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Abstract
Wecarry out a comprehensive computational study on the stability of theDirac cone in artificial
graphene realized in nanopatterned quantumwells. Our real-space approach allows us to vary the size,
shape, and positioning of the quantumdots in the hexagonal lattice.We compare the (noninteracting)
single-particle calculations to density-functional studies within both local-density approximation and
meta-generalized-gradient approximation. Furthermore, the density-functional results are compared
against numerically precise path-integral quantumMonte Carlo calculations. As awhole, our results
indicate high stability of theDirac bands against external parameters, which is reassuring for further
experimental investigations.

1. Introduction

Artificial graphene (AG) is a generic term for physical systems that employ aman-made honeycomb lattice for
charge carriers [1]. AGhas been realized in several systems such as nanopatterned two-dimensional (2D)
electron gas (2DEG) in a semiconductor heterostructure, [2–5] copper surfaces covered bymolecules [6], and in
trapped cold atoms in an optical lattice [7, 8]. Although these systems lackmany important properties of
graphene such as the plasticity, transparency, and strength, the geometry of the lattice itself can be controlled
almost at will. This enables tunable band structures that can be used to design newDiracmaterials.

Following the pioneeringworks of Park and Louie [2] andGibertini et al [3]AG realized on high-mobility
2DEGhas attractedmany further investigations. The quantumdot lattice in aGaAs heterostructure has a
tunable lattice constant from tens to hundreds of nanometers. Hence, the electron–electron (e–e) interactions in
the lattice have an important role that leads to collective excitations according to theMott–Hubbardmodel [4].
In a previous study of some of the present authors [5] it was found that theDirac point is relatively stable against
e–e interactions. However, the general stability of graphene-like properties in nanopatternedAG towards, e.g.,
lattice distortion and the shape of theQDs is still unknown. This is a critical issue for the usability of
semiconductor AG in applications.Moreover, strong e–e interactionsmay enhance the sensitivity to
irregularities in theQD lattice.

In this paperwe show that the band structure of AG realized in nanopatterned 2DEG is very stable with
respect to the shape and size of theQDpotential and to external lattice distortion—at least within experimental
variations. This is surprising in view of, e.g., recent studies onmolecular graphene showing rather complex band
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structures [8]. In conjunctionwith thesefindings we bring the theoreticalmodeling of AG systems into the next
level. In particular, we employ realistic real-spacemodelingwith density-functional theory [9] (DFT) applied
within both the 2D local-density approximation [10] (LDA) and the 2Dmeta-generalized-gradient
approximation [11] (mGGA). These computations are further supplemented by 2Dpath-integralMonte Carlo
(PIMC) simulations that provide uswith numerically exact densities for comparison. ThemGGA results
confirm the existence of theDirac cone in an idealAGpreviously studiedwith tight-binding calculations [3] and
with the LDA [5]. ThemGGA yields a larger gap between the lowest and excited bands in accordance withmany-
body calculations on other graphene-like systems [12–14]. This improvement is due to the better description of
the electronic exchange in ourmGGA, particularly the correct asymptotic behavior and the correct one-particle
limit of the exhange potential [11]. However, in the parameter range corresponding to the transition between a
Dirac system and ametallic state, we report and analyze cases that are problematic for themGGA. In this respect,
there is still the need for an all-aroundDFT functional for correlated 2D systems.Nevertheless, the present study
confirms theDirac properties of AG through accuratemany-electron calculations and suggests that those
properties are robust against several experimental parameters.

2.Numerical framework

Weconsider electrons confined in circularly symmetric GaAs/AlGaAsQDs that are arranged in a hexagonal
(honeycomb) lattice.We use the effectivemass approximationwith thematerial parameters * =m m0.067 0 for
the effectivemass and  = 12.4 0 for the dielectric constant. EachQD is occupiedwith one electron, the
potential depth is =V 0.60 meV, the lattice constant (distance between theQDs) is a=150 nm, and theQD
radiusR and the shape of the potential are varied—see figure 1 and text below.We point out that the lattice
constant a determines the relative strength of e–e interactions as theCoulomb energy scales asµ r1 in contrast
with theµ r1 2 scaling of the kinetic energy. The value a=150 nmchosen here agrees with the experiments of
Gibertini et al [3] and corresponds to a relatively strongly interacting system. It can be expected that forthcoming
experiments aim at reducing the lattice constant [15].

Ourmodel is strictly 2D so that the degrees of freedom in the direction perpendicular to the 2Dplane has
been omitted.However, the e–e interaction is of the Coulomb form, so that wemimic an experimental situation
of a quasi-2D system.Weuse a rectangular 2D gridwith periodic boundary conditions. The rectangular
supercell includes fourQDs, and the relevant pathΓ–M–K–Γ can be extracted by the ‘unfolded’ path as
described and visualized in reference [5].

We perform four types of calculations: (i) independent (noninteracting) particles (IPs), (ii)DFTwith 2D
LDA, (iii)DFTwith 2DmGGA, and (iv)PIMC. In the LDAwe employ the parametrized form for the correlation

Figure 1.Band structure along the pathΓ–M–K–Γ of artificial graphene in the cases of a hard-wall potential (left) and aGaussian-type
soft potential (right). The dot radius is set to =R 52.5 nm = a0.35 with lattice constant a=150 nm. The (red) dashed lines, (blue)
thin solid lines, and (black) thick solid lines show the results from the independent electron (IP) calculations, local-density
approximation (LDA), andmeta-generalized-gradient approximation (mGGA), respectively.
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byAttaccalite et al [10]. In ourmGGA [11]weuse a 2D version of a Becke–Johnson-typemodel [16, 17] for the
exchange potential that produces the set of correct properties such as the asymptotic behavior and the one-
particle limit. For the correlation in ourmGGAweuse the formof the LDA. Both the IP andDFT calculations are
carried outwith theOctopus code, [18–21]where the convergence parameters aremesh spacing and number of
k-points in the irreducible Brillouin zone.

Our 2DPIMC simulations require a larger supercell than theDFT calculations due tominimization of the
finite-size effects: we see that a supercell of eightQDs is already large enough for good accuracy. The fermion
sign problem is dealt with the restricted (orfixed-node) path-integralmethod using free particle nodes [22]. Our
simulations atT=0.1 K together with the Trotter numberM=3200 [23–25] lead to an accurate description of
the ground-state electron density.

The real-space grid spacing is 2.94 nm for IP and LDA, 1.96 nm formGGA. In the k-space we use a
rectangular uniform grid in the irreducible Brillouin zone (rectangleΓ–X–S–Y)with 9×25 k-points for the IP
and LDA calculations andwith 14×40 k-points for themGGA calculations. The convergence threshold for the
Kohn–Sham calculations is an error of the eigenvalues lower than ´ -1.0 10 3 meV.

3. Results

3.1. Shape of the quantumdots
First we examine the effect of the shape of theQDconfinement on the band structure. The confining potential is
given by

( ) [ ( ) ] ( ) ( )a= - - av r V r Rexp even , 1dot 0

whereαdetermines the softness of the potential.We compare theGaussian case with a = 2 to the limit of a
hard-wall potential with a  ¥. The dot radius is set to =R 52.5 nm = a0.35 , and the other parameter values
are given in section 2.

The potential profiles and the resulting band structures are shown infigure 1. The (red) dashed lines, (blue)
thin solid lines, and (black) thick solid lines show the IP, LDA, andmGGA results, respectively.Wefirst notice
that the band structures of the hard-wall (a = ¥) and soft-wall (a = 2)AG are astonishingly similar. Both
cases show a distinctiveDirac point, regardless of the type of calculation (IP, LDA, ormGGA). In the hard-wall
case, the IP and LDA results are consistent with previous results in [5]. In the soft-wall case, the higher bands are
slightly pushed to lower energies. This is expected from the fact that theGaussian potential spreads out on the
edge of theQD, thus increasing the density of states (DOSs).

It can be deduced from figure 1 that with the chosen parameters the e–e interactions play a ratherminor role
in ground-state properties. Interestingly, LDA andmGGAhave opposite effects in comparisonwith the
noninteracting IP result. In themGGA—expecting to represent here themost accurate calculation—the higher
band is shifted up in energy. A qualitative similar correction to the LDAhas been found inGWcalculations for
the band structure ofMoS2 [12] and graphane [13, 14]. Nevertheless, as awhole our examination shows that the
actual shape of the confining potential does not play amajor role for the ground-state properties of AG.On the
basis of the vast literature forGaAsQDs it can be expected that the confinement at the bottomof theQD is close
to harmonic, [26]which is the case also for aGaussianmodel considered here.

3.2. Size of the quantumdots
Nextwe set a = 8 in equation (1) corresponding to intermediate softness of theQD confinement in
comparisonwith the two potentials in the previous section (figure 2). The lattice constant a is also kept constant,
but the radiusR of the potential is changed.We focus here on the regime, where theQDs become too small for
confining electrons. The resulting delocalization of the electronic density is then expected to lead tometallic
behavior.

Starting from the IP picture, the left panel offigure 2 shows that the systembecomesmetallic at
= ¼R a 0.1 0.2. Due to the noninteracting picture, this result applies to any lattice constant a. In the

interacting picture, however, a determines the relative strength of e–e interactions (see section 2). Thus, the
transition point from a graphene-like band structure to ametal in terms ofR/a depends on a.

According to the two rightmost panels offigure 2 there is amajor difference between LDA andmGGA for the
metallic transition: in the former case this occurs at ~R a 0.2, whereas themGGAdoes not show any
transition in the examined range. At small values forR/a the LDAdensity is spread rather homogeneously in the
system,whereas themGGApreserves the density localization and thus theDirac cone.

To assess the accuracy of LDAormGGA, especially at small values ofR/awhere the differences are
considerable, we benchmark the results against PIMC calculations. Figure 3 shows the electron densities with

=R a 0.2 (a) and =R a 0.4 (b), while the lattice constant is kept at a=150 nm.Herewe show a one-
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dimensional cut of the full 2D density for better visibility of the differences; the inset infigure 3(a) shows the 1D
cut alongwhich the density is plotted. The trends are opposite in the two cases: with small QD radius the PIMC
density (thick solid line) is rather homogeneously distributed in the system and onlyminor localization at the
dots is visible. In contrast, both LDA (dashed–dotted line) and especiallymGGA (thin solid line) showmuch
stronger localization. In the case of =R a 0.4, however, PIMC shows the strongest localization andmGGA is
close, whereas in the LDA the localization is slightly weaker.

On the basis of earlier investigations [11] the 2DmGGAused here is expected to bemore accurate than the
LDA.As shown infigure 3 this assumption holds only in the strong-localization regimewith relative large values
ofR/a (0.3), which in fact corresponds to the experimental situation in [3]. The discrepancy at small QD radii
is due to the exchange potential vx: the overallmGGA exchange potential is deeper and broader than that of the
LDA, leading to pronounced localization of the density. Despite the fact that the vx in ourmGGA is relatively
close to the exact exchange potential with, e.g., the- r1 asymptotic behavior, we assume that themissing
correlation beyond the LDA is problematic in this regime. This calls for further examinations and developments
ofmutually compatible 2D exchange and correlation functionals withinDFT.

Figure 2. Lowest bands along the pathΓ–M–K–Γ in artificial graphenewith a = 8 and varying radiusR in equation (1)with respect
to thefixed lattice constant a=150 nm. The columns from left to right show the results from the independent electron (IP)
calculations, local-density approximation (LDA), andmeta-generalized-gradient approximation (mGGA), respectively.

Figure 3.Electron densities calculatedwith path-integralMonte Carlo (PIMC, thick solid lines) in comparisonwith the local-density
approximation (LDA, dashed–dotted lines), and themeta-generalized-gradient approximation (mGGA, thin solid lines). The inset in
(a) shows the line alongwhich the density is plotted in the lattice. The quantum-dot radiuswith respect to the lattice constant is set to
(a) =R a 0.2 and (b) =R a 0.4, while a=150 nm. The smaller radius pushes the bands to higher energies, which eventually leads
to delocalization. This is pronounced in the PIMC result in (a).
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3.3.Displacement of quantumdots
Finally, we examine the effect ofQD lattice distortion on theDOSs.We apply randomperturbations to theQD
positions (displacements) in the lattice within amagnitude of 0%–2% in the supercell. The angles of the
displacements are randomly set within 0°–360°. Figure 4(a) shows the IP, LDA, andmGGA results for theDOS
calculatedwith a Lorentzian broadening of g = 0.006meV. The results with perturbation (gray lines) display a
sumof 25 calculationswith random sets of displacements. In all cases, the results of the perturbed calculations
are very close to the unperturbed situation: themaximum shifts of the order of 10−3meV, andwe alwaysfind a
distinctive ‘Dirac valley’ surrounded by two peaks in theDOS, where the onewith a higher energy has a longer
tail [3, 5, 27, 28]. This demonstrates the high stability of AG against displacements in theQD lattice, which is
encouraging for further experimental studies exploitingDirac physics in nanopatternedAG. Inmolecular
graphene [6, 8]—representing an alternative experimental approach—this challenge of positioning is not
present due to the precise adsorption on an atomic level.

In the above examination, the displacements are also periodic across the supercells, each consisting of four
QDs. This raises the questionwhether the apparent stability of theDOS infigure 4(a) results from the periodic
calculation. Therefore, infigure 4(b)we compare themGGA results for theDOSusing the original supercell of
fourQDs against using doubly sized supercells of eightQDs. The perturbations to all theQDs are random. The
agreement between the results confirm that the periodic displacements do not considerably affect the
examination of the stability.

4. Conclusions

In summary, we have computationally examined the stability of the graphene-like band structure and especially
theDirac cone in AG formed in the 2D electron gas in a nanopatterned quantumwell.We have employed several
computationalmethodswithin a realistic real-spacemodel of the system: the IP approximation, DFTwithin the
2DLDA, the 2DmGGA, and a PIMCmethod.We have used the experimental parameter valueswith a large
lattice constant (150 nm), so that the e–e interactions are relatively strong.

We have found that theDirac cone is very stable against the shape and size of the confining potential for the
quantumdots, as well as against variations in the lattice geometry. In themGGA the higher bands are shifted
down in energy in accordancewith previous studies comparing the LDA andmore accurate calculations.
Generally, the softening of the potential has very little effect, but if the radius of the quantumdots is considerably

Figure 4. (a)Density of states (number of states permeV) in randomly perturbed (see text) and unperturbed artificial graphene. The
gray lines show the overlap of 25 calculationswith varying randomquantum-dot displacements.Hereweuse a hard-wall confinement,
and the other parameters are the same as infigure 1. (b)Density of states formGGA results with the same type of perturbation butwith
different supercells.
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decreasedwefind a transition to ametallic state as the electron density is spread outside the dots. In this regime,
mGGA shows over-localization in comparisonwith the PIMC, although at larger radiimGGA ismore accurate
than the LDA.

Regarding the lattice variation, we have found that the displacement of quantumdots in the lattice has only a
minor effect on the band structure. Therefore, itmight be expected that there is a rather large error threshold in
nanopatterining experiments to observe and exploit Dirac physics in AG.However, further examinations are
needed to systematically study the effects of the fabrication and actual nanopatterining—including size
variations of the quantumdots and also smaller lattice constants that are becoming realizable.
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