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Abstract—Cognitive radio (CR) is considered an important
solution to the current spectral scarcity, which is expected
to be a significant issue in the next generation of wireless
communication systems, namely 5G. Wideband spectrum sharing
and sensing constitute highly desirable features of CR systems
as they aim to increase the probability of identifying available
spectral bands, which ensures a more efficient resource utiliza-
tion. The present work proposes an efficient frequency-domain
cyclic prefix (CP) autocorrelation based wideband spectrum
sensing and sharing method that can provide accurate detection
of orthogonal frequency-division multiplexing (OFDM) based
primaries in wideband CR systems. Novel analytic expressions
are derived for the corresponding threshold, probability of false
alarm and probability of detection in the presence of noise un-
certainty (NU) and frequency selectivity. The derived models are
validated by extensive comparisons with respective results from
computer simulations. It is demonstrated that the introduced
autocorrelation based sensing method is able to counteract NU
and the frequency-selective multipath channel effects in realistic
wideband communication scenarios. Furthermore, the method
facilitates partial band sensing, allowing the sensing of weak
OFDM-type primary user (PU) signals in channels which are
partly overlapped by other strong PU or CR transmissions. This
is considered a crucial element in practical spectrum sharing
scenarios. Since, the proposed sensing method makes use of
sparsity in the spectral domain, it can be technically considered
as compressed sensing method. The flexibility of this approach
supports robust wideband multi-mode, multi-channel sensing
with low complexity. Finally, it is shown that the offered results
are particularly useful in the context of spectrum sharing as
their high performance and reduced complexity can enable the
co-existence of non-exhaustive yet highly efficient algorithms.

Index Terms—Cognitive radio, OFDM, wideband sensing,
sparsity, time and/or frequency domain CP autocorrelation
compressed spectrum sensing, spectrum sharing, energy detector,
frequency selective channels, and noise uncertainty.
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IT is widely known that wireless communications have been
growing exponentially and the scarcity of available radio

frequency spectrum has become a core issue, despite intensive
research and development efforts for more effective tech-
nologies. Also, cognitive radio (CR) has received increasing
attention as a potential solution to the current spectrum scarcity
issue for the next generation of wireless communication sys-
tems namely, 5G, with the aid of sophisticated algorithms for
efficient spectrum sharing and sensing realizations [1]–[4].

It is recalled that the aim of spectrum sensing is to identify
available spectral holes for opportunistic utilization by sec-
ondary users (SU). To this end, different sensing algorithms
have been proposed in the literature, but none of them fully
satisfies the criteria of all associated metrics, such as efficiency,
implementation complexity, reliability, and secondary system
throughput degradation [1]–[5]. Spectrum sharing is also a
core part of CR and can be applied with different approaches,
such as, opportunistic / coexistence sharing, overlaying shar-
ing, and underlay sharing [6]–[9]. If sharing is considered as
a coexistence based process, SUs are essentially invisible to
the primary user (PU). Therefore, all of the complexity of
sharing is a burden of the SU system. Before any SUs can
be deployed, spectrum sensing must be completed to protect
the PU from any harmful interference. Opportunistic sharing
can be considered as an effective method that ensures adequate
performance at a relatively non-exhaustive complexity [6]–[8].
This is based on the fact that the opportunistic approach forces
the SU to sense the PUs spectrum holes, i.e., unused PU bands,
and allows transmission on these bands only when they are
unused by the PU [6]–[8].

Energy detection (ED) is commonly considered an efficient
spectrum sensing technique in CR due to its simple practical
realization and relatively low computational complexity [3],
[4]. However, the performance of ED is sensitive to noise
uncertainty (NU) effects under low signal-to-noise ratio (SNR)
levels [3], [10]–[13]. Yet, it is necessary to operate under very
low PU SNR in various CR scenarios due to the multipath
fading and shadowing phenomena, which result in power
fluctuations of received PU signals. Different sensing methods
have been presented in the literature to overcome the NU issue
[14]–[16]. To this end, eigenvalue-based advanced spectrum
sensing methods have been proposed as an alternative sensing
approach which can overcome the effects of NU [17]–[20].
However, because of the required calculation of the covari-
ance matrix of the received signal and its eigenvalues, these
techniques involve particularly high computational complexity.
Alternative eigenvalue based approaches, which only require
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the largest eigenvalue and trace of the covariance matrix, have
been presented in [21] to decrease the complexity. Yet, the
computational complexity of these proposed methods is still
quite high. Energy spectral density (ESD) based maximum
− minimum ED sensing techniques have also been studied in
the literature [22]–[26]. These approaches have been shown to
provide acceptable performance at the low SNR regime under
the presence of NU effects. The intuitive idea behind these
approaches is that in certain scenarios, the minimum subband
energy can be regarded as an estimate for the noise variance.
Moreover, the presence of a PU signal introduces frequency
variability of the received power spectral density (PSD), which
is not critically affected by the NU [22]–[26]. Cyclostation-
ary feature detection is also proposed as an alternative and
effective sensing technique to detect PUs by exploiting the
cyclostationary features of the received signal [27]–[31]. Given
also that the noise is wide-sense stationary and modulated
signals are cyclostationary with spectral correlation, the PU
signal can be differentiated from noise. Additionally, distin-
guishing among different types of transmissions and primary
users can be achieved by cyclostationary feature detection
[27], [28]. However, also cyclostationary based approaches
bring particularly high computational complexity, which is
practically problematic.

It is recalled that orthogonal frequency devision multi-
plexing (OFDM) is widely used in current and emerging
wireless communications standards, and thus PUs in future CR
based communications are expected to use OFDM waveforms.
Therefore, it is of paramount importance to exploit the specific
features of OFDM in spectrum sensing. The presence of cyclic
prefix (CP) introduces peaks in the autocorrelation of the
received waveform at lags corresponding to the length of the
useful symbol period. This characteristic has been typically
used, e.g., for synchronization purposes and recently also
for spectrum sensing operations [32]–[39]. In this context,
CP autocorrelation (CP-AC) approach appears as an effective
spectrum sensing method, which overcomes the NU phenom-
ena of ED.

In terms of the bandwidth, spectrum sensing and sharing
techniques can also be classified as narrowband or wide-
band. The main aim of the traditional narrowband spectrum
sensing is to explore spectral opportunities over a relatively
narrow frequency range, typically within a single PU fre-
quency channel. However, CR is required to exploit spec-
tral opportunities over a wide frequency range to determine
more spectral opportunities and achieve effective resource
allocation. Wideband spectrum sensing, operating effectively
over multiple PU channels, is highly desirable to increase
the probability of determining unoccupied spectrum bands.
Cooperative wideband spectrum sensing under fading channels
has been recently proposed in the literature [40]. This approach
not only provides computation and memory savings compared
to the existing wideband spectrum sensing methods, but also
reduces the hardware acquisition requirements and the energy
costs at CRs [40]. Some indicative applications for wideband
spectrum sensing and sharing include the cognitive access to
the unused portions of some specific frequency bands, such as
industrial, scientific and medical (ISM) band or the TV white

space (TVWS), which includes the channels that are not used
by digital terrestrial television (DTT) or program making and
special events (PMSE) users, and those that became available
after the switch-over from analogue to digital TV broadcasting
[41]–[43].

In the wideband scenarios, a major challenge is due to the
striking requirements on the analog-to-digital converter (ADC)
for sampling the received wideband multi-channel spectrum
at the Nyquist rate. Generally, wideband spectrum sensing
is typically categorized into two types: Nyquist wideband
sensing [44]–[47] and sub-Nyquist wideband sensing (see
[48], [49] and the references therein). In Nyquist wideband
sensing processes, the received signal is sampled at or above
the Nyquist rate, which practically leads to unaffordable high
sampling rate and implementation complexity. Sub-Nyquist
sampling based cyclic feature detection has been presented,
but for only binary phase shift keying (BPSK) and quadrature
phase shift keying (QPSK) modulated signals in [50].

It is also recalled that compressed spectrum sensing (CSS)
has been proposed as an effective method for reducing the
processing complexity of emerging communication systems.
In this context, it has been also applied in wideband communi-
cation scenarios by exploiting the sparseness of the wideband
signal in the frequency domain [48], [51]–[53]. Furthermore,
CSS based wideband spectrum sensing has attracted consid-
erable attention because it uses substantially smaller number
of samples [54]–[58]. Novel hybrid framework combining
compressed spectrum sensing has been proposed for wide-
band spectrum under sub-Nyquist in [59]. A data-assisted
non-iteratively re-weighted least squares based compressive
spectrum sensing has been given to reduce the sampling rates
and lower the computational complexities [59]. Similarly, two-
phase single node and cooperative spectrum sensing algo-
rithms for wideband spectrum sensing at sub-Nyquist sampling
rates have been proposed to reduce the computational com-
plexity and improve the robustness to channel noise recently
in [60]. Mixed-signal parallel segmented compressive sensing
(PSCS) has been proposed for cognitive radios in [61]. This
approach for wideband spectrum, where the high-speed ADCs
are avoided by carrying out an analog basis expansion in
parallel before sampling. PSCS front-end is also able to sample
and reconstruct analog sparse and compressive signals at sub-
Nqyuist rate [61]. However, recovering the wideband spectrum
from its compressed samples is typically realized by solving
an optimization problem that requires high computational
complexity. As a consequence, it becomes cumbersome to im-
plement such techniques in the context of compact commodity
radios with limited computational capabilities.

Motivated by the above, the core aim of this work is to
construct effective spectrum sensing methods for CP-OFDM
primaries in wideband scenarios, utilizing sub-Nyqyuist sam-
pling with respect to the targeted PU signals. Hence, less
complex and low power white space devices, e.g., for WiFi
based accesses and Machine-to-Machine (M2M) communica-
tions could be operated based on the CR principles. Sensing
techniques utilizing sparsity in frequency domain are investi-
gated here as a promising approach in this direction.

In the present paper, a frequency domain autocorrelation
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(FD-AC) based wideband sensing method is proposed, which
is shown to be highly efficient in spectrum sensing and
sharing based CR communications. This method performs
first a subband decomposition of the received signal using
fast Fourier transform (FFT) (or alternatively, using analysis
filter bank) [5]; then, ACs for the relevant subband signals
are determined and the overall AC is constructed from the
subband ACs. During this process, the subbands corresponding
to the active portion of a specific transmission channel may be
collected for the overall AC. Such processes can be executed in
parallel for different candidate PU channels, and possibly also
for alternative signal parameterization regarding the OFDM
FFT size, CP length, etc. Furthermore, it is not necessary
to include the whole PU bandwidth in the AC calculation
process and thus, it is possible to sense PUs which are partly
overlapped by other interfering PU or SU transmissions. The
computational complexity of the algorithm is mainly due to
the FFT (or filter bank) processing for subband decomposition.
The subband based AC calculations are not computationally
heavy, and their complexity can be further reduced by reducing
the number of subbands used for constructing the AC.

The proposed sensing method makes use of sparsity [62]
in the spectral domain, and therefore it can be considered as
compressed sensing method which acquires wideband signals
using sampling rates lower than the Nyquist rate and detects
potentially vacant spectral bands using these compressed mea-
surements. In this paper we assume wideband signal sampling,
but the ideas can be developed towards specific schemes
for sampling the received signal to capture portions of the
target signal spectrum for sensing purposes. Simple example
is the use of multiple narrowband ADCs instead of a single
wideband ADC.

More specifically, the contributions of the present paper are
listed below:
• A compressed sensing method based on constructing the

autocorrelation of the received signal from its subband
sample sequences is developed for wideband spectrum
sensing.

• Novel analytic expressions are derived for the threshold,
probability of false alarm, PFA, and probability of de-
tection, PD, for the proposed FD-AC based compressed
sensing method in wideband scenarios under NU. The
offered results are validated extensively through compar-
isons with respective computer simulations. These results
provide meaningful insights that are useful for future
design and deployments of CR communication systems
and networks.

• The proposed approach is tested with practical signal
models with main parameters following the OFDM based
802.11g like wireless local-area-networks (WLAN) signal
model. However, the same approach can be easily applied
to any generic signal models for CP based primaries,
including basic OFDM and OFDM based single carrier
waveforms.

• Effects of practical wireless channels on the FD-AC based
compressed sensing method are investigated, considering
both NU and channel frequency selectivity. The effect of
stationary frequency selectivity on the proposed FD-AC

methods is thoroughly quantified.
• It is demonstrated that the proposed approach is quite

robust to NU challenges compared to the traditional
energy detector based methods, which are rather sensitive
to the uncertainties on noise variance.

• FD-AC techniques are shown to exhibit lower complexity
than the traditional eigenvalue based methods, which are
considered advanced sensing techniques overcoming the
NU challenges.

• The proposed technique is particularly useful in the con-
text of spectrum sharing as it allows partial band sensing
focusing on the non-interfered parts of the PU spectrum.
In addition, the use of sparsity in the spectral domain
allows to develop wideband sensing and sharing schemes
with low complexity and low energy consumption, e.g.,
by utilizing parallel narrowband sensing processes.

To the best of the authors’ knowledge, the autocorrelation
based approaches in frequency domain, with the compressed
sensing element, have not been previously reported in the open
technical literature.

The remainder of the paper is organized as follows: Section
II revisits the general concept about time domain autocorrela-
tion based spectrum sensing methods, including also NU in the
model as a novel element. The novel FD-AC based compressed
spectrum sensing method is presented in Section III. The
signal and frequency selective channel models are described in
Section IV along with numerical results for the corresponding
sensing performance and computational complexity. Finally,
closing remarks are provided in Section V.

II. TIME DOMAIN CP AUTOCORRELATION BASED
SPECTRUM SENSING UNDER NOISE UNCERTAINTY

The main aim of the CP autocorrelation based detector is to
differentiate AWGN and OFDM signal samples, which have
similar statistical properties. A received signal y(n) can be
formulated by the following hypothesis test [3]:

H0 : y[n] = w[n]

H1 : y[n] =

x[n]︷ ︸︸ ︷
s[n]⊗ h[n] +w[n]

(1)

where, y[n] is the signal observed by the sensing receiver with
s[n] and w[n] denoting the OFDM type PU information signal
and the zero-mean complex circularly symmetric AWGN,
respectively. Furthermore, h[n] denotes the channel impulse
response and x[n] is the received PU signal with channel
effects while ⊗ denotes linear convolution. Under hypothesis
H0, y[n] consists only of w[n] in the absence of the PU
whereas the PU signal x[n] is present along with w[n] under
hypothesis H1.

The structure of an OFDM symbol is illustrated in Fig.
1, where useful data samples and CP length are represented
by Nd and Nc, respectively. The total number of samples in
an OFDM symbol Ns can be written as Ns = Nd + Nc.
The Nd samples also determine the useful data bearing length
of the block and these samples are derived from the inverse
fast Fourier transform (IFFT) of the sequence of Nd complex
subcarrier symbols, some of which may be zero corresponding
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Figure 1: OFDM block structure.

to guard bands. The CP is a sequence of Nc samples that is the
replication of Nc last samples of the useful part of the symbol.
The main aim of the CP is to provide the orthogonality of the
modulation symbols at the receiver by converting the Toeplitz
convolution structure of the channel to a circulant one.

We focus on exploiting the CP-autocorrelation property
of OFDM systems for the detection of primary users. The
involved autocorrelation may be estimated as follows

R(τ) =
1

N

N∑
n=1

y(n)y∗(n+ τ). (2)

It is recalled that according to the Central Limit Theo-
rem (CLT) the sum of sufficiently many independent and
identically-distributed (i.i.d.) random variables, under the as-
sumption that the sum of the variables has a finite variance,
follows Gaussian distribution. Assuming sufficiently large
IFFT size for the OFDM signal, and invoking the CLT, we
have s(n) ∼ Nc(0, σ2

s), w(n) ∼ Nc(0, σ2
w), x(n) ∼ Nc(0, σ2

x)
and y(n) ∼ Nc(0, σ2

x + σ2
w) where it has been assumed

that s(n) and w(n) are independent of each other and Nc(.)
denotes the distribution of complex Gaussian random variable,
σ2
s , σ2

x and σ2
w denote the variances of the transmit signal,

the received signal and the AWGN process, respectively. In
practice, the noise variance can be expected to lie within the
range σ2

w ∈ [(1/ρ)σ2
n, ρσ

2
n], where ρ > 1 is a parameter

that quantizes the corresponding uncertainty. It is noted here
that NU is usually expressed as % = 10log10ρ, in dB. When
including NU in the analytical models, we make the worst-
case assumption: The actual noise variance is ρσ2

n under H0

and σ2
n/ρ under H1.

It is recalled that due to the presence of the CP, the OFDM
block exhibits cyclostationarity. As a result of these statistics,
a peak value appears in the autocorrelation function at the lag
of Nd samples, when a set of OFDM samples of minimum
length 2Nd + Nc is considered. The nonzero autocorrelation
coefficients corresponding to lags n = ±Nd, are shown to be
the log likelihood ratio test (LLRT) statistic [35].

Since data are unknown and cyclic prefix changes from
symbol to symbol, r = R(τ) |τ=±Nd

is also a random variable

with mean and variance. Under H1, the mean of r is given by

E[r |H1 ] = E

[
1

N

N∑
n=1

y(n)y∗(n+Nd)

]
(3)

=
1

N

N∑
n=1

E [y(n)y∗(n+Nd)] (4)

=
1

N

N∑
n=1

E [(x(n) + w(n))(x∗(n+Nd) + w∗(n+Nd))]

(5)

=
1

N

N∑
n=1

E [x(n)x∗(n+Nd)] +
1

N

N∑
n=1

E [w(n)w∗(n+Nd)]

(6)

=
1

N

N∑
n=1

E [x(n)x∗(n+Nd)] (7)

= µσ2
x (8)

where µ = Nc

Nc+Nd
.

The second moment of r under H1 can be calculated as

E[|r|2 |H1 ] = E

∣∣∣∣∣ 1

N

N∑
n=1

y(n)y∗(n+Nd)

∣∣∣∣∣
2
 (9)

=
1

N2

N∑
n1=1

N∑
n2=1

E [y(n1)y∗(n1 +Nd)y
∗(n2)y(n2 +Nd)]

(10)

which can be equivalently expressed according to (11), at the
top of the next page. If a, b, c, and d are jointly Gaussian
(complex or real) random variables, it follows that

E [abcd] =E[ab]E[cd] + E[ac]E[bd] + E[ad]E[bc] (12)
− 2E[a]E[b]E[c]E[d].

Based on the above expression and by using the independence
of the signal samples x(n1) and x(n2) and noise samples
w(n1) and w(n2), where n1 6= n2, we can expand (9) yielding

E
[
|r|2 |H1

]
=

(
σ2
x + (1/ρ)σ2

n

)2
+ 3µ2

1

N
(13)

where µ1 = µσ2
x and ρ presents the corresponding NU

parameter based on the worst case assumption. Therefore, it
follows that the variance of r under H1 is given by

Var (r |H1 ) = E
[
|r|2 |H1

]
− |E [r |H1 ]|2 (14)

=

(
σ2
x + (1/ρ)σ2

n

)2
+ 2µ2

1

N
. (15)

Under H0, the independence of w(n) and w(n+Nd) yields
E[r|H0] = 0 and thus, the variance is expressed as

Var(r |H0 ) =

(
ρσ2

n

)2
N

. (16)



5

E[|r|2 |H1 ] =
1

N2

N∑
n1=1

N∑
n2=1

E[(x(n1) + w(n1)) (x∗(n2) + w∗(n2)) (x∗(n1 +Nd) + w∗(n1 +Nd)) (x∗(n2 +Nd) + w∗(n2 +Nd))].

(11)

A. Autocorrelation Magnitude as Test Statistic

One possible test statistic is the magnitude, Tρ,c, of the
complex value of autocorrelation peak at lag Nd. It can be
expressed as:

Tρ,c =

1
N

∣∣∣∣N−1∑
n=0

y(n)y∗(n+Nd)

∣∣∣∣
1

N+Nd

N+Nd−1∑
n=0

|y(n)|2
. (17)

Under the H0 hypothesis, the above test statistic is distributed
according to:

H0 : Tρ,c ∼ Nc
(

0,
1

N

)
. (18)

It is noted here that due to the Gaussian statistics, Tρ,c has a
probability of exceeding threshold, γρ,c, which is given by

P (Tρ,c > γρ,c) = Q

(
γρ,c
σc

)
(19)

where, Q(.) denotes the complementary error function and σc
is the standard deviation of the complex signal. Based on this,
it follows that

PFA = P (Tρ,c > γρ,c |H0 ) = Q
(√

Nγρ,c

)
. (20)

With the aid of (18), the expected value of Tρ,c under the
null hypothesis is zero. Then, the P (Tρ,c > γρ,c |H0 ) can be
obtained as a probability of false alarm, PFA, in the context
of detecting AWGN samples under the H0 hypothesis. Hence,
given the desired PFA, the threshold, γρ,c, can be expressed
as:

γρ,c =
1√
N
Q−1 (PFA) (21)

whereas under the hypothesis H1, Tρ,c is distributed according
to:

H1 : Tρ,c ∼ Nc

(
µ1,

(
σ2
x + (1/ρ)σ2

n

)2
+ 2µ2

1

N

)
. (22)

Finally, the corresponding probability of detection can be
determined by the following closed form representations

PD = P (Tρ,c > γρ,c |H1 ) (23)

= Q

 γρ,c − µσ2
x√

(σ2
x+(1/ρ)σ2

n)2+2µ2σ4
x

N

 (24)

= Q

 γρ,c −
(

Nc

Nc+Nd

)
σ2
x√

(σ2
x+(1/ρ)σ2

n)2+2
(

Nc
Nc+Nd

)2
σ4
x

N

 . (25)

B. Real Part of Autocorrelation as Test Statistic

Second possible test statistic is the real part of autocorre-
lation peak at lag Nd [35], [36], [39]. It can be expressed
as

Tρ,r =

1
N

N−1∑
n=0
<{y(n)y∗(n+Nd)}

1
N+Nd

N+Nd−1∑
n=0

|y(n)|2
(26)

where <{.} and {.}∗ are the real part of a complex samples
and the complex conjugate of the values, respectively. The
total number of samples used for the autocorrelation is N+Nd
while as shown in [36], the Tρ,r under the H0 is distributed
according to:

H0 : Tρ,r ∼ NR
(

0,
1

N

)
(27)

where NR refers to the Gaussian distribution for real valued
numbers. Because of the Gaussian statistics, Tρ,r has a prob-
ability of exceeding threshold, γρ,r, which is given by

P (Tρ,r > γρ,r) =
1

2
Q

(
γρ,r√
2σr

)
(28)

and therefore

PFA = P (Tρ,r > γρ,r |H0 ) =
1

2
Q
(√

Nγρ,r

)
. (29)

With the aid of (27), the expected value of Tρ,r under the
null hypothesis is zero. Based on this, the P (Tρ,r > γρ,r |H0 )
can be obtained as a probability of false alarm, PFA, in the
context of detecting AWGN samples under H0 hypothesis.
Hence, given the desired PFA, the threshold, γρ,r, can be
expressed as:

γρ,r =
1√
N
Q−1 (2PFA) . (30)

Similarly, it is shown in [36] that Tρ,r under the H1 is
distributed according to:

H1 : Tρ,r ∼ NR

(
η,

(
1− η2

)2
N

)
(31)

where
η =

Nc
Nd +Nc

σ2
x

σ2
x + (1/ρ)σ2

n

. (32)

To this effect, the corresponding probability of detection can
be calculated as

PD = P (Tρ,r > γρ,r |H1 ) (33)

=
1

2
Q

(√
N
γρ,r − η
1− η2

)
(34)

=
1

2
Q

√N γρ,r − Nc

Nc+Nd

σ2
x

σ2
x+(1/ρ)σ2

n

1−
(

Nc

Nc+Nd

σ2
x

σ2
x+(1/ρ)σ2

n

)2

 (35)
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Figure 2: A typical spectrum monitoring scenario with uncoordinated secondary systems.

which has a simple algebraic representation that allows a
straightforward computation.

III. NOVEL SPARSE FREQUENCY DOMAIN SPECTRUM
SENSING BASED ON CP AUTOCORRELATION UNDER NOISE

UNCERTAINTY

It is recalled that the autocorrelation of the received wave-
form is basically a time-domain operation. Usually, it is
assumed that the spectrum sensing bandwidth matches the
full bandwidth of the PU signal, and contains either noise
only or noise plus PU signal. Considering a CR scenario
where broadband PUs might be present, a PU signal might be
partly overlapped by other transmissions with relatively narrow
spectrum, as illustrated in Fig. 2. This could be a case of a
reappearing PU before the SU system has detected it. In this
situation, time-domain autocorrelation based spectrum sensing
is expected to fail. One possibility is to perform the time-
domain autocorrelation for the clean part(s) of the PU signal
band only. Nevertheless, this would require additional highly
configurable and complicated filtering in the receiver. How-
ever, frequency-domain implementation of autocorrelation can
be envisioned, where only the subband signals which are clean
from interfering SUs are utilized. Partial band autocorrelation
computation from subcarrier samples can also be utilized
in the context of compressive sensing using sparsity1, in
order to reduce the computational complexity or simplify
the analog-to-digital conversion interface. Therefore, we focus
on considering frequency domain spectrum sensing, where
autocorrelation is performed using subband samples at the
output of an FFT process. A spectrum sensing and sharing
framework utilizing alternative sensing algorithms is illustrated
in Fig. 3. Our wideband subband based sensing approach
supports both the proposed FD-AC and traditional ED based
sensing methods, thus supporting multi-channel, multi-mode
sensing of different candidate primaries in the target frequency
band.

To simplify the analytical models, we assume here digiti-
zation of the wideband analog signal, followed by FFT, the
output of which is expressed as yk,m, where m = 1, . . . ,M
is the subband sample index and k = 1, . . . ,K is the subband
index. Here K is the FFT size of the sensing receiver, which
is considered to be independent from the IFFT size of the PU

1The detailed analysis of sparsity is provided in the Appendix.

transmitter. In the context of spectrum sensing the subband
signals can be expressed as follows:

yk,m = wk,m H0 (36)

yk,m = xk,m + wk,m H1. (37)

Here,

[y1,m, y2,m, ..., yK,m] (38)
= FFT [y((m− 1)K + 1, y((m− 1)K + 2, ..., y(mK)]

and xk,m ∼= Hksk,m is the PU information signal at the mth

FFT output sample in subband k, Hk is the complex gain
of subband k, and wk,m is the corresponding noise sample.
Furthermore, it is assumed that wk,m ∼ N (0, σ2

w,k) and
xk,m ∼ N (0, σ2

x,k), with σ2
x,k denoting the PU signal variance

in subband k. Since FFT is used for spectrum analysis, the
subband noise variances can be assumed to be the same,
σ2
w/K ' σ2

w,k, while the channel noise is assumed to be
white. It is recalled that the noise distribution is in the range
σ2
w,k ∈ [(1/ρ)σ2

n,k, ρσ
2
n,k], where ρ presents the corresponding

NU parameter. The worst-case PFA and PD scenarios are
considered in both the analytical and simulated models.

A timelag of Nd can be expressed after FFT in subband
domain as:

yk,m+m∆
ej2πτk (39)

where m∆ = round(Nd/K) and τ = Nd/K−m∆. Here m∆

is the coarse value of the lag as an integer number of subband
samples and τ is the fractional part of the lag, which appears
as a linearly frequency-dependant phase term. The normalized
CP autocorrelation can then be expressed in terms of subband
samples as follows:

CY (τ) =

1
MKcomp

M∑
m=1

∑
k∈Ω

yk,my
∗
k,m+m∆

e−j2πτk

1
MKcomp

M∑
m=1

∑
k∈Ω

|yk,m|2
(40)

=

∑
k∈Ω

(
M∑
m=1

yk,my
∗
k,m+m∆

)
e−j2πτk

M∑
m=1

∑
k∈Ω

|yk,m|2
(41)

where Ω is the set of Kcomp used subcarriers, and M is
the integration length in FFT subband samples. The sample
complexity is now N = K(M+m∆). In addition, the number
of subcariers used in the autocorrelation calculation, Kcomp,
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Figure 3: A spectrum sensing framework utilizing alternative spectrum sensing and spectrum sharing algorithms.

can be chosen, together with N , to take different values for
a proper tradeoff between interference suppression capability,
implementation complexity, and sensing performance. Impor-
tantly, (41) is computationally more efficient representation of
(40). It indicates the possibility of using different subcarrier
samples in the basic autocorrelation calculation, with spacing
of m∆. This assists in maximizing the correlation observation
for different combinations of the OFDM symbol duration and
FFT based subband sample interval.

Similar to the time domain CP autocorrelation based ap-
proach, Gaussian distribution can also be considered for the
test statistics in the proposed FD-AC. Based on the Gaussian
approximation, CY (τ) under the H0 is distributed according
to:

H0 : CY (τ) ∼ Nc
(

0,
1

MKcomp

)
(42)

and the corresponding probability of false alarm under com-
pressed sensing can be expressed as

PFA = P (CY (τ) > γcomp |H0 ) (43)

= Q
(√

MKcompγcomp

)
(44)

while the corresponding threshold can be expressed as

γcomp =
1√

MKcomp
Q−1 (PFA) . (45)

Likewise, CY (τ) under the H1 is distributed according to:

H1 : CY (τ) ∼ Nc

(
µσ2

x,

(
σ2
x + (1/ρ)σ2

n

)2
+ 2µ2

1

MKcomp

)
(46)

and finally, the detection probability under compressed sensing
can be given by

PD = P (CY (τ) > γcomp |H1 ) (47)

= Q

 γcomp − µσ2
x√

(σ2
x+(1/ρ)σ2

n)2+2µ2σ4
x

MKcomp

 (48)

= Q

 γcomp −
(

Nc

Nc+Nd

)
σ2
x√

(σ2
x+(1/ρ)σ2

n)2+2
(

Nc
Nc+Nd

)2
σ4
x

MKcomp

 (49)

which is also expressed in a simple form.
In addition to the proposed algorithm, a similar concept

can be also applied for the case of unknown time lag. If the
lag values are considered with the time resolution of the FFT
input, then the outer summation in (41) can be interpreted as
an IFFT. Thus, while in the known lag case, only one element
of the IFFT needs to be calculated, the unknown lag case
requires calculation of the whole IFFT. The test statistic value
CY (τ) is obtained from the second maximum peak (the first
one is the peak at zero-lag).

The test statistic for both algorithms is taken from the mag-
nitude of the autocorrelation function with the corresponding
lag, in contrast to using the real part as in (26) and in [35],
[36], [39]. In fact, we employ magnitude values because any
frequency offset of the PU signal introduces phase rotation to
the autocorrelation. In spectrum sensing scenarios, it cannot
be assumed that the sensing station is synchronized to the PU
signal.
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Table I: Parameters of signal model for both traditional and proposed algorithms.
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Figure 4: Analytical and simulated detection probability for
both traditional ED and proposed FD-AC based sensing under
AWGN channel with/without NU considering known time lag.
Magnitude test statistic, full-band sensing with 1024 bins and
partial band sensing with 512 bins under target PFA = 0.1.

IV. NUMERICAL RESULTS AND ANALYSIS OF
COMPUTATIONAL COMPLEXITY

A. Numerical Results

This section analyzes the performance of the proposed
frequency domain CP-autocorrelation (FD-AC) methods, with
and without CSS element, against the traditional energy de-
tector as a reference model. Given that CP-OFDM is the
dominating multicarrier technology in the field of wireless
communications, the CP-OFDM based PU signal is considered
by the spectrum sensing function of CR.

The signal model parameters of the proposed algorithm are
depicted in Table I for Fig. 4 − Fig. 12. It is noted that
some values in Table I such as K and M have been chosen
as example test values and these values significantly affect
both the detection performance and computational complexity
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Figure 5: Analytical and simulated detection probability for
both traditional ED and proposed FD-AC based sensing under
AWGN channel with/without NU considering known time lag.
Magnitude test statistic, partial-band sensing with 256 bins and
128 bins under target PFA = 0.1.

of the proposed method. Different values can be chosen in
the different scenarios. The SNR is defined here assuming
white noise in the whole observed bandwidth of 20 MHz.
The analytical and simulated detection probabilities of the
proposed FD-AC based sensing in the case of known time
lag and 1 dB NU are shown in Fig. 4 and Fig. 5. Both full-
band and partial band cases are included and the traditional ED
with / without 1 dB NU [11]–[13] are included as reference.
In these figures, the AC magnitude at the known lag is used
as the test statistic and 1000 Monte Carlo simulations are
used for reliable evaluation of the detection probability. It can
be observed that the simulation results match adequately the
corresponding theoretical results, especially in the interesting
range of PD ≥ 0.9. However, due to the approximation
of the distribution, there are some differences between the
analytical and simulated results in the intermediate SNR range.
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Figure 6: Receiver Operating Characteristics (ROC) curves of traditional ED and proposed FD-AC based sensing under −16
dB SNR considering AWGN channel with/without NU with known time lag: (a) Magnitude test statistic, full-band sensing
with 1024 bins, partial band sensing with 512 bins; (b) Magnitude test statistic, partial band sensing with 512 bins, 256 bins
and 128 bins.

It should be understood that the PD characteristics below the
targeted minimum SNR have minor impact on the operation
of a CR system. Since missed detections cause interference
to PU operation, the sensing process should reach sufficient
PD under conditions where the CR operation might harm the
PU operation. Therefore, PD = 0.9 should be considered as a
coarse lower limit for the interesting range. Additionally, for
efficient CR operation, sufficiently low PFA should be reached
in a reliable way. While testing this aspect, it was found that
the analytical and simulated false alarm probabilities match
very well. While the analytical false alarm probabilities of
FD-AC under all full-band and partial band cases are 0.1, the
simulated false alarm probabilities are 0.094, 0.099, 0.097 and
0.105 for 1024, 512, 256 and 128 FFT bins, respectively.

The corresponding receiver operating characteristics (ROC)
curves for the proposed FD-AC with magnitude test statistic
and −16 dB SNR are illustrated in Figs. 6 (a) and 6 (b),
along with ED as reference. Full-band and selected partial
band cases are included for FD-AC. These results reflect a
fundamental tradeoff between PFA and PD. Also while NU
such as 1 dB affects the detection performance significantly
in the conventional ED, it does not affect the proposed FD-
AC based approach which thus, provides a robust detection
performance.

Fig. 7 shows the effect of the sensing bandwidth on the
sensing performance of FD-AC. This study is made for AWGN
channel without NU and the known time lag model is used.
The parameters are the same as in Table I, except for the usage
of different numbers and different configurations of frequency
bins in sensing. The sensing bandwidths of 32, 64, 128, 256,
512, 1024 bins are considered, both in contiguous manner and
also in interleaved manner. In the interleaved case, sensing
bands of 16 FFT bins are used in such a way that they cover
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Figure 7: FD-AC based sensing performance using different
numbers of sensing FFT bins in contiguous or frequency-
interleaved configurations. AWGN channel model without NU
and known time lag are assumed. The PU SNR is selected to
reach PD ≥ 0.97 for PFA = 0.1 in all cases.

the PU signal band. The PU SNR was selected in such a way
that at least 0.97 detection probability is reached with 0.1
false alarm probability. Based on this, resulting SNR values
are −9.5 dB, −11 dB, −13 dB, −14.5 dB, −16 dB, −14.5
dB for 32, 64, 128, 256, 512, 1024 FFT bins, respectively.

We can see that the sensitivity of the FD-AC process
depends on the total sensing bandwidth, as expected. Doubling
the sensing bandwidth gives 1.5 dB to 2 dB improvement
in sensitivity. The optimum performance is reached with 512
bins, covering the PU signal band, but not including frequency
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Figure 8: Detection probability of both traditional ED and
proposed FD-AC based sensing in the case of known time
lag without / with 0.5 dB NU and without / with compressed
spectrum sensing under AWGN. The target PFA = 0.1 and
Kcomp = 242.
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Figure 9: Detection probability of both traditional ED and
proposed FD-AC based sensing in the case of unknown time
lag without / with 0.5 dB NU and without / with compressed
spectrum sensing under AWGN. The target PFA = 0.1 and
Kcomp = 242.

bins with noise only. In the case of 1024 bins, the sensitivity
is reduced by about 1.5 dB. We can also observe that the
contiguous and interleaved sensing schemes have quite similar
performance. However, a more detailed and extensive study
about the performance in more irregular interleaved sensing
subcarrier configurations remains as a topic for future study.

Fig. 8 and Fig. 9 demonstrate the detection probabilities
of the FD-AC algorithms with known and unknown time lag
under AWGN, respectively, against the traditional ED as the
reference sensing method. In the two figures, the results are
given both without and with the compressed sensing method,
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Figure 10: Detection probability of both traditional ED and
proposed FD-AC based sensing in the case of unknown time
lag without / with 0.5 dB NU and without / with compressed
spectrum sensing under Indoor channel. The target PFA = 0.1
and Kcomp = 242.
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Figure 11: Detection probability of both traditional ED and
proposed FD-AC based sensing in the case of unknown time
lag without / with 0.5 dB NU and without / with compressed
spectrum sensing under ITU-R Vehicular A channel. The target
PFA = 0.1 and Kcomp = 242.

the latter one with 242 used subcarriers.
The results are given for 0 dB and 0.5 dB NU values, and

the robustness of FD-AC methods can be clearly observed.
Another important observation is that the unknown lag model
has a clearly better sensitivity. The reason for this is that
due to the channel effects and noise, the AC peak may not
be precisely located at the expected location. Even in the
known lag case, there is a need to search for the peak in
the neighborhood of the expected lag, within a few high-rate
sample intervals. The performance vs. complexity tradeoffs
related to this approach remains an interesting topic of future
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Figure 12: Detection probability of both traditional ED and
proposed FD-AC based sensing in the case of unknown time
lag without / with 0.5 dB NU and without / with compressed
spectrum sensing under SUI 1 channel. The target PFA = 0.1
and Kcomp = 242.

research. In the rest of this section, the results are shown for
unknown lag algorithm only.

The proposed methods were also tested in the context of
three different frequency selective channel models namely,
Indoor, International Telecommunication Union (ITU)-R Ve-
hicular A, and Stanford University Interim (SUI)-1 [63], in
order to quantify the effects of practical wireless multipath
channels. The results are shown in Fig. 10 − Fig. 12. The
Indoor channel model has 16 taps and 80 ns RMS delay spread
whereas Vehicular A channel has 6 taps with about 2.5 µs
maximum delay spread. SUI-1 channel model has 3 Ricean
fading taps and 0.9 µs delay spread [63].

Fig. 10 illustrates the corresponding results in case of
the frequency selective Indoor channel model with 0.5 dB
NU. Also under highly frequency selective channels, both
FD-AC with and without the compressed sensing element
exhibit adequate robustness against NU and non-ideal channel
characteristics.

Fig. 11 − Fig. 12 illustrate the corresponding results
in case of the frequency selective ITU-R Vehicular A and
SUI-1 channel models for the case of 0.5 dB NU value. It
is also shown that under different frequency selective chan-
nels, both FD-AC with and without the compressed sensing
element exhibit robustness against NU and non-ideal channel
characteristics.

B. Computational Complexity

Computational complexities of the sensing algorithms are
calculated in terms of the number of real operations that
the methods must perform to complete the decision statis-
tics on the spectrum occupancy. The FD-AC methods need
(M +m∆)K samples for M correlations, and we assume the
same sample complexity for the other methods included in the
comparison. The comparison includes also, as a reference, an

eigenvalue based method, which is well-known as a spectrum
sensing method which is robust to NU [13]. The eigenvalue
detector is based on maximum eigenvalue over minimum
eigenvalue, and it uses the smoothing factor of L = 8 and
overlapping factor of Mover = 1. The used smoothing and
overlap factors result in relatively low complexity, which
slightly compromises the sensing performance.

Table II depicts generic expressions, as well as numerical
values in our example case, for different sensing methods.
In our example case, it is assumed that m∆ = 0, in which
case the FD-AC is obtained from the squared magnitudes of
the subband samples. In FD-AC CSS cases, Kcomp = 242
is assumed. Also, in all our numerical results, the sensing
duration has been fixed to 102400 samples at 20MHz sampling
rate. Based on the different number of bins such as 1024,
512, 256 and 242, sample rate can be considered as 20 MHz,
10 MHz, 5 MHz and 4.73 MHz, respectively. With 102400
samples, the overall computational complexity (number of
real multiplications) of the eigenvalue based algorithm is
3277313, contrary to the 614400 and 772368 counterparts
for the time-domain AC and the proposed FD-AC based
spectrum sensing methods, respectively. Using the real part
of the time-domain autocorrelation would reduce the required
number of multiplications to 4N or 409600 in our example
case. It is noted here that this number of multiplications is
needed for each time lag value when searching for the actual
maximum peak location around the theoretical one obtained
from the OFDM parameters. This would significantly increase
the complexity of time-domain AC with practical multipath
channels, due to the uncertainty of the exact lag value for the
correlation peak.

In time domain implementation, it would be sufficient to
carry out the autocorrelation calculation over the CP length
only, if the spectrum sensing device is synchronized to the PU.
This would in principle reduce the complexity and the noise
in the decision statistic, but such assumption is not realistic in
practical spectrum sensing scenarios.

The proposed FD-AC based sensing method tends to have
slightly higher complexity than the basic time-domain AC
method, but the complexities of both methods are significantly
smaller than those of the eigenvalue based techniques. There-
fore it can be considered an effective sensing method that
can also meet the requirements for adequate co-existence with
efficient spectrum sharing strategies.

V. CONCLUSION

In this contribution, we investigated spectrum sensing / shar-
ing methods which utilize the autocorrelation of the received
signal using sparsity in frequency domain. These techniques
can also be considered as compressed sensing / sharing meth-
ods due to the sparsity properties, which acquires wideband
signals using the sampling rates lower than the Nyquist rate
and detects the spectral opportunities using these compressed
measurements. It was observed that the proposed methods
are able to overcome the problem of NU under both AWGN
and frequency selective channels. The detection performance
was found to be better than that of the traditional energy
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Table II: Computational complexity of traditional and proposed spectrum sensing algorithms.

Spectrum sensing algorithms Complexities

(Real multiplications)

Numerical value

for scenario

Basic Energy Detector 2 N 2 0 4 8 0 0
Eigenvalue Detector 3 34 ( )MLN O M L+ 3 2 7 7 3 1 3

Time-domain ACF based 6 N 6 1 4 4 0 0
Proposed FD-AC CSS with

unknown lag
2 c o m p( 1 ) ( lo g ( ) - 3 ) + 2M K K M K+ 7 7 2 3 6 8

Notes: Complex multiplication assumed to take 4 real multiplications. Squared magnitude takes 2 real

multiplications. Split radix algorithm used for FFT.

detector under both moderate and high NU values. Novel
analytic expressions were also derived for the corresponding
false alarm and detection probabilities that account for the
detrimental effects of frequency selective characteristics. The
offered results were validated extensively through comparisons
with respective computer simulations and were subsequently
employed in providing insights that can be useful in future
design and deployments of CR communication systems and
networks.

Specifically, it was shown that while the proposed FD-AC
based sensing method has comparable complexity with that
of basic time-domain AC method, its complexity is much
smaller than the complexity of eigenvalue based detectors,
which are often considered as the solution for the NU issue.
Most importantly, the proposed approach has great flexibility
for wideband multimode spectrum sensing of OFDM primary
signals, possibly with different bandwidths, FFT sizes, and CP
lengths. It is also applicable for cases where the OFDM signals
are partly overlapped, e.g., secondary transmissions or other
interfering PU transmissions, which is also important for the
robustness of the spectrum sharing scheme. CP-autocorrelation
based sensing methods are applicable only for CP based
primaries, including basic OFDM, OFDM based single carrier
waveforms and multicarrier CDMA. However, since OFDM is
a very popular waveform in communication system develop-
ment, these methods find important applications, e.g., in the
context of TV white-space CR as well as WLANs and various
other systems operating in the industrial, scientific and medical
(ISM) frequency bands. Furthermore, the proposed methods
can be fully combined with subband energy detection based
wideband/multichannel spectrum sensing approaches [3], [5].
A wideband sensing platform could run different sensing
processes in parallel for different frequency channels and
different types of primaries. Finally, their high performance
and relatively low complexity render it capable of providing
sufficient co-existence with highly accurate spectrum sharing
methods.

APPENDIX

If the output of the FFT is sparse, or approximately sparse,
for an output-sensitive algorithm its runtime will depend on ψ,
which is the number of computed large coefficients. Formally,
given a complex vector a, its Fourier transform is â; then it is

required that the algorithm for the output is an approximation
â′ to â, that satisfies the following `2 guarantee:

‖â− â′‖2 ≤ ϕ min︸︷︷︸
ψ-sparse b

‖â− b‖2 (50)

where ϕ is an approximation factor and the minimization
over ψ-sparse signals. It is important that the best ψ-sparse
approximation could be obtained by setting all but the largest
ψ coefficients of â to 0. Such a vector can be represented using
only O(ψ) numbers. Thus, if ψ is small, the output of the
algorithm can be expressed succinctly, and one can consider
that the runtime of an algorithm is sublinear in the signal size
N .
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