk. The sequence

of probabilities π = (πk)∞
k=1

is defined by the stick-breaking

construction [8, 12] of a DP as follows:

G0 ∼ DP(γ,H), G0 =

∞
∑

k=1

πkδβk

πk = π
′
k

k−1
∏

l=1

(1 − π′l), π′k ∼ Beta(1, γ) (1)

where (π′
k
)∞
k=1

are independent sequences of i.i.d. random vari-

ables.

Using the Dirichlet process in a topic model. The HDP based

single task topic model (HDPLDA; [8]) uses the Dirichlet pro-

cess to allow a potentially infinite number of topics. The Dirich-

let process (or hierarchical Dirichlet process) merely generates

a sequence of probabilities; to have a full generative model, the

probabilities must be connected to a generative model of the fi-

nally observed variables. In HDPLDA, observed variables are

counts of words in documents as usual, but now the topics are

no longer chosen from a pre-fixed finite number of choices, in-

stead the topics used in a document are drawn from a Dirichlet

process.

The topics are drawn as the atoms in a Dirichlet process (DP).

Each document has its own DP; to allow sharing of the topics

(atoms) among different documents, a shared global DP G0 is

placed as a prior over document level DPs Gd, so that the base

measure of each document-level DP is a draw from the global

DP. Since the global DP has support (nonzero probability) at

the points (topics) β = (βk)∞
k=1

, each Gd necessarily has support

at a subset of these points. Then Gd can be written as:

Gd ∼ DP(α0,G0), Gd =

∞
∑

k=1

πd,kδβk

πd,k = π
′
d,k

k−1
∏

l=1

(1 − π′d,l), π′d,k ∼ Beta










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
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
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∑
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To sample a topic for a word in document d, the probabilities

πd,k are used as the topic probabilities. The rest of the model

is essentially the same as the basic LDA: the observed word

are generated from the topic-to-word distribution of the chosen

topic. The topic-to-word distribution of each topic is sampled

from a Dirichlet prior; the distribution only needs to be sampled

only for those topics that are actually used over the document

collection.

2.3. Multi-task extension of the HDPLDA model

The multi-task extension of HDPLDA models several docu-

ment collections (data sets, also denoted as tasks), by taking the

hierarchy of Dirichlet processes one level higher: in single-task

HDPLDA the topics over the document collection were con-

trolled by an overall DP, but in the multi-task extension each

document collection has its own overall DP, which are in turn

drawn from a top-level DP which controls topics over all the

document collections.

Technically, a data set level DP Gc ∼ DP(α0,G0) is intro-

duced in the HDP prior: Inside each document collection (data

set) c, a document level DP Gd ∼ DP(αc,Gc) is drawn for each

document from a data set level DP. The data set level DP, Gc,

can in turn be drawn from an overall DP across data sets, with

base measure H. The rest of the model is again similar to the

basic LDA: topic-to-word distributions are drawn for the topics

in use, and after drawing a topic the observed word is drawn

from the corresponding topic-to-word distribution. See Figure

2 for the plate diagram of the resulting multitask HDPLDA,

based on the stick-breaking representation.

In this hierarchical generative process, the topmost DP in the

hierarchy determines which topics are active overall and their
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C: Tasks

D: Documents

Nd: Words

∞: Topics

wc,d,n πc,d πczc,d,n π

β

a1

a2

γ

αc α0

H

Figure 2: Plate diagram for multitask HDPLDA, a nonparametric topic model

for multiple collections. In each document collection (task) the overall topic

distribution is controlled by a task-specific Dirichlet process, which are in

turn drawn from an overall Dirichlet process controlled by a base measure H.

Otherwise the generative process is the same as for the single-task HDPLDA.

C: Tasks

D: Documents

Nd: Words

∞: Topics

wc,d,n θc,d bc

φc

ψc

zc,d,n

nc,d nc

γ

π

β

a1

a2

α

η

ǫ

Figure 3: Plate diagram for our sparse transfer learning topic model. Notice

the parameters γ, π and hyperparameters a1 and a2 have a different meaning

that the MT-HDPLDA model. See Table 1 for notation and Section 3 for

explanation of the generative process.

D: Documents

Nd: Words

∞: Topics

wd,n θd bd

φ

zd,n

nd γ

π

β

α

a1

a2

η

Figure 4: Plate diagram for the single task model of [9]. Topic-to-word dis-

tributions β are first sampled from Dirichlet priors governed by η, then for

each document d, topic proportions (topic probabilities) θd are sampled from

another Dirichlet prior governed by document level topic presence; (bd) and

global topic strength parameters; φk ∼ Gamma(γ, 1). Otherwise the generative

process is the same as for the single-task LDA. Notice the parameters γ, π and

hyperparameters a1 and a2 have a different meaning than in the MT-HDPLDA

and our model. For details about the model the reader should refer to [9].

strengths; lower-level DPs choose among their parent-level ac-

tive topics, varying their strengths by the previously detailed

stick-breaking construction, to yield differing topic distribu-

tions at each branch of the hierarchy. When inferring topics

from data, the topmost DP can activate new topics as well as

change their strength, and the activated new topics can then

be assigned nonzero probability on the next hierarchy level for

each document collection; the HDP can thus infer the number

of topics from data. See [8] for further details.

The HDPLDA model has a potential problem due to an im-

plicit assumption about the topic sharing: since the sharing is

done by the topic strength hierarchy (topic probability hierar-

chy), with the stick-breaking construction the strongest topics

(which generate many words overall) are the most likely to sur-

vive in several branches of the hierarchy and thus be shared

across data sets. This property can make the HDPLDA model a

bad fit for multi-task problems with low-strength shared topics

(topics discussed in many document collections but not at great

length).

2.4. Single-task topic model with flexible sharing

Recently a single-task model with more flexible topic shar-

ing was proposed [9] using an Indian Buffet Process Compound

Dirichlet Process prior which can be seen as a spike-and-slab

prior [13] over topic strengths. An Indian Buffet Process prior

is placed on binary flags of whether topics are present in doc-

uments, rather than on the strengths of the topics; rows of the

IBP correspond to documents and columns correspond to top-

ics. The topic strengths are generated separately from Gamma

variables. In this way, the model avoids the coupling of topic

strength and topic sharing implicit in the HDP model. The plate

diagram for the model is presented in Figure 4.

Technically, in the HDP based prior the strength of topics was

generated at the same time as their sharing, through the stick-

breaking construction: topics that occurred later in the order of

the stick breaking process were likely to get lower strength.1 In

contrast, in the IBP Compound DP prior the strength of topics

is assigned independently of their order in the IBP process that

generates the binary sharing matrix.

Note that like the HDP based prior, the IBP Compound DP

prior allows a potentially infinite number of active topics, yet

sampling only requires finite computational effort. Because the

sampling of the IBP matrix is based on a stick-breaking con-

struction, the sampled binary IBP vector for each document al-

most surely contains a finite number of active topics, hence the

whole document collection will contain a finite number of ac-

tive topics. The overall prior for strengths of the topics can then

be sampled by sampling a Gamma-distributed strength variable

for each active topic in the collection. The topic probability

vector for each individual document is then sampled by turning

off topics that are inactive in the document according to the IBP,

and sampling the probabilities of the remaining topics accord-

ing to their strengths in the prior.

1It is easy to show that topic weights in the top-level Dirichlet process are
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The model of [9] is for single-task learning only, and the IBP

is defined to model the sharing of topics among documents from

a single data source (document collection). It cannot model re-

lationships between several data sources. When only few data

are available from each data source, a multi-task solution is

needed. The model that we propose in the next section is for

a multi-task scenario, and we will use an IBP based construc-

tion to model sharing of topics among several data sources. The

essential difference between our new model and [9] is then that

we handle the multi-task learning case, and focus our modeling

effort on modeling the sharing between tasks.

3. New sparse nonparametric topic model for transfer
learning

We present a new hierarchical Bayesian multi-task (transfer

learning) model which allows flexible sharing of low-strength

and high-strength topics across multiple data sets, with a spike-

and-slab prior. Learning the model for each data set is called a

task; our model performs transfer learning by learning the tasks

together.

Preliminary: the Indian Buffet Process. In our model, we will

draw a binary matrix that indicates which topics are present in

each task. The matrix will be drawn from an Indian Buffet Pro-

cess (IBP; [7]), which is a nonparametric prior over binary ma-

trices. The use of the IBP prior ensures that the number of top-

ics does not need to be fixed and can instead be learned from

the data. The IBP prior allows a potentially infinite number of

active topics, but each draw from the prior yields some finite

number of active topics.

The IBP prior can be derived by as a limit of finite-sized bi-

nary matrices: if K is the number of columns in a binary ma-

trix, then the IBP is the limit, when K approaches infinity, of a

finite C×K binary matrix B whose elements b
(k)
c are distributed

according to: π(k) ∼ Beta(α/K, 1) and b
(k)
c ∼ Bernoulli(π(k)),

where the cth row of B is bc. The π(k) is probability of turning

on an entry in the kth column of the matrix.

In the limit when K → ∞ the π(k) has been shown ([14]) to

obey the following stick-breaking construction:

v(k) iid
∼ Beta(α, 1)

π(k) = v(k)π(k−1) =

k
∏

j=1

v( j) (2)

The construction can be understood as follows; consider a stick

of length 1, at each iteration k = 1, 2, ....,we break off a piece at

a point v(k) relative to the current length of the stick π(k−1). We

upper bounded by a monotonously decreasing sequence; we can simply rewrite

Equation (1) for the kth stick weight as πk = π′
k
π̃k where π̃k =

∏k−1
l=1 (1 − π′

l
)

and π′
l

are random variables between 0 and 1. We thus have πk ≤ π̃k where

the π̃k are a monotonously decreasing sequence, therefore topics far in the stick

breaking process (having large k) are likely to get small weights. On the lower

levels of the HDP, the topic weights are sampled using the upper-level DP as

a base distribution, and therefore topics with very small weight at the top level

are unlikely to get large weight on the lower levels anymore.

record the length π(k) of the stick we just broke off and recurse

on this piece. The sequence produces a decreasing ordering of

latent probabilites π(k) which can be used as a prior over un-

bounded binary matrices;

b(k)
c ∼ Bernoulli(π(k)) for each c. (3)

In our model, the columns of the IBP correspond to topics and

the rows represent different tasks. Thus an entry in the matrix

indicates which topic contributes to which task.

Our model: nonparametric transfer learning topic model based

on the IBP. In our model the rows of the matrix B represent dif-

ferent tasks (the number of document collections), the columns

represent topics, and the individual binary entries b
(k)
c indicate

whether topic k is present in task c. To draw a topic for a new

task, the IBP chooses one of the existing topics according to

how many tasks they are already present in, or activates a new

topic. Therefore the IBP can choose to increase the number of

topics with no upper limit; when fitting a topic model with an

IBP prior, the number of active topics is then inferred from data.

Note that we use the IBP prior differently from the single-

task model [9] discussed in Section 2.4; that model used the

IBP to draw the presence of topics across different documents

of the same collection, we use the IBP in a multi-task context,

to draw the presence of topics across different document collec-

tions (tasks), consequently our IBP matrix has only one row per

each task (not one row per document as in [9]).

We empirically found that in our setting IBP by itself does

not provide enough sparsity. This is because the IBP matrix

has just one row per task, so the IBP parameters are learned

from few observations (the matrix rows), which leaves the IBP

uncertain about the number of active topics and hence causes it

to activate more topics than really needed. This formulation of

IBP is necessary to decouple topic sharing from topic strength.

To combat the unwanted effect of activating too many topics,

we incorporated an additional new sparsity-inducing masking

step: for each topic in each task, the sparsity inducing masking

step simply turns off the topic with probability ǫ.

After the two topic selection operations (IBP and the addi-

tional masking, together denoted IBP-masking) have been done,

the strength of remaining active topics is drawn from Gamma

distribution within each task; these strengths define the prior

distribution of topic activities within the task. The combi-

nation of the Gamma-distributed topic strengths and the IBP-

masking can be seen as an infinite spike and slab prior, where

the IBP-masking generates the spikes (possibility for a topic to

be turned completely off) and the Gamma distribution acts as a

slab (which generates the strengths of topics that are not turned

off). The use of the independent topic strength variables avoids

the restrictions imposed by the DP construction of Section 2.3;

it makes inference easier and is able to model weak topics by

decoupling the strength and presence of a topic.

When the task-specific topic priors have been generated, the

rest of the generative process proceeds within each task as in

LDA: for each topic that is active in any task, a topic-to-word

distribution is drawn from a Dirichlet prior, and documents
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Algorithm 1 Pseudo-code for our multi-task topic model Gibbs sampler. Text after symbol ‘⊲’ are comments.

1: for iter = 1 to ITER do
2: for c = 1 to TOTAL TASKS do
3: for d = 1 to TOTAL DOCUMENTS IN TASK do
4: for Each word wc,d,n in document d do
5: k ← z(n) ⊲ Get topic assignment

6: Decrease n
(k)
wc,d,n

and n
(k)

(.),(.)
by 1

7: Decrease n
(k)

c,d
and n

(k)
c by 1

8: for k = 1 to TOTAL TOPICS +1 do ⊲ The +1 is for the inactive topic

9: p(k)←
n

(k)
wc,d,n

+η

n
(k)

(.),(.)
+ηVocabSize

E[θ
(k)

c,d
] ⊲ For expectation use; Eq. (A.11), (A.12) and (A.13)

10: end for ⊲ ‘VocabSize’ is the number of different words in the vocabulary.

11: k ← sample(p)

12: z(n)← k

13: Increase n
(k)
wc,d,n

and n(k) by 1

14: Increase n
(k)

c,d
and n

(k)
c by 1

15: if k > ACTIVE TOPICS then 3

16: p(b
(k)
c = 1)← Eq. (8)

17: p(ψ
(k)
c = 1)← Eq. (8) by replacing b

(k)
c by ψ

(k)
c and π(k) by ǫ

18: Sample π(k)• and π(k+1)◦ using Eq. (6) and Eq. (7) with details in [14]

19: Sample φ
(k)

c,d
using Eq. (9)

20: Sample γ(k) using Eq. (10)

21: end if
22: end for
23: end for
24: for all k = 1 to TOTAL TOPICS do
25: Reinitialize b

(k)
c and ψ

(k)
c as before

26: Sample π(k) and φ
(k)
c as before

27: end for
28: end for
29: end for

within a task are generated as usual by drawing a topic dis-

tribution from the task-specific topic prior and then drawing the

words for each document.

The notation we use for our model is summarized in Table 1.

The full generative scheme for our model (corresponding to the

plate model in Figure 3) is as follows:

1. For each topic k = 1, 2, ..., draw,

(a) topic strength prior γ(k) ∼ Gamma(a1, a2)

(b) IBP probablility of topic activation π(k) from Eq. 2

(c) topic-to-word distributions βk ∼ Dirichlet(η)

2. For each topic k in task c = 1, 2, ..,C draw,

(a) topic strength φ
(k)
c ∼ Gamma(shape = γ, scale = 1)

(b) IBP topic activation b
(k)
c from Eq. 3

(c) additional sparsity masking ψ
(k)
c ∼ Bernoulli(ǫc)

3. Draw the size of the task; total number of word occurrences,

n
(.)
c ∼ NB(

∑

k b
(k)
c φ

(k)
c ψ

(k)
c , 1

2
)2

4. For every document d = 1, 2, ...D in task c,

(a) draw distribution over topics θc,d ∼ Dirichlet(bc.φc.ψc)

For each word n = 1, 2, ...,Nd in the document

(b) Draw the topic index zc,d,n ∼ Multinomial(θc,d)

(c) Draw the word term wc,d,n ∼ Multinomial(βzc,d,n
)

Note that the Dirichlet distribution is defined based on pseu-

docounts, which are here an elementwise multiplication of the

binary IBP flags bc, the additional sparsity-inducing masking

ψc, and the topic strengths φc; any topic which has been turned

off by the IBP or the additional masking gets a zero pseudo-

count, hence draws from the Dirichlet distribution always yield

zero probability for such topics, as desired.

2As a simplification, our model generates the total numbers of words per

task but not how this total is divided among the individual documents. Essen-

tially this means that fitting the model does not draw information from the size

variation between documents, only from the total size variation between tasks.

In the plate diagram of Figure 3 we mark the sizes nc,d of individual documents

for clarity since they affect the generation of the document content.
3In our implementation we have the if clause (line no. 15 − 21) outside the

for loop over words (line no. 4); this helps us speeds up our implementation.

To cater for the new inactive topics that might emerge for subsequent words;

we sample a series of inactive topic stick parameters before entering the f or

loop.
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In the above-described generative process, the set of hyper-

parameters are: {α, ǫ, η, a1, a2} and the unknown model parame-

ters are: {z, θ, β,B,ψ,φ}. To fit the model to data in a Bayesian

fashion, we infer the posterior of the model parameters given

the observed word counts in all documents of all tasks. In-

ference by sampling, discussed next, is efficient and only pro-

cesses a finite number of topics at each step as is usual in non-

parametric models.

4. Bayesian inference for our model

To infer our model from the multi-task data sets (document

collections), we use a combination of collapsed Gibbs sampling

and the Metropolis-Hastings algorithm to sample from the pos-

terior distribution of the model parameters. It turns out it is

possible to directly integrate out some of the ‘nuisance’ model

parameters; then the posterior of the rest of the variables can

be sampled more efficiently. We integrate out the topic specific

distribution over words β, the topic mixture distribution θ and

the binary IBP matrix B; sampling is needed only over the re-

maining variables. In the Gibbs sampling we cyclically sample

the topic assignment z, the topic strength φ and the IBP prior

π (stick-breaking parameters) for topic activation. Algorithm

1 presents the complete pseudocode for the algorithm and in-

cludes references to the sampling distributions discussed in the

following section.

4.1. Sampling zk and the stick parameter πk

To sample topic assignments within a document d in task c,

we integrate out the topic distribution θc,d of the document. The

posterior probability that the nth word in document d of task c

comes from topic k is

p(zc,d,n = k|z\c,d,n,wc,d,n,∆)

=
p(wc,d,n|zc,d,n = k)p(zc,d,n = k|z\c,d,n)p(z\c,d,n,∆)

p(wc,d,n, z\c,d,n,∆)

∝ p(wc,d,n|zc,d,n = k)p(zc,d,n = k|z\c,d,n,∆)

∝ (n
(k)

wc,d,n,\c,d,n
+ η)

∫

dθc,d p(zc,d,n = k|θc,d)p(θc,d|z\c,d,n,∆)

(4)

where z\c,d,n denotes the current values of all other topic as-

signments except the one whose probability we are computing,

∆ = {φ•c , π
•,γ, α, ǫ}, and the superscript • denotes active topics.

The first equality follows from the Bayes rule since the word

wc,d,n only depends on the topic zc,d,n. The second proportion-

ality follows by explicitly writing out how the (posterior) word

probability in topic k depends on word counts and prior pseu-

docounts, and by explicitly writing the probability of choosing

topic k as an integral over the posterior of the latent topic prob-

ability variable θc,d.

On the right-hand side of (4), we simply have p(zc,d,n =

k|θc,d) = θ
(k)

c,d
which is the kth value of the topic-probability

vector θc,d; therefore the integral on the right-hand side

of (4) is an expectation of the topic probability. How-

ever, that expectation is taken over a complicated posterior

distribution of topic probabilities, where p(θc,d|z\c,d,n,∆) ∝
∫

dφ◦c
∑

bc

∑

ψ
c

p(θc,d|ψc, bc,φc, z\c,d,n)p(bc,ψc,φ
◦|∆).This like-

lihood involves a combinatorial integration over values of the

sparse IBP matrix, but since we only need the posterior for tak-

ing topic k, it can be shown (refer to equation (A.2) in Appendix

A for derivation) that the integral on the right-hand side of (4)

ultimately simplifies to

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ E



























(n
(k)

c,d,\c,d,n
+ φ

(k)
c )b

(k)
c ψ

(k)
c

n
(.)

c,d,\c,d,n
+

∑

j

b
( j)
c ψ

( j)
c φ

( j)
c



























. (5)

In the above equation, n
(k)

c,d,\c,d,n
is the number of words in the

document assigned to topic k not counting the nth word, and

n
(.)

c,d,\c,d,n
is the total number of words in the document not count-

ing the nth word. While not combinatorial, the expectation in

(5) is inefficient to evaluate in closed form as we would need

to do so for every word during the Gibbs sampling. We use

an approximation similar to [9], using 1st order Taylor expan-

sion for the three possible cases: topic k is active in the current

task (data set); topic k does not appear in the current task but

is active in the corpus (all data sets); or topic k is inactive in

the whole corpus. Details of the approximation are provided in

Appendix A.

During the Gibbs sampling (including the above-mentioned

approximation) we must process inactive topics in case the

sampling activates one; the ability to activate new topics is es-

sential so we can learn the number of topics from data instead

of pre-specifying it. In particular, we must be able to sample

the IBP prior (stick-breaking parameters) for both inactive and

active topics. A topic is inactive (denoted by a superscript ◦)

if it is never used in the whole corpus, i.e. the total number of

word occurrences assigned to topic k is nk
(.)(.)
= 0, and active

otherwise. Note that a topic without any word occurrences as-

signed to it is considered inactive even if the IBP had enabled

the topic for some tasks so that
∑

c b
(k)
c > 0; for sampling ac-

tive and inactive topics we follow [14]. For active topics stick

lengths π•
k

have the conditional distribution;

p(π•k |B) ∼ Beta















C
∑

c=1

b(k)
c , 1 +C −

C
∑

c=1

b(k)
c















. (6)

where B is the current value of the IBP (the binary matrix).The

posterior can be sampled directly using Gibbs sampling. To

sample the stick parameters for the inactive topics we follow

the semi-ordered stick breaking construction [14]; consider K†

be an index such that all active topics have index k < K†; thus

all topics beyond index K† have no word occurrences assigned

to them, denote this by zk:k>K† = 0. The inactive topics have an

ordering of decreasing stick lengths: the stick length distribu-

tion of the inactive topic k, given the stick length of the previous

7



Table 1: Notation used for our model

Parameter Meaning

n index for the nth word token in a document.

wc,d,n contains the vocabulary index of the nth word token in document d of task c.

zc,d,n topic assignment of the nth word token in document d of task c.

nc,d total no. of words in document d of task c.

nc total no. of words in all document of task c.

n
(k)

(.)(.)
total no. of words assigned to topic k in the whole corpus.

n
(k)

c,d
total no. of words assigned to topic k in the document d of task c.

n
(k)
wc,d,n

total no. of times the term wc,d,n has been assigned to topic k in the document d of task c.

n
(.)

c,d,\c,d,n
total no. of words in the document not counting the nth word.

n
(k)

c,d,\c,d,n
total no. of words in the document assigned to topic k not counting the nth word.

θc,d topic mixture distribution for the document d of task c.

βk topic specific distribution over words for topic k.

η prior for the topic specific distribution over βk.

B a C × K binary IBP matrix where C is the number of tasks and K is the current number of topics in the IBP matrix,

and the rows and columns index tasks and topics respectively.

bc a binary vector which is the cth row of the IBP matrix and indicates which topics should be turned off in task c.

π(k) probability of turning on the kth topic in the IBP matrix.
• The superscript • denotes active topics; the ones that are currently represented in the corpus.
◦ The superscript ◦ denotes inactive (unused) topics; their corresponding parameter values are unknown.

φ
(k)
c strength parameter for topic k in task c. Strenghts of all topics in task c are together denoted as φc.

γ(k) parameter for topic k in the prior for topic strengths; the parameters together are denoted by γ and they define

the prior for all φc.

a1, a2 hyperparameters for the gamma prior over the topic strength prior: a1 is the shape and a2 is the scale parameter.

Each topic strength prior parameter γ(k) is drawn from the gamma distribution defined by a1 and a2.

ψc sparsity inducing binary masking vector which tells which topics should be turned off in task c.

ǫ probability of turning on a topic in the sparsity inducing binary vector; ψc.

topic, is

P(π◦k |π
◦
k−1, zk:k>K† = 0)

∝ exp
(

N
∑

i=1

1

i
(1 − π◦k)i

)

(π◦k)α−1(1 − π◦k)N · I(0 ≤ π◦k ≤ π
◦
k−1) (7)

where I(0 ≤ π◦
k
≤ π◦

k−1
) is 1 when the statement inside the

parenthesis is true and 0 otherwise. Using (7), we sample the

stick parameters for the inactive topics by adaptive rejection

sampling (ARS) 4 [15]. ARS samples from a distribution p(x)

by first constructing an envelope function for log(p(x)). The

envelope function is then used for rejection sampling. When-

ever a sample is rejected, the envelope function is updated to

correspond better to the underlying density. The R package ars

[15] is used to generate samples using ARS.

4.2. Reinstantiating the IBP and Bernoulli masking matrices

Even though topic assignments can be sampled while inte-

grating over the binary IBP matrix, the IBP matrix is still tem-

porarily required here for sampling the stick parameters for the

active topics in (6); more precisely, the values b
(k)
c in all rows c

4Multiple samples were generated and an average was used to get a better

approximation.

of the kth matrix column are needed to sample the stick param-

eter of active topic k. For this purpose, the current value of the

IBP matrix is reinstantiated based on the known values of the

other parameters, according to

p(b(k)
c = 1|π(k), φ(k)

c , ψ(k)
c , n(k)

c ) =


























1 : if n
(k)

c,(.)
> 0

π(k) : if n
(k)

c,(.)
= 0, ψ

(k)
c = 0

π(k)

π(k)+2φ
(k)
c (1−π(k))

: if n
(k)

c,(.)
= 0, ψ

(k)
c = 1

(8)

where on the right-hand side, the topmost choice simply means

that the topic must be activated for the task if some word is al-

ready assigned to it; the middle choice means that if the topic is

unused and moreover the additional masking has turned it off,

then the activation probability comes from the prior and the bot-

tom choice means that if the topic is unused but the additional

masking has not turned it off, then the activation probability

is derived through the IBP and the total number of words as-

signed to the k-th topic in task c. The additional masking vector

ψc is initialized by a similar equation as the IBP matrix by in-

terchanging b
(k)
c with ψ

(k)
c and πk with ǫ.

4.3. Sampling topic strength parameters

Lastly, to sample the topic strength parameters, we first com-

pute the joint probability of the strength φ
(k)
c of topic k in task
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c and the total number of counts assigned to topic k in the

task; the joint probability depends on the corresponding topic

strength prior parameter γ(k), the IBP matrix value b
(k)
c , and the

additional masking value ψ
(k)
c , as follows:

p(φ(k)
c ,n

(k)

(.)
|γ(k), b(k)

c , ψ(k)
c ) =

(φ
(k)
c )γ

(k)−1 e−φ
(k)
c

Γ
(

γ(k)
)

C
∏

c:b
(k)
c .ψ

(k)
c =1

Γ(n
(k)
c + φ

(k)
c )

Γ(φ
(k)
c ) n

(k)
c ! 2(φ

(k)
c +n

(k)
c )

(9)

where the right-hand side follows because the topic strength

has a Gamma prior with parameter γ(k) and the total number of

words assigned to the k-th topic in the c-th task is distributed

according to n
(k)
c ∼ NB(b

(k)
c φ

(k)
c ψ

(k)
c , 1/2).

We use Metropolis-Hastings to compute the posterior for φ
(k)
c .

We sample the prior topic strength parameter γ(k) in a similar

manner from the joint posterior for γ(k) and the topic strengths

φ
(k)

(.)
: the result is

p(γ(k),φ
(k)

(.)
|n(k)

c , b(k)
c , ψ(k)

c , a1, a2)

= p(γ(k)|a1, a2)

C
∏

c:b
(k)
c .ψ

(k)
c =1

p(φ
(k)

(c)
|n(k)

c , γ(k), b(k)
c , ψ(k)

c ) (10)

5. Empirical results

We compare our model to the nearest method Hierarchical

Dirichlet Process based multi-task learning (MT-HDPLDA).

Model Selection. The hyperparameters ǫ, η, a1, a2 and α can

have a clear effect on the results. The precise values are listed

in the Experiment sections that follow, here we briefly discuss

their roles; Smaller values of ǫ lead to less active topics. In

the experiments we set ǫ by a very simple manner according to

the average number of documents per task: since the artificial

data experiments have few documents per task we use the same

moderately large ǫ value 0.01 in all artificial data runs; since the

real data experiments have more documents per task we use a

small ǫ value 0.0001 in all real data runs. The topic distribution

prior controlled by η is also found in MT-HDPLDA and has the

same meaning; small η would yield more specific topics; for

a discussion of the parameter see [2] (in that paper η is called

β). Our real data experiments (Sections 5.3 and 5.4) are similar

to the ones used by the authors of MT-HDPLDA in [8], so we

follow them and use the same value of η. In our simulated data

experiments (Sections 5.1 and 5.2) the data size is small and we

aim to extract fine grained topics; therefore we use a smaller

value of η. The hyperparameters of our model a1, a2 and α have

the same meanings as in the IBP compound Dirichlet prior of

[9]; a1 and a2 are the ‘shape’ and ‘scale’ hyperparameters for

the Gamma distribution of topic strengths (large a1 linearly in-

creases mean and variance of topic strenghts; large a2 linearly

increases the mean and quadratically increases variance of topic

strenghts), and α sets the prior for the stick-breaking in the IBP

(large α decreases the number of active topics). We set a1, a2

and α as in [9].
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Figure 5: Experiment results: test set predictive likelihoods for simulated data

continuum, error bars show ±1 standard deviation over 10 random datasets.

5.1. Experiment 1: Continuum of problem domains

We expect our model to perform well in the case of multi-task

problems where some shared topics are strong in all tasks where

they appear whereas other shared topics are only weakly present

in several tasks; we build a continuum of multi-task problem

domains where this situation occurs. At either end of the con-

tinuum, data is generated from a model where shared topics

are strong (they generate many words in all tasks where they

appear); the left end is a simpler case where both models can

work well, and the right end is a complicated case especially

suitable for MT-HDPLDA. Interesting domains lie between the

two ends: in these intermediate domains, the topic generation

mechanisms from either end are mixed together linearly, yield-

ing small shared topics from both generators in each individual

task. We create nine domains across the continuum, identified

by the mixing coefficient (0 to 1) between the generators. See

Appendix B for a detailed description of the construction of the

synthetic data continuum.

Each problem domain is a multi-task scenario where each

learning problem has 10 tasks (data sets). We use the setting

where one task is more interesting than others; the interesting

task has 24 documents with 8 words each, other tasks have 8

documents with 8 words each, all generated from 10 topics with

a vocabulary of 150 words. We generate 10 such learning prob-

lems in each domain and run our method and MT-HDPLDA on

each problem. We initialize the Gibbs sampler randomly, take

1500 burnin iterations and draw 100 samples 15 iterations apart.

For setting the hyperparameters we follow [8] for MT-

HDPLDA and for ours we use α = 5 and γ ∼ Gamma(5, 0.1)

following [9]. We fixed ǫ = 0.01 as discussed in the Model

selection paragraph earlier. In both our model and the MT-

HDPLDA we use a relatively small value of η = 0.00005.

The results are evaluated by predictive likelihood on held-out

documents from the interesting task using the empirical likeli-

hood based approach [16]. Figure 5 shows that in the interme-

diate domains where weak topics are shared in the interesting

task, we outperform MT-HDPLDA.

It should be noted that the horizontal axis in Figure 5 is over a

continuum of very different prediction problems, and the scale

of results is not intended to be comparable between different

parts of the continuum: rather, the take-home message is that
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our method is better at five locations in the middle of the con-

tinuum where weak shared topics are likely to appear in the

interesting task.

5.2. Experiment 2: Model performance under varying number

of total tasks

In this experiment we evaluate the performance of the two

models when the total number of tasks are varied. We fix the

location in the intermediate domain continuum at point 0.25 of

the mixing coefficient (from Figure 5) such that there are weak

topics in the data generation and expand it further such that the

total number of tasks is varied from 5 to 30. The rest of the

experimental setting is the same as before. We use the same

evaluation criterion as before, predictive likelihood on held-out

documents from the interesting task. Figure 6 shows the results:

under the interesting case when the total number of tasks is rel-

atively small we outperform MT-HDPLDA. When the number

of tasks grows, performance of both methods increases and the

methods become comparable at the end of many tasks.

We further investigate the effect of total number of tasks on

the performance of two models at two other points in the do-

main continuum, corresponding to mixture coefficient 0.5 and

to mixture coefficient 1; for the latter coefficient the data gen-

eration assumptions match those of MT-HDPLDA. The result-

ing predictive likelihoods are plotted in Figure 7 and Figure 8

respectively. In these domains MT-HDPLDA performs better

for a large number of tasks; however, if the number of tasks

is small (near the left end of the horizontal axes in the figures)

our model performs better than MT-HDPLDA, even in the case

of the domain with mixture coefficient 1 (Figure 8) which was

expected to favor MT-HDPLDA. The good performance of our

model on small numbers of tasks is therefore consistent in all

our simulated experiments (mixture coeff. 0.25, 0.5 and 1).

Another interesting factor affecting performance is the num-

ber of documents in the task of interest; in many scenarios the

task of interest may be a newer task with fewer documents

available, for example a recently started newsgroup or a re-

cently introduced track in a conference. We study the model

performance with different numbers of documents in the task of

interest in the following real data experiments (20newsgroups

and NIPS conference articles).

5.3. Experiment 3: 20 newsgroups data

We next compare our method to MT-HDPLDA on a real-life

collection of count data.

We take the computational group of the 20newsgroups

data5. This group (often abbreviated as comp) is di-

vided into five subgroups; some of the subgroups such as

comp.sys.ibm.pc.hardware and comp.sys.mac.hardware have

closely related topics and therefore the comp group may be

well suited for a multitask problem. The data contains 11293

documents. We remove common words like and and you from

the whole collection. We choose the comp.sys.ibm.pc.hardware

5We use the stemmed version of the data downloaded from

http://web.ist.utl.pt/∼acardoso/datasets/
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Figure 6: Experiment results: test set predictive likelihoods for datasets with

different number of total tasks. The multi-task domain in this experiment is

one of the domains in the domain continuum of Experiment 1, corresponding

to mixture coefficient 0.25 in Figure 5. The error bars show ±1 standard devi-

ation over 10 random datasets. Our model outperforms MT-HDPLDA (“HDP

Multitask”) when the number of tasks is small.
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Figure 7: Experiment results: test set predictive likelihoods for datasets with

different number of total tasks. The multi-task domain in this experiment is one

of the domains in the domain continuum of Experiment 1, corresponding to

mixture coefficient 0.5 in Figure 5. The error bars show ±1 standard deviation

over 10 random datasets. Our model again outperforms MT-HDPLDA (“HDP

Multitask”) when the number of tasks is small.

5 8 10 13 15 18 20 23 25
−5

−4.5

−4

−3.5

Total number of tasks

T
e
s
t 
s
e
t 
p
re

d
ic

ti
v
e
 l
o
g
−

lik
e
lih

o
o
d
s

 

 

HDP Multitask

Our Model

Figure 8: Experiment results: test set predictive likelihoods for datasets with

different number of total tasks. The multi-task domain in this experiment is

one of the domains in the domain continuum of Experiment 1, corresponding

to mixture coefficient 1 in Figure 5. The error bars show ±1 standard deviation

over 10 random datasets. This multi-task domain was designed to favor MT-

HDPLDA (“HDP Multitask”), but our model still outperforms MT-HDPLDA

when the number of tasks is very small.
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Figure 9: Test set Predictive likelihoods for 20newsgroups, error bars show ±1

standard deviation over 5 folds.

subgroup as the interesting task. We run our model, MT-

HDPLDA and single-task HDP as a baseline; we follow [8] for

MT-HDPLDA and set η = 0.5 for both models. For our model

we set α = 5, γ ∼ Gamma(5, 0.1) and set ǫ = 0.0001 as dis-

cussed in the Model Selection paragraph earlier. For sampling

we initialize the Gibbs samplers randomly, take 1000 burn-in it-

erations, and then draw a total of 10 samples 50 iterations apart.

We learn models for different sizes of training data in the inter-

esting task (5-40 documents) with 50 documents in each other

task, and use 5-fold cross-validation in each case. Results are

again evaluated by average predictive log-likelihood of held-

out documents from the interesting task. Figure 9 shows the

results. Single-task learning naturally works poorly, and our

model outperforms MT-HDPLDA in scenarios where training

data is small and hence multi-task learning is most needed.

5.4. Experiment 4: NIPS data

We compare our model to MT-HDPLDA on another real-life

collection of count data, a collection of scientific articles repre-

sented as bags-of-words.

We take the five most frequent sections of NIPS articles from

1987 to 1999 (http://www.gatsby.ucl.ac.uk/∼ywteh); in total

they contain 1147 documents with vocabulary size 1321 and av-

erage document length ∼ 950 words. The most frequent group

is ”Algorithms and Architecture”, which we choose as the in-

teresting task. Like the 20newsgroups experiment we run our

model, MT-HDPLDA and single-task HDP models and evalu-

ate performance over the held-out dataset in a 5-fold cross val-

idation setting. The number of documents per task, and the hy-

perparameters and the other experimental settings are the same

as the ones used in 20newsgroups experiment. Figure 10 shows

the results: single-task learning works poorly as before. There

is not a large performance improvement for our model against

MT-HDPLDA; however we observe essentially similar shapes

of the peformance curves in both the NIPS and the 20 news-

groups data, and additionally observe consistent difference in

several domains in the artificial continuum, which demonstrates

an overall better predictive performance for our model espe-

cially under limited tasks and limited numbers of documents in

the task of interest.
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Figure 10: Test set Predictive likelihoods for the NIPS dataset, error bars show

±1 standard deviation over 5 folds.

To illustrate the topic model our method has learned for the

NIPS collection, we show learned topics for the problem set-

ting where the number of documents in task of interest is 10

and each supplementary task has 50 documents (second loca-

tion on the horizontal axis in Figure 10). We extract the top

ten words from the strongest two topics for each task and from

the weakest shared topic. Table 2 lists the top words. The

first topic (first column of the table) is the strongest in all of

the tasks; it lists words about general machine learning con-

cepts. The next-to-strongest topics are listed in from column

two to five: The next-to-strongest topic is different in each task

(NIPS section), except that tasks LT and AA (task of interest)

have the same next-to-strongest topic. Note that these “next-to-

strongest” topic are all relatively weak even in their respective

NIPS sections, compared to the strongest topic listed in the first

column. Note also that these next-to-strongest topics are also

used in other tasks (NIPS sections) but to a weaker extent; they

can be interpreted as concepts encountered in many NIPS pa-

pers and most commonly in the particular section where their

inferred probability was greatest. The strongest topic can be

interpreted as general concepts of learning from data includ-

ing neural learning (appropriately for the NIPS conference), the

topic most active in CNP can be interpreted as general concepts

of reinforcement learning especially in robotics; the topic most

active in NS can be interpreted as biological concepts of neural

learning; in LT and AA the most active topic is somewhat varied

but can be interpreted as general concepts of probabilistic and

kernel learning; in AP the most active topic can be interpreted

as concepts of rules and schedules (for example for learning

agents).

The last topic (last column of the table) is another weak topic

which is uniformly present in all NIPS tasks. It can be inter-

preted as a mixture of concepts related to the structure of a pa-

per (words like “discussion” and “conclusion”) and to general

experimental settings which might appear across several NIPS

sections like neuroscience and control, navigation and planning

(words such as “positions”, “recorded” and “threshold”).
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Strongest Topic CNP NS LT and AA AP Weakest Shared Topic

learning control neurons variables rules recorded

network reinforcement neuron kernel coarse side

model robot cortical markov instruction positions

time learned arbors conditional fine discussions

input policy dendritic group schedule technical

neural tangent competition likelihood instructions conclusions

algorithm interpolation cells face dec scales

data steps axonal database blocks fire

set initial cell generalized rl exploration

system grid modules matrix resolution threshold

Table 2: Top ten words in the strongest topic, four next-to-strongest but relatively weak topics, and the weakest shared topic, for the NIPS article collection. The

NIPS collection is divided into five sections (tasks): CNP - Control Navigation and Planning, NS - Neuroscience, LT - Learning Theory, AA - Algorithms and

Architecture, and AP - Applications. The strongest topic turned out to be the same in every tasks; the top words in that topic are listed in the first column. The next

strongest topic is different in every task (except the task of interest AA), and its top words are listed under each task’s name. The weakest shared topic is weakly

present in all tasks.

6. Discussion

Overall we observe that under limited tasks and docu-

ments our model has better predictive performance than MT-

HDPLDA. Our experiments suggest that this happens partic-

ularly in data domains where there are weak shared topics in

some tasks. Since the MT-HDPLDA model makes too strong

assumptions (it couples topic sharing with topic strength), our

decoupled IBP based method performs better in such scenarios;

a probable reason is the lack of strong evidence for the presence

of topics in individual tasks in such settings.

Our model outperformed MT-HDPLDA in Figures 9 and

10 when the number of documents in the task of interest was

small. One potential reason is that MT-HDPLDA couples topic

strength with sharing, thus it assumes the topics shared in the

task of interest are likely to be the ones that are strong in the

other tasks: then weaker shared features of the task of inter-

est (topics that are present in that task and in other tasks, but

which are not always strongly present in the tasks where they

appear) might not be learned well by MT-HDPLDA when few

data are available. In Figures 9 and 10, performance increases

for both our model and MT-HDPLDA as the number of data

in the task of interest grows; this suggests that if a sufficient

number of data points is available, MT-HDPLDA may be able

to learn also weaker topics in the task of interest since the data

provides sufficient evidence to make them visible in the poste-

rior despite the coupling assumption.

In theory we expect that in both MT-HDPLDA and in our

method, learning both strong and weak topics will benefit from

having more tasks: as more tasks become available, the topics

that are shared across most of the tasks can be learned from

more data. In MT-HDPLDA the evidence for topics accumu-

lates through the HDP hierarchy, and the benefit of many tasks

will be greatest for strong shared topics due to the coupling as-

sumption of sharing and strength. In our method the evidence

of sharing accumulates in the learning of the IBP matrix and

the extra sparsity vector, without a tight coupling to learning

the topic strengths. Both our model and MT-HDPLDA increase

their performance as more tasks become available; for exam-

ple, in Figure 8 all topics in the domain are relatively strongly

present in their respective tasks, thus here the performance in-

crease is due to learning strong topics well. The fact that our

method outperforms MT-HDPLDA in the intermediate domains

where shared topics are weakly present in some tasks (see Fig-

ure 5) suggests our model is useful in such domains.

The continuum of multi-task domains studied in Experiment

1 (Figure 5) is not an exhaustive list of all multi-task do-

mains; although the continuum already showed an advantage

to our method in domains where some shared topics are weakly

present in tasks, even larger differences between our method

and MT-HDPLDA might be available in other multi-task sce-

narios.

In our case studies we evaluated the predictive performance

for the task-of-interest, however the benefit of our model is not

an artifact of the particular newsgroup/NIPS section choice that

we used: the artificial experiment shows that our method has an

advantage even when average over a large number of multi-task

scenarios. More symmetric scenarios (e.g. predictions in all

tasks with within-task and across-task accuracies) are also very

important and will be considered in further work. Moreover

in addition to the predictive likelihood we believe it is crucial

to measure the comprehensibility of the extracted topics, for

example in terms of their semantic coherence. Recently [17]

have proposed the topic coherence score (a pointwise mutual

information score) this can be used in future work as additional

evaluation criterion for our model and other topic models.

The IBP has a “rich-get-richer” property where new matrix

rows are likely to use frequently activated old topics rather than

activating new topics; this keeps the IBP matrix sparse. How-

ever, in our setting there is only one IBP matrix row per task

(data collection), thus none of the topics can become very rich:

with C tasks, each topic is activated at most C times. Then the

rich-get-richer property has only a weak effect, and new rows of

the IBP matrix are likely to activate more topics than needed. To

keep the topics sparsely used and prevent activating too many

topics, our model uses an additional sparsity inducing step.

In this paper we set the prior for the additional sparsity by a
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very simple manner according to the average number of docu-

ments per task, as described in Section 5 in the Model Selection

paragraph. A cross-validation approach or a Bayesian prior,

could also have been used; however, this simple first choice al-

ready worked well. Additionally, it is possible that a variant of

IBP (e.g. through some variant of Hierarchical Beta Processes

[18]) could achieve the same effect as our additional sparsity

step; this would be an interesting direction of future work.

Another recent line of research is on statistic domain adapta-

tion involving HDP and related models specially in the context

of sequential data. In several works time dependence is incor-

porated to model time evolving topics among documents ap-

pearing in a sequence. For instance, the dynamic HDP model

in [19] and [20] models the time evolution of topics and en-

courages topic sharing among temporally proximal data. These

models are for a single task setting; in contrast, our model

and MT-HDPLDA consider settings with multiple document

collections. The recent single-task topic model of [21] stud-

ies sequential evolution not over time but rather within docu-

ments; it uses a two parameter generalization of Dirichlet pro-

cess prior; a Poisson Dirichlet prior (Pitman-Yor process). It

simultaneously models the hierarchical and the sequential topic

structures within subparts (groups of sentences of paragraphs)

of documents. The model is again for a single task setting

whereas our model and MT-HDPLDA consider settings with

multiple document collections. Another interesting approach is

the HDP based evolutionary model in [22], which models the

time evolution of topics both within and across multiple cor-

pora. The paper focuses on mixture models rather than topic

models; each document is generated by a mixture component,

and strengths of mixture components over time and corpora are

modeled through a HDP construction; evolution is modeled fol-

lowing a Markovian assumption. In contrast, we focus on topic

models and unlike HDP we decouple component (here topic)

strength from its sharing.

7. Conclusions

We have introduced a sparse multi-task topic model that is a

robust and flexible method to model strong and weak sharing

of topics in multiple heterogeneous collections of documents

in an unsupervised manner. The generative model decouples

the sharing of topics from the generation of the topic strengths

by using a spike-and-slab prior. The proposed non-parametric

model outperforms a state of the art Hierarchical Dirichlet Pro-

cess based topic model on a simulated data continuum and

in case studies on real data with small training sets. In our

real-data experiments (20 newsgroups and NIPS data sets) our

model and the state of the art MT-HDPLDA method are both

much better than the single-task topic model, and our model

still achieves further improvement: the error bars show that we

get a consistent improvement over MT-HDPLDA. In particular,

our experiments suggest that our model extracts weak topics

better than the previous method, when the number of available

tasks and documents per task is low. This shows that our new

multi-task approach is a promising alternative to the standard

approach in methods like MT-HDPLDA. Thus we recommend

our method in cases where weak shared topics are likely to ex-

ist, and there are not very many documents or tasks to learn the

models from.
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APPENDIX A

As described in Section 4.1, in order to sample the topic as-

signment z we wish to approximate the expectation over θ(k). In

this section we describe the approximation; it is an extension

of the technique used to approximate the expectation of topic

mixture θ for a single task model in [9].

We first rewrite the expectation as

E[θ
(k)

c,d
|z\c,d,n,∆] ∝

∫

θ̃
(k)

c,d p(θ̃c,d, z\c,d,n|∆)dθ̃c,d

∝

∫

θ̃
(k)

c,d p(z\c,d,n|θ̃c,d,∆)p(θ̃c,d |∆)dθ̃c,d

∝

∫

θ̃
(k)

c,d p(zc,d\n|θ̃c,d)p(z\c,d|θ̃c,d,∆)p(θ̃c,d|∆)dθ̃c,d

and approximating p(z\c,d|θ̃c,d,∆) ≈ p(z\c,d|∆) which is constant

with respect to θ
(k)

c,d
, we further write

E[θ
(k)

c,d
|z\c,d,n,∆]

∝

∫

θ̃
(k)

c,d

∫

φ
◦

c

∑

b◦c :b
(k)
c =1

∑

ψ
◦

c
:ψ

(k)
c =1

p(zc,d\n|θ̃c,d)

p(θ̃c,d|ψc, bc,φc)dθ̃c,d p(φ◦c |γ)p(b◦c |π
•, α)p(ψ◦c |ǫ)dφ

◦
c .

Since p(zc,d\n|θ̃c,d) is the value of a Multinomial distribution and

p(θ̃c,d|ψc, bc,φc) is the value of a Dirichlet, their product is pro-

portional to the value of another Dirichlet; we can then further

rewrite the equation as

E[θ
(k)

c,d
|z\c,d,n,∆]

∝

∫

φ
◦

c

dφ◦c

∑

b◦c :b
(k)
c =1

∑

ψ
◦

c
:ψ

(k)
c =1

∫

θ̃
(k)

c,dDir(θ̃c,d|nc,d,\c,d,n + φc)dθ̃c,d

p(φ◦c |γ)p(b◦c |π
•, α)p(ψ◦c |ǫ)
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and since the integral over θ̃c,d simply takes the k:th element

from the mean of the Dirichlet distribution, we finally arrive at

E[θ
(k)

c,d
|z\c,d,n,∆]

∝

∫

dφ◦c

∑

b◦c :b
(k)
c =1

∑

ψ
◦

c
:ψ

(k)
c =1

(n
(k)

c,d,\c,d,n
+ φ

(k)
c )

n
(.)

c,d,\c,d,n
+

∑

j

b
( j)
c ψ

( j)
c φ

( j)
c

p(φ◦c |γ)p(b◦c |π
•, α)p(ψ◦c |ǫ) . (A.1)

On the right-hand side, the sums over the binary vectors b◦c and

ψ◦c are only over values whose kth entry is 1. This is equivalent

to taking the sum over all possible vectors but multiplying the

summed function by the binary flags b
(k)
c and ψ

(k)
c , and the above

equation can therefore be rewritten as

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ E



























(n
(k)

c,d,\c,d,n
+ φ

(k)
c )b

(k)
c ψ

(k)
c

n
(.)

c,d,\c,d,n
+

∑

j

b
( j)
c ψ

( j)
c φ

( j)
c



























. (A.2)

Let us divide
∑

j

b
( j)
c , ψ

( j)
c , φ

( j)
c into active topics corresponding to

entries of b in b• (these are the topics represented in the corpus)

and inactive topics corresponding to elements in b◦

∑

j

b
( j)
c ψ

( j)
c φ

( j)
c =

∑

j:n
(k)

c,(·),\n
>0

φ
( j)
c +

∑

j:n
(k)

c,(·),\n
=0

b
( j)
c ψ

( j)
c φ

( j)
c (A.3)

= X + Y (A.4)

We further split the inactive term into two components Y1 and

Y2 thus:
∑

j

b
( j)
c ψ

( j)
c φ

( j)
c

=
∑

j:n
(k)

c,(·),\n
>0

φ
( j)
c +

∑

j∈J1

b
( j)
c ψ

( j)
c φ

( j)
c +

∑

j∈J2

b
( j)
c ψ

( j)
c φ

( j)
c

= X + Y1 + Y2 (A.5)

where:

J1: n
( j)

c,(·),\n
= 0 and n

( j)

(·),(·),\n
> 0 (A.6)

J2: n
( j)

(·),(·),\n
= 0 (A.7)

Thus (A.2) becomes:

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ E

















(n
(k)

c,d,\c,d,n
+ φ

(k)
c )b

(k)
c ψ

(k)
c

n
(.)

c,d,\c,d,n
+ X + Y1 + Y2

















(A.8)

The expectation of Y is:

E[Y |π•, α,γ, ǫ] = E[Y1|π
•,γ, ǫ] + E[Y2|α,γ, ǫ] (A.9)

E[Y1|π
•,γ, ǫ] =

∑

j∈J1

π( j)γ( j)ǫ

E[Y2|α,γ, ǫ] = αa1a2ǫ (A.10)

Since it is not feasible to evaluate the above expectation in

closed form as we would need to evaluate it for every word in

each Gibbs sampling so we perform an approximation. The

E[ f (X)|Y] can be approximated by the first order Taylor expan-

sion E[ f (X)|Y] ≈ f (E[X|Y]). We approximate the expectation

under the following cases:

Case 1: n
(k)

c,d,\c,d,n
= 0 and n

(k)

c,(.),\n,d,c
> 0, i.e. the k-th topic

is active in the task c which means ψ
(k)
c = b

(k)
c = 1, Eq (A.8)

becomes:

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ (n

(k)

c,d,\c,d,n
+φ(k)

c )E

[

1

n
(.)

c,d,\c,d,n
+ X + Y1 + Y2

]

∝
(n

(k)

c,d,\c,d,n
+ φ

(k)
c )

n
(.)

c,d,\c,d,n
+

[

∑

j:n
( j)

c,(.),\n
>0

φ
( j)
c

]

+

[

∑

j:n
( j)

(.),(.),\n
>0

π( j)γ( j)ǫ

]

+ αǫa1a2

(A.11)

Case 2: n
(k)

c,(.),\n,d,c
= 0 and n

(k)

(.),(.),\n,d,c
> 0 i.e. the k-th topic

does not appear in the current task but is active in the corpus,

so the expectation in Eq (A.8) is

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ γ(k)π(k)ǫ E

[

1

n
(.)

c,d,\c,d,n
+ X + Y\k + γ(k)

]

∝ (γ(k)π(k)ǫ)
/

(

n
(.)

c,d,\c,d,n
+

[

∑

j:n
( j)

c,(.),\n
>0

φ
( j)
c

]

+

[

∑

j:n
( j)

(.),(.),\n
>0 & j,k

π( j)γ( j)ǫ

]

+ γ(k) + αǫa1a2

)

(A.12)

Case 3: n
(k)

(.),(.),\n,d,c
= 0 implying the topic is inactive in the

whole corpus. In this case we evaluate the probability of as-

signing any of the infinite number of components:

E[θ
(k)

c,d
|z\c,d,n,∆] ∝ E

















Y2

n
(.)

c,d,\c,d,n
+ X + Y1 + Y2

















(A.13)

∝
(αǫa1a2)

n
(.)

c,d,\c,d,n
+



















∑

j:n
( j)

c,(.),\n
>0

φ
( j)
c



















+



















∑

j:n
( j)

(.),(.),\n
>0

π( j)γ( j)ǫ



















+ αǫa1a2

(A.14)

These cases together suffice to compute the approximated ex-

pectation.

APPENDIX B

In our simulated experiment of Figure 5 we construct a con-

tinuum of synthetic domains. From each domain we generate

several multi-task learning problems: each multi-task learning

problem consists of several data sets (tasks).

In detail, each learning problem is generated from the model

structure of our model, that is, from a multi-task topic model.

There are 10 active topics across 10 tasks. The overall sum of

pseudocounts across topics was set to 300 for each task. The

division of pseudocounts across topics in each task was fixed
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according to the continuum as described below. For each task

c, elements of the vector bc were set to 1 if the correspond-

ing topic had been allocated nonzero pseudocounts, and to 0

otherwise. In order to generate small training data, the topic-to-

word distributions were generated according to the sparse topic

model in [23].

At each intermediate point (domain) in the continuum, the

prior topic strength vector is generated by linearly mixing two

extreme values of φc, with a mixing coefficient u between zero

and one: φc = (1− u)φLeft
c + uφ

Right
c where “Left” and “Right”

denote the two extreme choices. The mixing coefficient corre-

sponds to the position in the domain continuum (horizontal axis

of Figure 5) so that u = 0 at the left end of the continuum and

u = 1 at the right end, and u takes intermediate values between

the two ends.

The first extreme choice for the topic pseudocount vectors

φLeft
c in each task c is as follows. In the task of interest c =

1, only the first topic is active (pseudocount 300), all others

have pseudocount 0. In a supplementary task c > 1, the first

topic is active with pseudocount 150, and additionally a task-

specific topic (topic index c, same as the task index) is active

with pseudocount 150; all other topics have pseudocount 0. In

this extreme choice, the first topic is very strong (it is active

in all tasks with high pseudocount) and other topics are also

strong (active in one task with pseudocount 150). The second

extreme choice for pseudocount vectors φ
Right
c is as follows.

For each task c, three randomly picked topics were activated

(their pseudocount was set to 100 each) and other topics were

inactive (pseudocount 0). The overall strength of each topic

then depends on how many tasks picked them; all topics active

in at least one task have total pseudocount at least 100.

In both extreme choices φLeft
c and φ

Right
c the active topics

are strongly active in their respective tasks. However, the set of

which topics are active in which tasks differs between the ex-

tremes. In particular, in “Left” the task of interest (TOI) uses

only topic 1 so that φLeft
TOI = [300 0 0 0 0 0 0 0 0 0] whereas in

“Right” the task of interest uses a random three topics so that for

example φ
Right
TOI

= [0 0 100 0 100 0 0 100 0 0]. Then the inter-

polated weight vector for the task of interest contains weak val-

ues, for example u = 0.1 yields φTOI = (1−u)φLeft
TOI +uφ

Right
TOI

=

[270 0 10 0 10 0 0 10 0 0]. The topic strength vectors of other

tasks also get weak values through the interpolation.

We sample the two extreme choices several times; each time

we generate the learning problems for the whole continuum (for

both extreme positions in the continuum, and for each interme-

diate position by interpolating the pseudocount vectors as de-

scribed above).
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