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Abstract: We present the frequency-domain boundary element formula-
tion for solving surface second-harmonic generation from nanoparticles of
virtually arbitrary shape and material. We use the Rao-Wilton-Glisson basis
functions and Galerkin’s testing, which leads to very accurate solutions
for both near and far fields. This is verified by a comparison to a solution
obtained via multipole expansion for the case of a spherical particle. The
frequency-domain formulation allows the use of experimentally measured
linear and nonlinear material parameters or the use of parameters obtained
using ab-initio principles. As an example, the method is applied to a non-
centrosymmetric L-shaped gold nanoparticle to illustrate the formation of
surface nonlinear polarization and the second-harmonic radiation properties
of the particle. This method provides a theoretically well-founded approach
for modelling nonlinear optical phenomena in nanoparticles.
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1. Introduction

Second-harmonic generation (SHG) is a nonlinear optical phenomenon, in which a field fre-
quency component oscillating at double the frequency of the exciting field is generated. In the
electric dipole approximation of material response, SHG vanishes in the bulk of materials with
inversion symmetry [1]. At the interface, this symmetry is broken, which gives rise to surface
SHG, which is very sensitive tool to probe surfaces.

Bulk SHG is allowed in centrosymmetric media if magnetic dipole and electric quadrupole
responses are considered. The surface and bulk contributions to SHG are not fully separable in
the sense that part of the bulk response behaves as the surface contribution [2]. This inseparable
contribution can be included in the surface response, which is then described by an effective
surface susceptibility. In general the surface and bulk responses of centrosymmetric media can
be of similar magnitude. However, theoretical considerations estimate that for materials with
high permittivity, such as metals, the surface contribution can be an order of magnitude greater
than bulk contribution [3]. Also, experimental measurements suggest that the effective surface
suceptibility is sufficient to describe the total SHG from gold structures [4].

The development of nanofabrication processes has enabled the study of nanoscale structures
and their optical properties. From subwavelength structures, it is possible to construct meta-
materials with tailored optical properties not found in nature. These properties depend on the
size, shape and material of the particles, the properties of the surrounding medium [5] and the
possible array structure [6]. Metal nanostructures exhibit plasmon resonances, which result in
high local fields near particle surfaces. This can further amplify any nonlinear processes. Be-
cause SHG is sensitive to inversion symmetry, the observable second-harmonic (SH) far field
also depends on the symmetry properties of the particles and the particle array.

Linear scattering problems of plasmonic nanoparticles have been solved numerically by a
variety of methods including the Finite-Difference Time-Domain method, the Finite-Element
Method, the Discrete Dipole Approximation, the Fourier Modal Method, the Volume Integral
Method and the Surface Integral Method/Boundary Element Method. For many of these meth-
ods, problems arise at resonant conditions, as they make the problem sensitive and cause rapid
spatial variations of fields, which requires careful discretization. As the linear plasmonic scat-
tering problems can already be problematic, solving nonlinear plasmonic problems has been
restricted to special cases.

Solving SHG in multilayer planar geometries is well-established as it can be done essentially
in closed form [7]. Several numerical methods for modelling SHG and other nonlinear phe-
nomena in nanoparticles of different geometries have been proposed. SHG and sum-frequency
generation have been studied for particles of, in some sense, arbitrary shape by assuming van-
ishing or low refractive index contrast between the particle and the surrounding medium [8, 9].
In these approaches, the nonlinear scattering amplitude is deduced indirectly by employing
the Lorentz reciprocity theorem. This theorem has also been applied to SHG from spheres
of arbitrary shape and material [10]. SHG from spherical particles has also been modelled
directly by multipole expansion of the nonlinear sources both for small and arbitrary size pa-
rameters [11–13]. SHG from 2-D cylindrical structures has been studied for time-harmonic and
broad-band pulse excitation by employing the multiple scattering matrix method [14–16]. The
Rayleigh equation method has been used for studying SHG from interfaces with translation
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or rotation symmetrical defects [17, 18]. Further, SHG and higher harmonic generation from
layered periodic structures has been modelled by using the Fourier Modal Method (or Rigorous
Coupled-Wave Theory) [19–21].

The aforementioned methods all either approximate the linear optical response or are based
on a field expansion suitable to a very restricted class of geometries. There have been attempts
to model SHG from arbitrarily shaped 3-D particles by employing numerical schemes directly
to partial differential equations. These include the Finite-Difference Time-Domain method [22,
23] and the Finite Element Method [24]. In these methods one resorts to artificial absorbing
boundaries to simulate an unbounded domain.

Although modelling nonlinear electromagnetic phenomena usually requires time-domain
formulations, these present one significant drawback. They lead to cumbersome descriptions
of the material dispersion and one is required to use simplified dispersion models to perform
response convolutions. Thus it is difficult to use measured material parameters directly. Similar
drawback applies to modelling the nonlinear response as one needs to use full time-domain
models and ab-initio parameters even though only time-harmonic responses are often of inter-
est. In most practical cases harmonic generation can be decomposed into coupled linear prob-
lems, so that frequency-domain methods can be used and thus measured material parameters
can be directly utilized.

Recently, frequency-domain integral operator methods have gained popularity in the study
of the linear response of nanoparticles. Depending on the electromagnetic properties of the
media, these can be formulated as volume integral or surface integral methods. The finite-
dimensional form of surface integral operator based scattering problems is usually referred to
as the Boundary Element Method (BEM) or Surface Integral Equation method. BEM has been
used for solving scattering from dielectric and ideally conducting bodies for a long time [25],
but recently it has been applied also to scattering by plasmonic nanostructures [26–31].

The Volume Integral Method has been used for modelling SHG in 2-D nanostructures
[32,33]. For the case of piece-wise homogeneous media it is possible to utilize BEM, where the
unknowns of the problem are defined entirely on a compact boundary surface. This approach
allows a natural introduction of surface nonlinear sources. Because in BEM only the fields on
a surface need to be discretized, it is more scalable than volume element based methods. In
certain formulations of BEM, the solution is not entirely unique, but can contain an unphys-
ical contribution related to an isolated cavity resonator problem defined in the particle. This
can happen especially near resonances in the physical solution and this can lead to instability.
The Poggio-Miller-Chang-Harrington-Wu (PMCHW) formulation of BEM suppresses the un-
physical solutions and thus guarantees stability at resonant conditions, which makes it ideal for
plasmonic structures. The plasmon resonances are non-singular due to losses in metals. Integral
operator based formulation also allows the use of arbitrary excitation sources, such as focused
beams, which are important in the nonlinear microscopy of nanostructures.

In this work, we develop a BEM formulation for solving the surface SHG problem in lossy
dielectric particles of virtually arbitrary shape. The formulation builds upon the undepleted-
pump approximation, which allows the SH fields to be solved in three steps: 1) Solve a lin-
ear scattering problem at the fundamental frequency. 2) Determine the locally-varying source
polarization at the second-harmonic frequency from the fundamental fields. 3) Solve a linear
scattering problem at the SH frequency by using the polarization as a source. This treatment is
valid in the case of low SHG conversion efficiency, which is the usual case for nanoparticles as
verified by measurements. Note that although the problems are linear, as a whole they model
a nonlinear phenomenon. The formulation allows an arbitrary excitation source, e.g., a plane-
wave, focused Gaussian beam or an oscillating dipole. An advantage over reciprocity based
approach is that the whole radiation pattern is obtained by solving a single scattering problem
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Fig. 1. (a) Solution domains of the second-harmonic scattering problem and the interface
S, over which the nonlinear source is defined. (b) RWG-basis function. Arrows indicate
surface current density. (c) Icosahedral triangle mesh. (d) Triangular mesh of the L-shaped
particle cut by a symmetry plane.

and also the SH near fields can be obtained. The integral operator formulation of the problem
is developed in Section 2. We then present a finite-dimensional approximate representation in
Section 3. For validation purposes, we also develop a multipole solution in Section 4, so that
we may test our BEM method for the case of a spherical particle. In Section 5 we bring all this
together and show comparison between BEM results and the multipole method and characterize
the SH radiation properties of an L-shaped particle. We discuss the properties of the developed
method in Section 6 and conclude in Section 7 with reference to future work.

2. Problem statement and integral operators

The solution domain of our SH scattering problem is illustrated in Fig. 1(a). The domain of
the electric field E and magnetic field H is R

3 and it is divided into an unbounded exterior
domain V1 and a compact interior domain V2. The compact parts of the domain boundaries are
denoted ∂Vi and they are oriented such, that their respective normal vectors ni point out of Vi.
The surface of the scatterer is denoted by S and it is assumed to be piece-wise smooth and
oriented with surface normal n pointing into V1. The linear electromagnetic properties of the
domains are characterized by the permittivity εi ∈C and permeability μi ∈R, which also define
the wave impedance ηi = (μi/εi)

1/2.
The SHG problem involves fields oscillating at two different frequencies: the fundamental

fields ei and hi at frequency ω and the SH fields Ei and Hi at frequency Ω = 2ω with i = 1,2
denoting the domains. We assume that the surface SH sources may be described in terms of
a surface polarization distribution defined as PS = ε0χ(2) : e2e2 over the surface S of the par-
ticle [3]. Of special interest are locally isotropic surfaces i.e. surfaces with local C∞ν symme-
try, so that the effective susceptibility tensor χ(2) has only seven non-vanishing components:

χ(2)
nnn,χ

(2)
nss = χ(2)

ntt ,χ
(2)
ssn = χ(2)

sns = χ(2)
ttn = χ(2)

tnt , where n refers to local normal and s, t refer to the
two mutually orthogonal tangent vectors.

Our formulation builds upon the undepleted-pump approximation, where the SH fields do
not couple back to the fundamental field. This is justified by the fact that the measured SH
signals are always orders of magnitude weaker than the source at the fundamental frequency.
The problems at both frequencies are then linear and we can first solve the fundamental fields
and then calculate the polarization PS, which acts as a source for the SH fields.

The time-dependence of harmonic fields is taken to be exp(−iωt). The fundamental fields
in the domains Vi satisfy the Helmholtz equation ∇×∇× f− ki(ω)2f = 0, where ki(ω)2 =
ω2εi(ω)μi(ω) and f ∈ {e,h}. The expressions for the SH fields are the same with substitutions
e → E, h → H and ω → Ω. In the SH problem, the surface polarization implies the following
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interface conditions over S for tangential components of the SH fields [34]:

(E1 −E2)tan =− 1
ε ′

∇SPS
n , (1)

(H1 −H2)tan =−iΩPS ×n, (2)

where PS
n = n ·PS and ε ′ is called the selvedge region permittivity [35]. This model assumes that

the medium in the infinitely thin layer between ∂V1 and ∂V2 can be modelled macroscopically.
In practice it may not be possible to determine this permittivity and one needs to resort to ad
hoc values. The problems of ε ′ are not in the scope of this work.

By assuming that the media in domains Vi are homogeneous, we may express the fields at
any point by specifying the fields over the compact domain boundaries ∂Vi. This is governed
by the Stratton-Chu equations [36]. To express the equations in our particular case, we define
the Green’s function Gl(r,r′) = exp(iklR)/(4πR) with R = ‖r−r′‖2 and the following integro-
differential linear operators:

Dlf(r) = iΩμl

∫
∂Vl

Gl(r,r
′)f(r′)dS′ − 1

iΩεl
∇
∫

∂Vl

Gl(r,r
′)∇′ · f(r′)dS′, (3)

Klf(r) =
∫

∂Vl

[∇′Gl(r,r
′)]× f(r′)dS′. (4)

The fields in Vi can now be expressed as

Ei =−Dini ×Hi −KiEi ×ni, (5)

Hi = Kini ×Hi −
1

η2
i

DiEi ×ni. (6)

Here the Silver-Müller radiation conditions are imposed on the fields in V1 so that the fields
represent purely outgoing waves [37]. The nonlinear source is not present in the integrals,
because the source is introduced only in the interface conditions in Eqs. (1) and (2) and does
not affect the representation of the fields in V1 and V2.

It is customary to introduce the equivalent surface current densities, which are defined as
JS

i = (−ni)×Hi and MS
i = Ei × (−ni). Unlike in the linear problem, we now have four surface

current densities to solve for due to the discontinuities in the tangential fields on S.
We take the limit where the boundaries ∂Vi approach S and enforce the interface conditions.

By using the above representations of the fields, we obtain the infinite-dimensional problem:
Given PS, seek JS

i ,M
S
i : S → C

3, such that Eqs.

(D1JS
1 +K1MS

1 −D2JS
2 −K2MS

2)tan =− 1
ε ′

∇SPS
n , (7)

(−K1JS
1 +

1

η2
1

D1MS
1 +K2JS

2 −
1

η2
2

D2MS
2)tan =−iΩPS ×n (8)

JS
1 +JS

2 =−iΩPS
tan, (9)

MS
1 +MS

2 =
1
ε ′

n×∇SPS
n (10)

hold. Unfortunately, solving this problem in closed form is impossible for anything but the
simplest of surfaces S. Note that we could substitute e.g. JS

2 and MS
2 from the Eqs. (9) and (10)

into Eqs. (7) and (8), but this would result in numerically cumbersome integrals.
A similar formulation for the fundamental fields can be obtained by setting PS = 0 and adding

the tangential components of the incident fields to the right-hand-side of Eqs. (5) and (6) for
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V1. This leads to the traditional formulation with only two unknown surface current densities
as shown in e.g. [29]. Denoting the current densities in this case with lower case letters, it
follows that j1 = −j2 and m1 = −m2. The polarization PS is then evaluated from the field
e2, whose components are given directly by the relations to corresponding equivalent surface
current densities: m2 =−e2 ×n2 and ∇S · j2 =−iωε2n2 · e2.

3. Finite dimensional formulation: the Method of Moments

To obtain approximate solutions to the SH problem, we employ the Method of Moments [38].
We seek such solutions from a finite-dimensional space that ensures proper continuity. A good
choice for such a space is the one spanned by the Rao-Wilton-Glisson (RWG) functions, which
are divergence-conforming affine functions that implicitly enforce the continuity of surface
current and the conservation of charge [39]. These functions are geometrically attributed to the
edges of a triangular mesh and their support, denoted by Sn, is a pair of adjacent triangles, as is
illustrated in Fig. 1(b) (by the support of a function f we mean the set Sf = {x ∈ S| f (x) �= 0}).

The unknown surface current densities are expanded using the RWG basis functions fn as

JS
1 =

N

∑
n=1

αnfn, MS
1 =

N

∑
n=1

βnfn, JS
2 =

N

∑
n=1

γnfn, MS
2 =

N

∑
n=1

δnfn,

where we have 4N unknowns αn, βn, γn, δn ∈ C, that can be arranged into a vector x =
(α1, . . . ,αN ,β1, . . . ,βN ,γ1, . . . ,γN ,δ1, . . . ,δN)

T . To obtain these coefficients, we use Galerkin’s
testing [38] with the inner-product 〈 f ,g〉=

∫
S f ·gdS.

The testing procedure leads to a linear system of equations, which can be expressed as Zx =
b, where we have the system matrix Z:

Z =

⎛
⎜⎜⎜⎜⎝

−D(1) K(1) D(2) −K(2)

−K(1) − 1

η2
1

D(1) K(2) 1

η2
2

D(2)

F 0 F 0
0 F 0 F

⎞
⎟⎟⎟⎟⎠ . (11)

The matrix representations of the operators are:

D(l)
mn =−iΩμl

∫
Sm

dSfm(r) ·
∫

Sn

dS′fn(r′)Gl(r,r
′)

− 1
iΩεl

∫
Sm

dS [∇S · fm(r)]
∫

Sn

dS′
[
∇′

S · fn(r′)
]
Gl(r,r

′), (12)

K(l)
mn =

∫
Sm

dSfm(r) ·
∫

Sn

dS′
[
∇′Gl(r,r

′)
]
× fn(r′), (13)

Fmn =

∫
Sm∩Sn

dSfm(r) · fn(r), (14)

where the constitutive parameters and Gl are evaluated at Ω. By enforcing both the electric
and magnetic field interface conditions (the PMCHW testing), we avoid the internal resonance
problem of BEM and thus also ensure robustness against plasmonic resonances [29].
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The nonlinear surface polarization appears only in the source vector b:

b =
(

bn1T
,bt1T

,bt2T
,bn2T

)T
, (15)

bn1
m =

1
ε ′
∫

Sm

∇S · fmPS
n dS =

1
ε ′ ∑±

∇S · f±m
∫

T±
m

PS
n dS, (16)

bt1
m =−iΩ

∫
Sm

fm ·PS ×ndS, bt2
m =−iΩ

∫
Sm

fm ·PSdS (17)

and T±
m denotes the associated triangles. The element bn2 reduces to a contour integral by the

identity
∫

S
∇ f ×F ·ndS =

∫
∂S

f F ·dr−
∫

S
f ∇×F ·ndS. (18)

For a triangular patch surface n is discontinuous, which implies that this identity should be
applied piece-wise over each triangle. The curl of RWG-basis functions vanishes over their
support and we obtain

bn2
m =

1
ε ′
∫

Sm

fm ·n×∇SPS
n dS =

1
ε ′
∫

Sm

∇SPS
n × fm ·ndS =

1
ε ′ ∑±

∫
∂T±

m

PS
n fm ·dr. (19)

The integrals over the edges common to T+
m and T−

m do not necessarily vanish. The obtained
source elements bn1 and bn2 clearly vanish if PS

n is constant, which is expected as the source in
its original form depends on the surface gradient of PS

n .
In case only the component PS

n is considered significant, we have bt1 = bt2 = 0 and Eq. (9)
implies that JS

2 =−JS
1. Then the problem is reduced to:

Z =

⎛
⎜⎜⎜⎝

−
(

D(1) +D(2)
)

K(1) −K(2)

−
(

K(1) +K(2)
)

− 1

η2
1

D(1) 1

η2
2

D(2)

0 F F

⎞
⎟⎟⎟⎠ , b =

⎛
⎝ bn1

0
bn2

⎞
⎠ , (20)

which is computationally less arduous.
In the presented formulation, all the integrals can be evaluated with high precision by utiliz-

ing the singularity subtraction technique [40] and by using a high-order Gaussian quadrature
for the resulting integrals with smooth kernels. In our calculations, a two-term singularity sub-
traction and 13-point Gauss-Legendre quadrature were used.

4. Solution in multipoles

To validate our BEM implementation, we develop an analytic solution for the same problem
for the special case of a spherical particle by using the multipole expansion. This has been done
previously in the small particle limit with the same interface conditions as here [13] and for
an arbitrarily large sphere with different interface conditions [12]. An indirect far field solution
has also been developed by using the Lorentz reciprocity [10].

A solution to the source-free Maxwell’s equations can be expanded in multipoles as [41]

E = η
∞

∑
l=0

l

∑
m=−l

i
k

Blm∇× fl(kr)Xlm +Almgl(kr)Xlm (21)

H =
∞

∑
l=0

l

∑
m=−l

− i
k

Alm∇×gl(kr)Xlm +Blm fl(kr)Xlm, (22)
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where the vector spherical harmonics Xlm are related to the scalar spherical harmonics Ylm via
the angular momentum operator L by Xlm = [l(l +1)]−1/2LYlm. Functions fl and gl are linear
combinations of spherical Bessel functions as discussed in [41]. The complex coefficients Alm

and Blm that fix the fields can be determined conveniently by using the orthogonality of Xlm

with respect to an inner-product defined in [41].
Next we consider a sphere of radius a and size parameter x = k1a. We restrict ourselves here

to the case of polarization PS = 2ε0χ(2)
nnne2

nn, where

en(a,θ ,φ) =
∞

∑
l=1

∑
m=±1

±ElYlm, El =− η2

k2a

√
l(l+1) jl(k2a)b(2)l (23)

and b(2)l is the B-expansion coefficient of Eq. (21) of the fundamental problem in the interior
domain. We use the identity ∇S =−(i/r2)r×L to conveniently express the source function S:

S = Den∇Sen =− iD
r

(
∑
lm

±ElYlm

)(
∑
lm

±
√

l(l+1)Eln×Xlm

)
, (24)

where D =−4ε0χ(2)
nnn/ε ′. Now, we define the following inner-products

Sα
lm =

∫ 2π

0

∫ π

0
X∗

lm ·Ssin(θ)dθdφ , Sβ
lm =

∫ 2π

0

∫ π

0
n×X∗

lm ·Ssin(θ)dθdφ . (25)

These could be evaluated analytically by employing the Clebsch-Gordan coefficients, but here
we simply used quadrature. The application of interface conditions leads to

A(1)
lm =

xSα
lmψ ′

l (Nx)

η1ξl(x)ψ ′
l (Nx)−η2ψl(Nx)ξ ′

l (x)
, A(2)

lm = NA(1)
lm ξ ′

l (x)/ψ ′
l (Nx), (26)

B(1)
lm =

xSβ
lmψl(Nx)

iη1ξ ′
l (x)ψl(Nx)− iη2ψ ′

l (Nx)ξl(x)
, B(2)

lm = B(1)
lm Nξl(x)/ψl(Nx), (27)

where we have the Riccati-Bessel functions ψl(x) = x jl(x) and ξl(x) = xh(1)(x) and the relative
refractive index N = n2(Ω)/n1(Ω).

5. Numerical results

We next concentrate on modelling plasmonic nanostructures. First we validate BEM by com-
paring results with the ones obtained from the multipole expansion. We then apply the method
for modelling SHG from an L-shaped particle, which has been studied experimentally before.
In both cases the material is gold, whose refractive index is that from Johnson and Christy [42]
and the surrounding medium is taken as vacuum. This yields also ε ′ = ε0.

5.1. The spherical particle

We take a moderately sized spherical gold nanoparticle of radius a = 50 nm in vacuum, whence
a plasmonic resonance takes place at the wavelength of λ = 520 nm. The excitation source is an
x-polarized plane wave propagating in z-direction. The multipole solution of the fundamental
field is sufficiently accurate with lmax = 4 (m = ±1) and the SH solution with lmax = 3 (all

m-values included). We choose as the only nonzero tensor component χ(2)
nnn = 1.

For the BEM we used two regularly triangulated icosahedral meshes, with 1280 and 5120
triangles and a more irregular mesh with 1454 triangles generated by GMSH’s MeshAdapt
algorithm. The first mesh is shown in Fig. 1(c).
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Fig. 2. (a) SH power radiated per unit solid angle σ for two different azimuthal angles φ .
The incident field at frequency ω is polarized in x-direction and propagates in z-direction.
The results given by the multipole method are virtually indistinguishable from the BEM
results. The inset shows the whole radiation pattern. (b) The relative errors in σ . Solid lines
correspond to φ = 0◦ and dashed lines to φ = 90◦. Blue, red and olive correspond to meshes
with 1280, 5120 and 1454 triangles, respectively.

The computed radiated power per unit solid angle σ and the relative errors between the
multipole and BEM solutions are shown in Fig. 2. The radiated power, defined by the far fields,
is very accurate, the relative error being practically sub one percent. Surprisingly, the finest
regular mesh yields the largest error, while the irregular mesh results in almost lowest errors
in general. Thus the irregularity of the mesh does not deteriorate far field accuracy, but the
maximum obtainable accuracy might be limited.

The SH electric field’s x-component amplitude near the sphere and its relative errors are
shown in Fig. 3. Again the relative error is mostly below one percent, peaking at the point of
highest field enhancement. Now the finest regular mesh yields markedly most accurate results
and the irregular mesh is practically on par with the regular mesh of slightly lower triangle
density. Overall the mesh refinement does not significantly remedy the high error at the point
of highest enhancement.

We note that while the error in the far field quantity is largest for the densest mesh, it is
already very low. Because the total size of the system is in the deep sub-wavelength regime,
the far field can be very insensitive to small variations in the near field and the error cannot be
expected to display a regular behaviour when the mesh is changed. The behaviour of the error
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Fig. 3. (a) SH E-field’s x-component amplitude as a function of position along x-axis
through the sphere. Black, blue and red lines depict the multipole solution and BEM solu-
tions with 1280 and 5120 triangle meshes, respectively. Olive line depicts the BEM solution
with irregular mesh. The inset shows |Ex| on the z = 0 plane and the dashed line shows the
actual plot line. (b) The relative error in |Ex| as a function of position. Colors match those
of (a).
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is specific to each problem, this being just one particular case.
The normal component of the fundamental field en is represented in the method with piece-

wise constant functions, and the SH response depends on the surface gradient of e2
n, which is

only differentiable in the weak sense. Considering this, the results are surprisingly accurate,
although it is quite well known that the BEM can produce highly accurate far fields even if
using very coarse meshes.

5.2. The L-shaped particle

The second-order nonlinear properties of L-shaped gold nanoparticles have been extensively
studied experimentally (e.g. [43]). Although SHG from these particles has been measured, the
simulations have been limited to modelling the linear response [44] and making indirect estima-
tions of SHG. Here we apply our method to characterize the surface second-harmonic response
of a single gold L-shaped nanoparticle in vacuum at plasmon resonances.

The L-shaped particle is illustrated in the inset of Fig. 4(a), where the chosen coordinate
system is also shown. The particle’s arm length is 150 nm, arm width is 50 nm and the particle
height is 20 nm. These dimensions are typical for the samples that have been used in measure-
ments. We consider a plane wave propagating in z-direction, in which case the response of the
particle is most clearly seen by considering x- and y-polarized incident waves. These lead to
electrically antisymmetrical and symmetrical solutions to the scattering problem with respect to
plane x = 0. The extinction spectra are shown in Fig. 4(a), with plasmon resonances at different
wavelengths for the different incident polarizations. These resonances are related to charge os-
cillations along the arms and are sensitive to the arm length. Small peaks can also be observed
at 530 nm for both polarizations. These are related to plasmon oscillations along the arm width.
The extinction tail at even smaller wavelengths is mostly due to interband transitions of gold.

The effective second-order susceptibility components for gold have been measured from thin

films, and their relative values are χ(2)
nnn = 250, χ(2)

ntt = 1 and χ(2)
ttn = 3.6 when the polarization

is evaluated using the fields inside the particle [4]. By using these values, the nonlinear sur-
face polarization was computed by using the two polarizations for the incident wave at the
corresponding resonance wavelengths. The results are plotted in Fig. 4(b). It is evident, that the
nonlinear source polarization is driven into the corners of the particle. This suggests that only a
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Fig. 4. (a) The extinction cross-sections of the L-shaped particle for two incident plane
wave polarizations. The inset illustrates the particle and the chosen cartesian coordinate
system. (b) The amplitude of the nonlinear surface polarization evaluated with the meas-
ured relative susceptibility tensor. The two plots correspond to incident plane-wave of x-
and y-polarization and they are normalized separately. The amplitudes are normalized with
respect to the y-polarized case.
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Fig. 5. Radiated second-harmonic power per unit solid angle from an L-shaped gold
nanoparticle. In plots (a)–(d) the incident wave is x-polarized and in (e)–(h) y-polarized.
The tensor components used in the computations are indicated under the plots. The num-
bers above the plots denote the maximum power per unit solid angle normalized to the full
tensor case separately for both incident polarizations. The ratio of maximum power per unit
solid angle of cases (a) and (e) is 0.046.

small fraction of the particle surface gives rise to significant SHG, although the whole particle
can affect the formation of the polarization in the first place. Small defects in these corners
could drastically alter the SHG. The localization also implies that one must take care that the
discretization of the problem is sufficiently smooth around sharp edges and corners. For this
reason we used a mesh where the edges are carefully rounded as depicted in Fig. 1(d). As a last
remark, the polarizations are practically symmetrical with respect to the z = 0 plane. It will be
worthwhile to investigate if e.g. altering the height of the particle will induce phase retardation
to the fundamental fields and give rise to less symmetrical source polarization.

The surface polarization does not directly tell how the system actually radiates second-
harmonic waves. The full radiation patterns were computed with the developed method for
the two incident polarizations at their resonance wavelengths. We attempt to gain insight into
the importance of the different susceptibility components by calculating the radiated power by
using the full susceptibility tensor and each tensor component separately. The results are shown

in Fig. 5, where it can be seen, that at least in this case, χ(2)
nnn clearly dominates the response. It is

also clear that approximately the highest power per unit solid angle goes to forward and back-
ward directions in the case of x-polarized input, but this is not the case for y-polarized input.
The plots are symmetrical with respect to the plane x = 0, which is required for a valid solution
to the problem. Symmetry considerations also dictate that SHG intensity in the forward and
backward directions must be the same and this was verified to hold within 1 % relative error
margin, except for the case of Fig. 5(g), for which the error was 2.8 %. The actual intensity in
this case is, however, very weak compared to the other cases.

In the measurements, one is usually interested in the x- and y-components of the second-
harmonic signal in the forward direction. Symmetry considerations dictate that only y-
component can be nonzero in the case of an ideal particle. The fulfilment of this condition
has been of considerable interest in the measurements, and it has been observed that small de-
fects can easily brake this rule. For validation purposes, we made sure that our method gives
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rise to SHG that obeys this symmetry rule

6. Discussion

The developed method is applicable to a very general class of particle geometries: it is required
that the particle is topologically homeomorphic with a sphere. The method is also applicable
to a broad range of frequencies. This range is bounded by the low-frequency breakdown of
BEM at very low frequencies and by the computational cost at very high frequencies. The
frequency domain formulation allows the direct use of measured permittivity and second-order
susceptibility values, which is a great advantage in scattering problems. The low refractive
index contrast limit of [9] is obtained by making the Born approximation in Eqs. (5) and (6) i.e.
by operating on incident fields to obtain an explicit solution.

It is also important to consider the computational burden of new numerical techniques. The
presented BEM yields a dense, non-Hermitian system matrix. Thus, if we have N basis func-
tions, the matrix build time and memory requirements scale proportionally to N2. However, due
to the block structure of the matrix, the matrix build time is not essentially different from the
case of the linear scattering problem. If direct methods are used to solve the linear system of
equations, the time complexity is of the order O(N3). The general ”rule of thumb” is that at
least ten basis functions are needed per wavelength, but sharp geometrical features may require
locally denser mesh. However, BEM tends to yield high far field accuracy with very few basis
functions [45]. Real samples usually consist of arrays of particles on a substrate. BEM can be
conveniently generalized for modelling also this type of systems by using a periodic Green’s
function, which can be efficiently evaluated by the Ewald’s method. It is also possible to sig-
nificantly reduce the memory requirements and solution time by utilizing the Adaptive Cross
Approximation or the Fast Multipole Method. The latter can reduce matrix-vector product time
complexity to N logN in iterative solution methods.

As has been pointed out before, it is possible to use the Lorentz reciprocity for obtaining the
SH scattered far field. Assume that we want to find out u∗ ·E (u∗ denotes complex conjugate of
u) far away for some unit vector u. We first solve the linear scattering problem at frequency ω
for given excitation to obtain the nonlinear surface polarization PS. Then we solve another linear
problem at frequency Ω, where the excitation is a plane wave incident from the observation
direction with polarization u yielding solution E′. The Lorentz reciprocity [46] then states that

u∗ ·E =−iΩ
∫

S
PS ·E′dS. (28)

The reciprocity relation is convenient, because it does not depend on the linear polarization
of the materials induced by the second-harmonic source and thus we avoid the need to solve
the nonlinear scattering problem directly. This method demands approximately one fourth of
the memory than BEM for a general second-order susceptibility tensor χ(S) and is at least four
times less time consuming if only a single scattering direction is of interest. If one desires to
solve the whole radiation pattern, then BEM will be superior. This can be useful e.g. when
we wish to simulate the SHG signal collected by an objective with large numerical aperture
in nonlinear microscopy of nanostructures. Also, attempting to obtain the SH fields near the
particle by using the reciprocity is not very convenient and even for the far fields, only relative
scattering amplitude is obtained. As a final note, because in BEM one solves directly the fields
on the boundary of the particle, the integral (28) can be evaluated conveniently in closed form
in the case of RWG-basis.
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7. Conclusion

We presented a BEM formulation for solving surface second-harmonic generation from parti-
cles of arbitrary shape and material. The comparison of the results to accurate multipole so-
lutions for a sphere revealed that the developed method has potential in modelling SHG in
complicated structures. Both near and far fields exhibit relative errors in the range 0.1 %–10 %
when using a practically feasible number of basis functions.

We also characterized the SHG response of an L-shaped gold nanoparticle, whose second-
order nonlinear properties have been studied experimentally. The calculations suggest that the
nonlinear surface polarization is driven into the sharp edges of the particle and that the second-

order nonlinear susceptibility component χ(2)
nnn dominates the second-harmonic response as sug-

gested by its large relative magnitude.
Although the treatment here was focused on surface SHG, it is in principle possible to extend

the method for modelling bulk SHG that originates from higher microscopic multipoles. This
would be done by considering the general Stratton-Chu equations with source volume current
densities, which depend on gradients of the fundamental electric field. The accurate evaluation
of these gradients near the particle surface is nontrivial since it requires proper treatment of
hypersingular integral kernels and thus requires further analysis.

The treatment presented here could also be easily extended to modelling e.g. sum-frequency
generation and higher harmonic generation. It is also possible to give up the undepleted-pump
approximation and seek a solution to a fully coupled problem. This will give rise to a large non-
linear system of equations, so that it will become necessary to exploit geometrical symmetry,
advanced matrix compression or possibly the Fast Multipole Method.

The BEM can also be extended to modelling spatially periodic structures by employing pe-
riodic Green’s functions, which can be rapidly evaluated by e.g. the Ewalds method. Also scat-
tering problems consisting of multiple bodies of different media are straight-forward to imple-
ment in BEM. These additional features should be implemented before a realistic comparison
to measurements can be carried out.

To conclude, the presented method enables accurate simulation of nonlinear phenomena in
plasmonic nanostructures. This can be used in the design of new kinds of nanostructures and
metamaterials with special nonlinear optical properties.
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