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Abstract:  A two-beam second-harmonic generation technique is developed 
to calibrate the magnitude of the second-order nonlinear optical 
susceptibility components of surface and bulk (multipolar origin) of 
isotropic materials. The values obtained for fused silica calibrated against 
χXXX of crystalline quartz are χ || || ⊥ = 7.9(4), χ⊥ || ||+γ = 3.8(4), χ⊥ ⊥ ⊥+γ = 59(4), 
and δ’ = 7.8(4) in units of 10-22 m2/V. Similar values are obtained for BK7 
glass. An alternative way of calibration against χXYZ of quartz is 
demonstrated. The technique could also be extended to characterize the 
susceptibility tensor of crystals as a convenient alternative to the Maker-
fringe technique. 
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Second-order nonlinear optical effects are useful tools for surface, thin film and interface 
studies because of their inherent surface specificity and the possibility to access buried 
interfaces [1, 2]. This is because, within the electric-dipole approximation of the light-matter 
interaction, second-order effects are forbidden in the bulk of centrosymmetric materials but 
allowed at surfaces, where the centrosymmetry is broken. However, second-order effects 
become allowed in centrosymmetric bulk materials due to higher multipole (magnetic-dipole 
and electric-quadrupole) effects [1, 3]. Due to the longer interaction zone in the bulk, the 
multipolar contributions can lead to nonlinear signals that are comparable to those from the 
surface contributions. Moreover, part of the multipolar bulk contribution cannot be 
distinguished from the surface effects [4]. It is therefore important for thin film and surface 
studies based on second-order techniques to know the magnitudes of all the measurable 
optical parameters of the substrate. Very few studies exist regarding the calibration of surface 
nonlinearities and even fewer regarding the multipolar bulk contributions [5, 6]. 

In a previous paper [7], we reported the determination of the relative values of the tensor 
components of the effective dipolar surface nonlinearity and the separable multipolar bulk 
nonlinearity of BK7 glass. In this paper, we develop a method to calibrate their absolute 
values against a well known reference material. Our method is based on two-beam second-
harmonic generation (SHG), which is needed to access the multipolar bulk contributions, but 
also offers a simplified way for calibration compared to the traditional techniques. We present 
the calibrated results for BK7 glass and fused silica (amorphous SiO2) samples using quartz 
(crystalline SiO2) as reference. Both glasses are used as common substrates for thin films.  

Traditionally, the calibration of the second-harmonic (SH) nonlinear susceptibility has 
been based on the Maker-fringe method [8]. In this method, the thickness of the nonlinear 
material traversed by light is varied by tilting the sample or by translating a wedge-shaped 
sample. This variation produces a pattern of interference maxima and minima in the intensity 
of SHG, which originate from the difference in the phase velocities of the fundamental and 
SH wavelengths. Yet, this method can lead to large uncertainties in the calibrated values 
because of multiple reflections between the surfaces of the samples [9, 10]. One method that 
avoids the fringe analysis makes use of samples with a large wedge to separate the free and 
driven SH waves [11, 12]. However, in both cases, the use of only one fundamental beam 
makes the technique insensitive to some of the multipolar bulk contributions as explained 
below.  The two-beam method used in the present work allows a simple calibration of the bulk 
signals provided that the sample thickness is sufficient and also eliminates the need for fringe 
analysis. In the present paper, we use the new method to calibrate the surface and multipolar 
bulk SHG of isotropic glass samples. However, it is clear that the technique could also be 
adapted to characterize dipole-allowed bulk SHG responses of noncentrosymmetric crystals 
and multipolar bulk SHG of centrosymmetric crystals. The use of two fundamental beams 
whose polarizations can be controlled independently could be convenient in the tensorial 
characterization of crystals with low symmetry.  

Two-beam SHG has the property that, even though it has bulk origin, the signal vanishes 
when the overlap of the two beams is completely located inside the bulk (see Fig. 1). On the 
contrary, the signal has a maximum when the overlap is centered at one of the surfaces. This 
surprising behavior has its origin in phase-matching issues [13]. Thus, for a sample with 
thickness much less than the overlap length, Maker-fringe modulation of the SH intensity 
would occur as the sample thickness is varied. On the contrary, when the sample thickness 
extends beyond the end of the overlap, no modulation occurs. In our experiments, we measure 
the value of the SHG from glass and quartz when the overlap is centered at the first surface of 
thick samples: the first half of the overlap is then located in air while the second half is inside 
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the material. The intensity of the SH signal in this situation can be shown to correspond to half 
of the intensity maximum in a Maker-fringe experiment [13]. 

The SH response of achiral isotropic surfaces like those of glass (C∞v symmetry) is 
described by a susceptibility tensor with three independent components: χ⊥ � � , χ ⊥� �  and 

χ⊥ ⊥ ⊥ where ┴ denotes the surface normal and ║ denotes any direction parallel to the surface 

[3]. This tensor includes both dipolar and multipolar contributions arising from the structural 
discontinuity that breaks the centrosymmetry and from the strong gradients in the fields and 
the material at the surface, respectively [3, 14, 15]. On the other hand, the multipolar response 
of the isotropic bulk is described by three parameters [1, 4]: β, γ, and δ’, which can be 
expressed as combinations of electric-quadrupole and magnetic-dipole tensors [16]. The SH 
polarization of the bulk is then [ ] [ ] [ ]( )  ( ) ( )  ( ) ( ) ( ) ( )bulk 'β γ δ= ∇ ⋅ + ∇ ⋅ + ⋅∇P r e r e r e r e r e r e r , 

where e(r) is the fundamental field. The first term vanishes for homogeneous media and the 
second term behaves like the surface contribution so that the measurable quantities are the 
combinations χ γ⊥ ⊥ ⊥ +  and χ γ⊥ +� � . Thus, the only bulk parameter that can be separated 

form the surface is δ’. The term with δ’ vanishes when the fundamental field is a single plane 
wave. However, it can be determined by detecting the SH signal generated jointly by two non-
collinear beams at the fundamental frequency. 

Fig. 1. (a). Geometry of the fundamental (lower-case letters) and SH (upper-case letters) fields 
inside the nonlinear material (glass or quartz) and orientation of the crystallographic axes for 
the case of quartz. (b). SH intensity as a function of the relative position of the overlap of the 
two fundamental beams and the surface of the nonlinear material. The maximum of the peak 
corresponds to the overlap centered at one of the surfaces. 

 
In the following, we will give expressions for the SH signals from glass and crystalline 

quartz in an experiment where the overlap of the two fundamental beams is centered at the 
first surface of the sample and the sample extends beyond the end of the overlap. To do this, 
we consider the geometry of Fig. 1. 

The s and p components of the SHG field from the glass (surface and multipolar bulk 
contributions) are given in transmission (lower signs) and in reflection (upper signs) by [7] 
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where a and b are the amplitudes of the two fundamental beams (with frequency ω), 
( (cos cos ) cos )2 /a bk n N cθ θ Θ ω±Δ = + ±  are phase mismatches and n and N the refractive 

indices of glass at the fundamental and SH frequencies, respectively. The propagation angle Θ 
of the SH beams is given by the momentum conservation along the surface: 

sin (sin sin ) / 2a bN nΘ θ θ= + . In all these expressions, the fields and angles are considered 
inside the material. To relate the external and internal quantities in a real experiment, it is 
necessary to use Snell’s law and the appropriate Fresnel coefficients. In our calculations of the 
SHG detected in transmission we also included the SHG that is generated backwards and then 
reflected by the front surface of the sample. 

The SHG from crystalline quartz arises mainly from the dipolar bulk contribution. The 
quartz crystal has D3 symmetry and its second-order susceptibility has four independent 
components: XXX XYY YYX YXYχ χ χ χ= − = − = − , XYZ YXZχ χ= − , XZY YZXχ χ= −  and ZXY ZYXχ χ= − . 
In the case of SHG, the second and third are the same and the fourth is zero. The nonzero 
values are 0.80 pm/VXXXχ =  and 0.017 pm/VXYZχ =  [17]. 

To find the general functional form of the SH signals from quartz, we first assume that its 
birefringence is negligible. In that case, the SH field from Y-cut quartz oriented with the Z 
axis in the s direction (Fig. 1) is given by the expression 
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The index of refraction for the SH light (always p polarized) is the ordinary index of quartz 
No(532 nm) = 1.5469. However, the index for the fundamental wavelength depends on the 
polarization. For p polarization it will be the ordinary index no(1064 nm) = 1.5341 while for s 
polarization it will be the extraordinary index ne(1064 nm) = 1.5428. Thus, it is necessary to 
consider different values of Δk± and of the angles inside the material in Eq. (2) and also 
different values of the Fresnel coefficients depending on the fundamental beam polarizations. 

Note that the SH signals from two-beam SHG can always be expressed in the generic form 
Ei = fijk aj bk , where i, j and k are s or p and we assume summation over repeated indices. The 
coefficients fijk for glass and quartz can be obtained from Eqs. (1) and (2), respectively. To 
calibrate the glass parameters against XXXχ  of quartz we choose p-polarized fundamental 
beams and detect p-polarized SHG. In this way, we are able to measure the signals from both 
glass and quartz without the need to change the polarizations. It also makes the analysis 
simpler because only the ordinary refractive index of quartz is used. If the intensity of the 
fundamental beams is kept constant, the ratio of the SHG intensity between the glass sample 

and the quartz reference when all the fields are p polarized is 
2 2glass quartz glass quartz

SHG SHG ppp pppI I f f= . 

The ratio of SHG intensity is measured experimentally by changing the glass sample to the 
quartz reference and using neutral density filters to keep the photomultiplier tube used for the 
detection in the range of linear response. The value of quartz

pppf  is calculated from Eq. (2) and 

the tabulated susceptibility of quartz. With all this we obtain a calibrated value of glass
pppf .  

The values of the tensor components of glass are then calculated by performing a 
polarization analysis of the glass sample [7]. We keep the polarization of one of the 
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fundamental beams always linear while we modulate the polarization of the other beam, 
initially p, with a rotating quarter-wave plate. The SHG generated by the two beams is 
detected after passing through a polarizer oriented at different angles. We use four 
measurements of SHG vs. quarter-wave plate angle for various combinations of polarizations 
(s, p or 45°) of the linearly polarized fundamental beam and the SH beam. The fitting of three 
such measurements already yields the relative values of glass

pppf , glass
pssf , glass

sspf  and glass
spsf . The 

fourth measurement can be used as a check of the experimental setup or to find the best 
simultaneous fit of the four measurements for more accurate values. From the calibrated 
values of all the glass

ijkf  we obtain the susceptibility tensor components using Eq. (1). 

In the experiments we used a diode-pumped, Q-switched Nd:YAG laser (1064 nm, 40 mJ, 
8 ns, 100 Hz). For the fused silica sample, we used incident angles θa = 30° (linearly polarized 
beam) and θb = 61° (quarter-wave plate beam). By fitting the four polarization measurements 
simultaneously with the theoretical expressions (Fig. 2) we obtained the relative values of all 
the glass

ijkf and their absolute values from the calibrated glass
pppf . The tensor components derived 

from them are shown in Table I. 

Fig. 2. Measured intensity of SHG from fused silica as a function of the angle of the quarter-
wave plate in one fundamental beam for the combinations of the polarization of the other 
fundamental beam / detected SHG: (circles) 45°/90°, (squares) 45°/0°, (up triangles) 0°/45°, 
and (down triangles) 90°/45°. The solid lines correspond to fits with the theoretical model. 

 
A second, alternative scheme allows calibrating directly the δ’ parameter of glass against 

XYZχ  of quartz. To make the measurement in glass depend uniquely on the bulk δ’ parameter, 
we set one beam (a) to have p polarization and to be at normal incidence with respect to the 
surface (θa = 0) and the other beam (b) to have s polarization. Eq. (1) then becomes 
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On the other hand, the SHG signal from quartz with the Z axis in the s direction is only 
sensitive to XYZχ  and is given, for both X- and Y-cut quartz by the expression 
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Now it is necessary to use the extraordinary refractive index of quartz at the fundamental 
wavelength to calculate the angle and transmission coefficient of beam b. The expression for 
the phase mismatch is also slightly affected: ( cos cos cos )2 /o a e b ok n n N cθ θ Θ ω±Δ = + ±  as 
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quartz is very sensitive to the alignment of the (s) polarization of beam b and the Z axis of 
quartz. Any small angle between the two directions will introduce a contribution from the 
much larger XXXχ  component of quartz and result in a higher SHG signal.  

Using an angle θb = -31° and X-cut quartz as the reference we obtained the δ’ value shown 
in Table I for fused silica and BK7 glass. We calculated the rest of the tensor components 
using the relative values obtained in the polarization analysis described above for the fused 
silica and the one made previously [7] for BK7. The polarization of beam b and the quartz 
crystal were aligned with a precision better than 15’ by minimizing the SH signal to avoid any 
contribution from XXXχ . However, we still detected about 30% of the SH intensity having s 
polarization while it should have been zero as seen from Eq. (4). This is presently a drawback 
of this method and can lead to errors in the experimentally determined values. The origin of 
the problem is unclear, but it may be associated with small polarization rotation in this 
geometry because of the optical activity of quartz or with a multipolar response of quartz. 

Table I. SHG susceptibility tensor components for fused silica and BK7 glass in units of 10-22 m2/V  

 Fused silica BK7 

n (1064 nm) 1.4497 1.507 

N (532 nm) 1.4608 1.519 

 Cal. with XXXχ  Cal. with XYZχ  Cal. with XYZχ  

χ ⊥� �  7.9 ± 0.4 12.1 ± 0.7 14.6 ± 0.8 

χ γ⊥ +� �  3.8 ± 0.4 5.8 ± 0.6 7 ± 2 

χ γ⊥ ⊥ ⊥ +  59 ± 4 90 ± 5 93 ± 14 

'δ  7.8 ± 0.4 12.0 ± 0.7  14.7 ± 0.8 

 
The error limits in Table I were calculated from the uncertainties in data fitting and 

conservative uncertainties of 1° in the incident angles and 5% in the transmittance of the 
neutral density filters. The difference between the two methods, clearly larger than the error 
limits, could be related to the above drawback of XYZχ  calibration. However, recent work [18] 

suggests that the relative values of XXXχ  and XYZχ  in literature [17] could also be imprecise. 
Note that the absolute and relative values obtained for the two types of glass are very 

similar. This suggests that the second-harmonic response has the same origin in both glasses 
(see discussion in Ref. [7]) and is little affected by the additives present in BK7. 

Compared to the values reported for crystalline silicon surfaces [5], our results for the 
fused silica surface are 2 orders of magnitude smaller for χ γ⊥ +� �  and 3 orders smaller for 

χ ⊥� �  and χ γ⊥ ⊥ ⊥ + . The value of the bulk parameter ζ that appears in cubic crystals is also 3 

orders of magnitude larger than the δ’ of fused silica. The large difference in the magnitudes 
can be understood by the resonant conditions used in the crystalline silicon measurements and 
the non-resonant conditions in our fused silica measurements. In addition, Wei, et al.,[6] have 
measured the sum-frequency-generation surface susceptibility of an octadecyltrichlorosilane 
monolayer on a fused silica substrate obtaining nonresonant values of the substrate effective 
susceptibility on the order of 10-22 m2/V, very close to the ones reported. 

To summarize, we have developed a technique based on two-beam SHG for the calibration 
of the second-order response of bulk materials including multipolar contributions. We used it 
to determine the surface and bulk SH susceptibility components of two transparent glasses. 
The method allows calibrating the susceptibilities of any centrosymmetric material against 
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quartz. It could also be extended to calibrate bulk dipolar responses or measure in reflection in 
absorbing materials. 
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