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Abstract

As satellite signals, e.g. GPS, are severely degraded indoors or not
available at all, other methods are needed for indoor positioning. In this
paper, we propose methods for combining information from inertial sen-
sors, indoor map, and WLAN signals for pedestrian indoor navigation.
We present results of field tests where complementary extended Kalman
filter was used to fuse together WLAN signal strengths and signals of an
inertial sensor unit including one gyro and three-axis accelerometer. A
particle filter was used to combine the inertial data with map informa-
tion. The results show that both the map information and WLAN signals
can be used to improve the pedestrian dead reckoning estimate based on
inertial sensors. The results with different combinations of the available
sensor information are compared.

1 Introduction

While GPS provides pedestrian positioning solution for outdoor environments,
the optimal strategy for pedestrian indoor positioning is still an open issue, as
the indoor environment severely degrades the accuracy of satellite positioning
or makes it totally impossible. Several information sources alternative to GPS
have been proposed for pedestrian indoor positioning. MEMS sensors have
been used to obtain dead reckoning estimate of the position. This estimate is
based on previous known position, the distance traveled and direction of travel
[2, 3, 4, 5]. Relatively short range radio communication signals, such as WLAN
or Bluetooth signals have been used to obtain indoor position estimates [6, 7, §].
The use of map information is common practice in car navigation [9], and similar
principles have also been proposed for indoor positioning [10, 11, 12, 13].

All the mentioned approaches for indoor positioning have their strengths
and weaknesses, and often a weakness of one system is the strength of another,
so that the combination of several sources brings better performance than a



single source alone. To combine information from several sources, a suitable
data fusion algorithm is needed.

In this paper, we propose the use of pedestrian dead reckoning (PDR) based
on Microelectromechanical systems (MEMS) sensors fused together with WLAN
based positioning, indoor map information, or both for indoor positioning. The
sensor unit includes a heading gyro and a 3D-accelerometer. For the data fusion
we propose two nonlinear Bayesian filters: for the fusion of PDR with WLAN
positioning we propose Complementary Extended Kalman Filter (CEKF), and
for the fusion of map information with other measurements, we propose a par-
ticle filter which uses state propagation principle similar to the CEKF. We also
show that the processing load of the map information can be reduced by an
appropriate prior sectioning of the map area so that only part of the obstacles
need to be checked by the algorithm. The preliminary results of our tests have
been reported in [1].

In the following sections we describe the models and algorithms and give
positioning results based on real data from a pedestrian test walk.

2 Related Work

Kalman Filter (KF) is a common method for fusing together measurement in-
formation from various sources. When the measurement or propagation models
or both include nonlinearities, Extend Kalman Filter (EKF) can be applied
[14]. KF or EKF in complementary filter configuration is a common method
to fuse redundant information from diverse types of sensors [14, 15]. Among
others, complementary KF (CKF) or complementary EKF (CEKF) is applied
for combining inertial sensors or DR systems with GPS and other aiding sen-
sors in various navigation applications [15, 16, 17], and it can also be found in
pedestrian navigation systems [18, 19]. From the references it can be noticed
that the authors do not always mention that their filter is a complementary
filter; however, the complementary filter structure of the CKF or CEKF can be
identified based on the way how the filter states and its measurement inputs are
chosen.

In CKF and CEKEF, less signals are connected to measurement inputs of
the filter than there are measurement signals available. In some complementary
filter configurations, measurement inputs of the filter are differences of two mea-
surement signals [15, 14]. In so called Embedded Reference Trajectory (ERT)
configuration, some of the measurement signals are connected to the filter as
deterministic inputs [15, 16, 20]. Therefore, CKF and CEKF require redun-
dant measurement information. Background and overview on complementary
filtering can be found in [14, 15|, the latter of which also introduces the com-
plementary filtering for nonlinear systems, i.e. CEKF. The ideas of [14, 15] are
summarized and applied to a simple simulation example in [20].

The utilization of an indoor map for pedestrian navigation differs from the
way the street maps are used in car navigation. In car navigation, the roads
represent the possible locations of the car, and the task of the positioning algo-



rithm is to use some clever method to force the position estimate to the most
probable road segment [9]. In indoor navigation, instead of defining possible
routes the indoor map gives information about impossible locations and move-
ments: the positioning algorithm uses information about walls and obstacles
that the pedestrian is not able walk though [10, 11, 12, 13]. These are presented
by line segments defined by the coordinates of their starting and ending nodes.

The map information about the walls and obstacles is difficult to formulate
so that it could be applied with EKF. In particle filters, this kind of information
can be taken into account easily: after each propagation step the algorithm can
check whether the particles ended into obstacles or out of the room through the
walls. If they did, their weight can be set to zero so that in the next resampling
they will not survive. Background and overview on particle filtering can be
found e.g. in [21].

In this paper, we propose two new algorithms, demonstrate their operation
and make comparisons between them using results based on real data from
a filed test. We propose a CEKF in ERT configuration for fusing PDR and
WLAN positioning estimates; in our CEKF configuration the filter uses heading
change and step length estimates produced by the PDR processing to propagate
the state of the filter while the WLAN based position estimates are used as
measurement, updates of the filter. Unlike any of the CKF or CEKF systems
described in [14, 15, 16, 17, 18, 20|, our CEKF uses WLAN positioning as one
information source. Our results also differ from results given [18], which also
deals with PDR measurements, in that our filter is in ERT mode. In [16, 20],
which present CKFs in ERT mode, the results are based on simulations while
our results are based on field test measurements. In [19], where also both WLAN
and PDR were used in CEKF ERT configuration, the PDR hardware was shoe
mounted while in our system it was attached to belt. The shoe mounted PDR
system is generally more accurate as it allows the use of zero-velocity updates
[22]. However, in practical applications it has some disadvantages, e.g., due to
its position it is vulnerable to knocks and it is difficult be protected unless it is
not embedded into the the structure of the shoe, in which case the power supply
and maintenance of the unit comes difficult.

For utilizing indoor map information about obstacles we propose a boot-
strap particle filter [21] where the particles are propagated using the same ERT
principle as in the CEKEF, i.e., the propagation of particle states utilizes esti-
mates provided by the PDR computations and either the WLAN based position
estimates or the map information or both are used to compute the particle
weights. Particle filters and map information have been used in [10, 12]; our
system differs from these in that our system includes also DR sensor unit to
determine the distance traveled and heading. The system in [11] includes also
accelerometer to determine the distance traveled but does not include sensor to
measure heading like our system. As in this paper, the authors of [11] also give
comparison results that are based on different combinations of the available in-
formation sources and algorithms processing the data from the same field tests.
In [13] also gyros are included to enable the heading estimation; this system
differs from ours in that it uses a shoe mounted PDR unit while the PDR unit
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Figure 1: Estimation of travelled distance

in our system is attached to belt of the pedestrian.

In many reports that consider indoor positioning, the field tests have been
conducted in office environments consisting of corridors and rooms. We present
results of field test conducted in a university library, where radio signal propaga-
tion pattern is different; there are few walls that totally block the signals while
at the same time there are lot of obstacles that distort the signal propagation
causing either non-line-of-sight conditions or strong signal attenuation. How-
ever, these obstacles provide lot of map information for data fusion algorithm.

3 Information sources

In this section, the processing for pedestrian dead reckoning, usage of map
information, and positioning based on WLAN signals are described.

3.1 Pedestrian dead reckoning

The length of the distance traveled can be obtained by performing double in-
tegration of an accelerometer signal. Unfortunately, this approach suffers from
unbound error growth due to, e.g., tilt errors of the sensor unit. In pedestrian
navigation such errors can be avoided by using step detection algorithm and
step length estimation based on accelerometer signal pattern [3, 4, 23].

To avoid the effect of the sensor unit tilt in the acceleration signal, we use
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Figure 2: PDR algorithm based on heading gyro and 3D-acceleration measure-
ments.

the norm of the measured acceleration for step detection and step length esti-
mation since the norm is insensitive to the orientation of the sensor unit. The
procedure for step detection consists of the following steps: (1) Low pass filter-
ing and resampling of the signal to the frequency of 20-50 Hz, (2) Computation
of the norm of acceleration components, i.e. a(t) = \/a, (t) +ay (t) +a. (t),
(3) Detection of a step start when the acceleration norm crosses g (gravitational
acceleration) so that it is followed by rise rate and peak height that exceed the
preset limits, (4) Detection of a step end at the start of the next step or 0.9 s
after the previous step start, which ever happens earlier. The use of acceleration
norm for step detection is illustrated in Fig. 1(a).

To obtain the calibration parameters for presenting the step length as a
function of step frequency [2], ten sets of walking data were collected in a straight
corridor using an accelerometer triad. The straight leg of a known length was
walked ten times. To obtain step samples with different step lengths, the walker
tried to adjust the walking speed to normal, slower than normal, slow, faster
than normal, and fast, as it is known that the step length is also a function of the
walking speed [2]. With the data, the steps were detected from the acceleration
norms and step intervals were determined. Using step intervals averaged over
each walk, the number of detected steps per walk, and the known length of
total traveled distance per walk, a linear fit can be found between average step
frequencies and step lengths of each test data set, as shown in Fig. 1(b).

The sensor based PDR estimate is computed by starting from initial co-
ordinates, xg, 9o, and initial heading angle 1. The heading and horizontal
coordinates are propagated by

(o Yr—1 + WAty
Tk = Tr_1 + Asy cos Vi R (1)
Yk Yh—1 + Asp sinyy,

where Asy is the distance traveled on the step with index k and Aty is the
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Figure 3: WLAN radio map with histograms.

length of the sample interval, which in this case is the same as the step interval;
Aty varies according to the walking style and speed of the pedestrian. @y, is the
average angular rate measurement by the gyro, averaged over the step interval
Atg. The block diagram of the PDR computations is shown in Fig. 2.

3.2 Indoor map

In indoor navigation, the positioning algorithm uses information about walls and
obstacles that the pedestrian is not able walk though. These are presented by
line segments defined by the coordinates of their starting and ending nodes. In
particle filter implementation, the algorithm checks for each particle transition
whether the transition line intersects any of the obstacle lines. The computa-
tional load of this process is significant if the number of obstacle lines is large.
However, the number of line crossing checks can be reduced, if the obstacle lines
close to each other are grouped. Then, instead of checking crossings with all
the possible line segments, the algorithm first searches the line groups in whose
area the particle transition happens, and checks the line crossings only with the
lines segments of these groups.

3.3 WLAN positioning

WLAN signals can be used in several ways to estimate position. In this pa-
per, we use WLAN fingerprinting [6, 24|, where experimentally defined radio
map is generated offline to locally model the relation between the user position
and Received Signal Strengths (RSS) of the WLAN signals received by the user
device. The implemented probabilistic estimation algorithm uses WLAN finger-
prints which include histogram approximations of Probability Density Functions



(PDF) of the WLAN RSS [24]. For the radio map, reference points are spread
over the area to be mapped. The RSS conditions in each reference point are
described by the PDFs of the RSS separately for each available access point
(AP). The PDFs are approximated by histograms as described in Fig. 3.

In histogram approximation of PDF, the RSS range is divided into npg bins;
the fine-resolution scale becomes discrete scale with coarse resolution. A his-
togram based radio map stores marginal distributions p (y|¢) for each reference
point location ¢, , i.e. the conditional probabilities that the measured RSS
vector y can be observed at location ¢. In estimation phase, the conditional
probabilities are employed to calculate the posterior probability p (¢|y) , i.e. the
probability of being located at ¢, given the measured RSS values y.

The posterior probabilities of the locations are computed using Bayes’ The-
orem [25] :

_plHp()
p(y)

__ ror®)

DoerP@)p ()’
where p (£) is the prior probability of being at location ¢. In this algorithm, we
use a non-informative uniform distribution, i.e. p (¢) is equal for each ¢. The set
L contains all the possible reference locations and p (y) is the probability of the
measurement vector y = [y1, - ,Yn,p) Over all locations. nyp is the number of
access points. p (y) does not depend on location and is treated as a normalizing
constant. The estimate

p (¢ly)
(2)

(=E(lly) =Y 'p(ly) (3)
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minimizes the expected squared location error [25]. Assuming equal p (¢) for all
¢ and independence of observations y;, the posterior probabilities p (¢|y) in (3)
can be computed using Bayes’ theorem:

_ I el
P = S QT p o) N

4 Proposed algorithms and models

In this section the algorithms and models used in CEKF and particle filter
implementations are described.

4.1 Complementary Extended Kalman Filter

A simple process model with errors modeled as white noises is applied, which
does not require special error states. The elements of the state vector x; are
the following: z;, = heading, x2, = x-coordinate, and x3, = y-coordinate, and
therefore the state propagation resembles the dead reckoning presented in (1).
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Figure 4: CEKF algorithm for fusing the measurements of heading gyro and
3D-accelerometer together with WLAN based position estimates.

X I

The filter is started from initial estimate X¢ and initial covariance P, which are
set according to the best available estimate about the initial position and the
uncertainty of the initial position information. The block diagram of the CEKF
algorithm is shown Fig. 4.

The state is propagated by using

wp Aty
X, =Xp—1+ | Aspcosiy, , |, (5)
Aspsindy,

where X;_1 denotes the posterior estimate after the measurement update using
the (k — 1)th measurement samples, while X, is the prior estimate for kth time
step. The definitions of @y, Asy, and Aty are the same as in (1) and &, _, is
the previous posterior estimate of heading. The state matrix Fy, needed for
covariance propagation, is obtained by taking the partial derivative of (5):

1 0 0
Fr=| —Asgsind;, 1 0 |. (6)
Asgcoszy, 0 1
As the effect of the step length uncertainty is multiplied by sin and cos
functions of the heading, the state noise Qj is also approximated on every
propagation step:
Vi

Qi = diag cos? (27, ) Vas , (7)
sin® (27, ) Vas
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Figure 5: Particle filter algorithm for fusing the measurements of heading gyro
and 3D-accelerometer together with WLAN based position estimates and map
information.

where V,, is the variance of angular rate measurement and Va is the variance of
step length estimate. The covariance propagation to obtain the prior covariance
P, is now

P, = F.P,_1F] + Qq, (8)
where Pj_4 is the posterior covariance from the previous time step. The mea-

surement input of the filter is zx = [zw, ywk]T, consisting of the x and y
coordinates estimated using WLAN fingerprints, and measurement matrix is

01 0
ae[04 0]
Now the equations for measurement update of state X; and covariance Py
are
K; = P H” (HP; H” + R) '

Xy = X,: + K, (Zk — H)A(;) (9)
Py = (Is;3 — K H) P,

where R is the covariance of WLAN based coordinate estimates and Is.3 is
identity matrix.

4.2 Particle Filter

In this paper, we propose a bootstrap particle filter [21] where the particles are
propagated using an equation similar to (5) used in CEKF, except that now
the noise components of angular rate measurement and step length estimate



are simulated using a random number generator and then added to the particle
states:

(wk + nS})) At),
W=z 4 (As + 1) cos (10)
k k—1 k As 1p—1 :
(Ask + n(AZ)6 sinZy,

Here (4) is the index of the particle. The noise components ngf ) and n(&, are
generated so that their variances are the same as the variance values of angular
rate and step length that were used in CEKF.

The evaluation of the likelihoods of the particle positions is based on the
same measurement variances for WLAN based = and y coordinate estimates
that were used in CEFK. For each particle, the algorithm computes the likeli-
hood of getting the position estimates z; = [xw, ywk]T from WLAN position-
ing. The zero-mean Gaussian distribution is assumed for errors of z;. After a
measurement, update from WLAN positioning, the weights of the particles are
obtained from the measurement likelihoods normalized by their sum.

The weight update with indoor map information is performed every time the
algorithm has propagated particles using the PDR information. If the obstacle
line check reveals that the last particle transition has crossed an obstacle line,
the weight of the particle is set to zero, otherwise it is not changed. Before the
next particle state propagation, importance resampling is performed, i.e., the
particle cloud is resampled so that the probability of a particle to continue to
next propagation step is proportional to the weight of the particle. In this phase,
the particles that crossed obstacle lines will disappear from the particle cloud,
as their weights are zero. The block diagram of the particle filter algorithm is
shown Fig. 5.

5 Field tests and results

A test walk was conducted in the library of the Tampere University of Tech-
nology. The test route consisted of four loops in the library and it took 17 min
to walk it. In the library only the outer walls totally block radio signals, but
there are lot of book shelves that cause either strong attenuation or non-line-
of-sight conditions for the radio signal propagation. On the other hand, as the
book shelves are obstacles that the pedestrian cannot walk though they provide
useful map information for the particle filter. In this section, the results of po-
sitioning tests are described. With the same data, we also tested obstacle line
groupings with different widths of cells in map grid to find the line grouping
that minimizes the run time of the particle filter processing.

10
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between consecutive estimates shown with narrow dotted lines.

5.1 WLAN only

The WLAN signal strengths were collected using a mobile handset, which out-
puts WLAN scan results at 2.3 s intervals. The position estimates computed
from WLAN signal strengths that were collected along the test walk are shown
in Fig. 6. From the figure we can see that the estimates are not evenly spread
along the route, but rather concentrated in the center of the library area. The
average position error is about 12 m.

5.2 PDR only

The inertial sensor unit used in pedestrian navigation test was a MEMS based
sensor described in [26]. Tt includes an accelerometer triad and one gyro. In
the test, the sensor unit was attached to the back of the test walker and aligned
so that the sensitive axis of the gyro was vertical, i.e., it was able to measure
heading changes.

The result of the unaided PDR estimate is shown in Fig. 7. It can be seen
that during the first loop the traveled distance gets longer and the heading starts
to get distorted. After the first loop, the three following loops seem to be quite
similar in size and orientation. The maximum errors are 5 m in distance and
24° in heading angle.

11
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Figure 7: Unaided pedestrian dead reckoning.

5.3 Tuning of the filters

The CEKF and the particle filter were tuned by adjusting the covariance param-
eters V,,, Vas, and R. In the tests, the value of V,, was (0.2 °)2; it was chosen
to be large enough to count for possible tilt errors of heading gyro during the
walk. The step length uncertainty Vas was (0.4 m)Q. Its value was determined
using the RMS estimation error given in Fig.1; if the RMSE is 0.0202 m over
10 walks with 39 steps on average, then the RMS uncertainty of one step is
0.4 m. The RMS uncertainty of WLAN based estimates of position coordinates
was visually determined from Fig.6 to be 10 m, therefore diagonal elements of
R were set to (10m)>.

5.4 CEKF

The result of CEKF processing of the PDR and WLAN based position estimates
is shown in Fig. 8. The CEKF was initialized with the same initial heading and
coordinates as the unaided PDR estimate. It can be seen that CEKF can correct
some of the skewness in PDR loops. The maximum errors can be estimated as
4 m in distance and 16° in heading.

5.5 Particle filters

In the first particle filter test, the filter was used to fuse PDR and map infor-
mation, while in the second test, it was used to fuse also WLAN estimates with
PDR and map information. The number of particles used in the tests was 500.
The particle states were initialized with the same initial values as the CEKF.

12
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Figure 8: Complementary EKF using PDR and WLAN data.

The results of the tests are shown in Figures 9 and 10. The plotted particle filter
track is the Minimum Mean Square Estimate (MMSE) computed from particle
positions at each sampling instance. The maximum errors estimated are less
than 3 m in distance and 12° in heading for both particle filters. However, the
estimated track in Fig. 10 seems to follow the true track better than the track
in Fig. 9, especially in upper and lower edges of the route. The reason for this
can be seen in Fig. 6: there are many correct WLAN based position estimates
available just before entering to these route segments, and therefore the WLAN
estimates are able to improve the result.

5.6 Optimization of obstacle line grouping

To find the optimal grouping for obstacle lines, described in 3.2, the groupings
were formed using square-shaped cells with cell widths from 2 to 41 m, growing
in 1 m steps. With each grouping based on different cell width, the particle
filter using PDR, WLAN and map information was run in Matlab to process all
the measurement data. The run time of the computations were recorded, and
the results are shown in Fig. 11. Based on the results we can conclude that the
map data processing is the fastest when the cell width is 14 m. The grouping of
map data clearly brings benefits: the run time without grouping, i.e., when all
the obstacle lines belong to the same group with the cell width 41 m, is more
than 400 s, while with optimal grouping the run time is only 150 s.

For comparison, the computation times of other methods presented in this
paper are listed here: position computation using WLAN data only takes 1 s,
computations for step detection, step length estimation, and the averaging of
angular rate over one detected step takes about 15 s, DR processing from step

13
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Figure 9: Particle filter using PDR data and map information.

lengths and delta headings takes less than 0.001 s, and CEKF processing from
from step lengths, delta headings, and WLAN based positions takes about 0.2
s. The particle filter run times given in Fig. 11 do not include the run times of
the necessary preprocessing phases, i.e., step detection, step length estimation,
angular rate averaging, and WLAN positioning.

5.7 Comparison with related work

In [19], the RMS position error of the integrated IMU and WLAN positioning
was 1.65 m and after initialization, the maximum error was about 4 m. In
the setup of [19] the RMS position error using only WLAN fingerprinting was
3.18 m and maximum error 9 m, which is better than the maximum error of
12 m with our system. However, the maximum error 4 m of our CEKF, the
integrated PDR and WLAN, is comparable with [19] despite the lack of zero
velocity updates in our system. On the other hand, our system reached the
5 m maximum error with PDR only, which explains the improvement by the
integration.

In [11], the mean error obtained using a particle filter, WLAN, map infor-
mation and accelerometer was 4.3 m. In our system, the maximum error 3 m
was better than this and can be obtained even without WLAN. This emphasizes
the benefit of a sensor providing heading information in an indoor positioning
system.

14
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6 Conclusions

In this paper, we proposed methods for combining information from inertial
sensors, indoor map, and WLAN signals for pedestrian indoor navigation, and
presented field test results obtained using the proposed algorithms. For the fu-
sion of the PDR with WLAN positioning we proposed complementary Extended
Kalman Filter and for fusion of the map information with other measurements
we proposed a particle filter.

The inertial sensor unit used in these tests performed relatively well even as
an unaided PDR system. However, fusing it with either WLAN positioning or
map information improves accuracy. The quality of the WLAN position data
is quite poor. Still the WLAN based position estimate includes some useful
information to the data fusion filter. The WLAN based positioning is also
complementary with map information: map information is relatively useless in
open areas, where walls and obstacles cannot guide the particles, while in areas

15



with high density of obstacles this information is frequently available. Just the
opposite, in areas dense with obstacles there is lot of disturbances present in
WLAN signals which distort even a positioning algorithm using fingerprints,
while in open areas the quality of WLAN based position estimate is better.
However, due to the special characteristics of test area, it is difficult to generalize
the results of our system directly to other types of environments without new
field tests.

We also showed that the processing load of the map information can be
reduced by an appropriate prior sectioning of the map area so that only part
of the obstacles need to be checked by the algorithm. However, the optimal
grouping very likely depends on the characteristics of the map area, i.e., the
density and distribution of the obstacles, and therefore the need for an easily
generalizable procedure for the grouping need to be studied.
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