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The electrostatic properties of lipid membranes are of profound importance as they are directly
associated with membrane potential and, consequently, with numerous membrane-mediated
biological phenomena. Here we address a number of methodological issues related to the
computation of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid
bilayers. We discuss two slightly different forms of Poisson equation that are normally used to
calculate the membrane potential: (i) a classical form when the potential and the electric field are
chosen to be zero on one of the sides of a simulation box and (ii) an alternative form, when the
potential is set to be the same on the opposite sides of a simulation box. Both forms differ by a
position-dependent correction term, which has been shown to be proportional to the overall dipole
moment of a bilayer system (for neutral systems). For symmerric bilayers we demonstrate that both
approaches give essentially the same potential profiles, provided that simulations are long enough (a
production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer
are properly accounted for. In contrast, for asymmetric lipid bilayers, the second approach is no
longer appropriate due to a nonzero net dipole moment across a simulation box with a single
asymmetric bilayer. We demonstrate that in this case the electrostatic potential can adequately be
described by the classical form of Poisson equation, provided that it is employed in conjunction with
tin-foil boundary conditions, which exactly balance a nonzero surface charge of a periodically
replicated multibilayer system. Furthermore, we show that vacuum boundary conditions give
qualitatively similar potential profiles for asymmetric lipid bilayers as compared to the conventional
periodic boundaries, but accurate determination of the transmembrane potential difference is then
hindered due to detachment of some water dipoles from bulk aqueous solution to vacuum. © 2009
American Institute of Physics. [DOI: 10.1063/1.3148885]

I. INTRODUCTION

Lipids constitute a broad class of molecules that give
rise to a variety of fascinating structures. Of these, the lipid
bilayer1 is likely the most relevant one. In cells, lipid bilayers
serve as the basic structure of cellular membranes, governing
or mediating numerous cellular functions. Lipids themselves
are also involved in many cellular processes, such as being
part of membrane protein structures and functions or acting
as second messengers in processes such as programmed cell
death.

Of the many physical characteristics of membranes, the
electrostatic properties are of special interest. The membrane
potential, for instance, is crucial for a variety of membrane-
mediated biological phenomena such as conductance of ionic
channels, insertion and orientation of integral membrane pro-
teins, transport across plasma membranes, and binding of
therapeutic peptides to membranes.” The nature of the elec-
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trostatic potential of model lipid bilayers in salt-free aqueous
solutions is in most cases dipolar, originating from water
dipoles and polar head groups of lipids. If charged (essen-
tially always anionic) lipids are present in the system, then
there is also an additional contribution due to counterions
and the nonzero surface charge of a membrane.

Due to the important role of membranes in cellular phe-
nomena, computational simulations and modeling have be-
come an integral component of membrane research, comple-
menting experiments especially in cases where insight of
nanoscale phenomena is called for. In practice, atomic-scale
molecular dynamics (MD) simulations of lipid membranes
have reached a state where they are not only able to success-
fully complement experiments but also to provide added
value by often being the only means to gain molecular-level
insight into the system in question. Further, recent progress
in both methodology and computer power made it possible to
simulate bilayer systems comprised of more than 1000 lipids
over a time scale of 100 ns at atomic resolution,3 comple-
mented by similar simulations of membrane proteins in lipid
bilayers over microsecond time scales® (for a very recent
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FIG. 1. (Color online) Snapshots of the main three bilayer systems studied:
(a) a symmetric POPC bilayer, (b) a single asymmetric POPC/POPE bilayer,
and (c) a double POPC/POPE bilayer, two PC/PE bilayers being arranged in
an antiparallel fashion.

overview of the area, see, e.g., Ref. 5). Larger bilayers over
microsecond time scales have been successfully simulated
using coarse-grained models.*’

Significance of membrane potential for governing cellu-
lar functions underlines the importance of describing mem-
brane electrostatics as accurately as possible. This in turn
stresses the importance of methodological development to
design novel and accurate tools for considering electrostatic
properties of membranes. For example, while in principle the
calculation of the electrostatic potential of a lipid bilayer is a
seemingly straightforward task, in practice there are various
issues one has to worry about. To highlight how sensitive this
issue is, consider the membrane potential profile that can be
computed using Poisson equation by twice integrating the
charge density. In its classical form, the potential and the
electric field are chosen to be nil in the middle of the water
phase.8 However, due to limiting sampling of atomic-scale
MD simulations and fluctuations of the center of mass (CM)
of a bilayer, the calculated electrostatic potential often has a
nonsymmetric shape, sometimes also showing a nonzero po-
tential drop across a symmetric lipid bilayer, which appar-
ently is a pure artifact.

Recently, Sachs et al’ proposed a new form for Poisson
equation and the related boundary conditions; the potential
was chosen to be the same on the opposite sides of a simu-
lation box along the direction of the bilayer normal. This
automatically ensures that the potential difference across a
bilayer is nil. A drawback of the above approach is that on
definition it cannot be applied to asymmetric bilayer systems,
which are characterized by a nonzero dipole moment across
a simulation box. Such a situation is encountered, e.g., in
computational studies of electroporation phenomena in lipid
membranes under external electric field.'>"> Another recent
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example is related to the development of more realistic mem-
brane models, which would account for transmembrane lipid
asymmetry that is an inherent feature in plasma membranes
of living cells. ' Recently, it has been demonstrated that an
asymmetric distribution of lipid molecules across a bilayer is
able to give rise to a nonzero potential drop between the two
membrane leaflets and, correspondingly, to a nonzero dipole
moment across a simulation box.'®"’

The aim of this study is twofold. First, we discuss appli-
cation of the two different forms of Poisson equation for
calculating the electrostatic potential of a symmetric lipid
bilayer. We show that for sufficiently long simulations both
approaches give essentially the same potential profiles. Cri-
teria for matching these conditions are discussed. Second, we
consider several means to compute the electrostatic potential
for asymmetric bilayers. We demonstrate that the electro-
static potential can be computed reliably with the use of the
classical form of Poisson equation provided that tin-foil
boundary conditions are applied.

Il. METHODS
A. Molecular dynamics simulations

We performed atomic-scale MD simulations for both
symmetric and asymmetric lipid bilayers. As for symmetric
bilayers, we considered a bilayer comprised of 128
palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids solvated
in a box with about 5100 water molecules. An asymmetric
lipid bilayer was built from POPC and palmitoyl-oleoyl-
phosphatidylethanolamine (POPE) single-component mono-
layers consisted of 51 POPC and 64 POPE lipids, respec-
tively; the bilayer was solvated by ~5150 water molecules.
The number of lipids in the opposite leaflets of the PC/PE
membrane was chosen such that the equilibrium monolayer
areas were identical in the PC and PE leaflets; this was done
by using data from previous work for the average area per
lipid in single-component POPC and POPE bilayers.]8 There
is reason to mention that such an asymmetric bilayer has
been shown to generate a nonzero dipole moment across a
simulation box.'®

To explore how boundary conditions affect the electro-
static properties of asymmetric PC/PE membranes, we con-
sidered two options. First, we employed a double bilayer
setup9’14’19_26 and performed MD simulations of two PC/PE
membranes arranged in an antiparallel (PC-PE to PE-PC)
fashion in a box with ~10200 water molecules. Such a setup
nullifies an overall dipole moment of a simulation box and
therefore is an excellent reference system to track down any
possible artifacts related to the electrostatic properties of
asymmetric membranes. Second, we studied a PC/PE mem-
brane with vacuum boundaries (slab geometry).27 For doing
that the size of the simulation box in the direction normal to
the membrane surface was increased from ~9 to 30 nm.

Three main simulated systems (a symmetric PC bilayer
and asymmetric single and double bilayer systems) are pre-
sented in Fig. 1. The trajectory for a single PC/PE bilayer
was taken from Ref. 18.

Both POPC and POPE lipids were described by a united-
atom force-field of Berger et al.*® Water was modeled using
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the simple point charge model.” The Lennard-Jones interac-
tions were cut off at 1 nm. The electrostatic interactions were
handled through the particle-mesh Ewald method (PME)
method.*>*! In the case of a PC/PE system with slab geom-
etry a special correction term was applied to mimic the two-
dimensional Ewald sum (EW3DC method).”” The simula-
tions were performed at the physiological temperature
(T=310 K). Pressure set to 1 bar was semi-isotropically
coupled to a thermostat. The Berendsen scheme was em-
ployed for controlling both temperature and pressure.32
Simulations of a PC/PE membrane with vacuum boundaries
were performed in the NVT ensemble.”’ Periodic boundary
conditions were applied in all three dimensions. The time
step used was 2 fs. The simulation of a symmetric POPC
bilayer, being based on the trajectory from our previous
study,33 was extended to 240 ns, where the first 40 ns were
skipped from subsequent analysis. The simulations of all
three PC/PE bilayer systems were performed over a period of
100 ns each, using the last 70 ns for analysis. The GROMACS
suite was used for all the simulations.*

B. Poisson equation

The electrostatic potential across a lipid bilayer V¥ is
linked with the charge densities p via the Poisson equation:

Vi) pl)
d b =TT (1)
74 €o
where g, is the vacuum permittivity. We note that both ¥
and p are functions of position along the z-axis, which is
perpendicular to the bilayer surface, i.e., Eq. (1) has already
been averaged over x and y coordinates.

In its classical formulation, the electrostatic potential is
computed by integrating Eq. (1) twice under the following
boundary conditions: ¥ (0)=0 and E(0)=0, i.e., the poten-
tial and the electric field are chosen to be zero at z=0, which
is usually chosen to reside at the center of the bulk water
phase or in the center of the membrane. These choices elimi-
nate both integration constants and for W (z) one finds™®

1 (¢ Z'
V(z) =~- o j dz’ f p(")dz". (2)
0J0 0

Most lipid simulation studies employed Eq. (2) for comput-
ing the electrostatic potential.

Sachs et al’ recently derived another form of the
Poisson equation. They assumed that the electrostatic poten-
tial is the same on the opposite sides of a simulation box, i.e.,
W (0)=W4(L), where L is the length of a simulation box in
the z-direction. In this case the condition W(0)=0 eliminates
just ogle constant and the Poisson equation has the following
form:

W(z) =W(2) + Cz. 3)

Here C is some constant; it can easily be determined from
Eq. (3) and the condition W(0)=W(L), so one finally ar-
rives at

Ws(2) = Va(z) - Alz), (4)

where
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A@) =S Wu(L). 5)

Thus, both approaches give equations for the electrostatic
potential which differ only by a position-dependent correc-
tion term, A(z).

It is instructive to discuss the correction term A(z) in
more detail. With the use of Eq. (2) the term A(z) reads

L Z'
M@= TWy(L)=-—| d’ f p(z")dz". (6)
L 80L 0 0

We now switch the order of integration in Eq. (6) and per-
form the integral over z’,

z L L
A(Z) —_ _f dZ"f P(Z”)dZ’
SOL 0 Z"
z L
= — —J (L _ Z")p(Z”)dZ”. (7)
80L 0

The last expression can further be rewritten as follows:

L L
Lf P(Z”)dZ” _ f p(Z")Z"dZ"} ) (8)

0 0

A@=—¥%l

€0

The first integral in Eq. (8) is simply the overall charge of a
lipid bilayer system; it is equal to zero for neutral systems.
The second integral is related to the overall dipole moment
of the system along the direction normal to the bilayer sur-
face (the z-axis). To demonstrate this, let us divide the simu-
lation box in small slices dz along the z-axis. The dipole
moment dP(z) of a single slice located at position z is given
by

dP(z) =[p(2)S,ydz]z, )

where S, is the bilayer area in the (x,y)-plane. Note that the
expression in brackets is the charge of a slice. To get the total
dipole moment of a system, P,,;, one needs to integrate Eq.
(9) over z from 0 to L. This way we arrive at

L
Pioa1 = Syy J p(2)zdz. (10)
0

Finally, combining Egs. (10) and (8) gives us the following
expression for the correction term A(z),

Z
Ptotal’ (1 1)
€0 system

Az) =

where Ve is the volume of a simulation box. Thus,
a difference between the electrostatic potentials, W(z)
and Wg(z), computed with the use of the two forms of
Poisson equation turns out to be proportional to the overall
dipole moment of a system provided that the system is
electroneutral.
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lll. RESULTS AND DISCUSSION
A. Symmetric lipid bilayers

We start with a conventional symmetric lipid membrane,
a POPC bilayer shown in Fig. 1(a) being a typical represen-
tative. To calculate the electrostatic potential, one needs to
integrate the Poisson equation, see Eq. (1). In practice, a
simulation box is divided in thin slices along the z-axis and
the charge density of each slice is determined as the partial
charges of all atoms within the slice over the slice volume.
These charge densities are then numerically integrated twice
over simulation box with appropriate boundary conditions. It
has to be emphasized at this point that sufficient precision
should be maintained during decomposing the partial charges
over finite slices. Otherwise, one can expect significant inte-
gration errors in the potential and field, especially for large
membrane systems. Another source of errors is related to the
use of pressure coupling, so that the size of a simulation box
in the direction perpendicular to the bilayer surface (the
z-axis) fluctuates around its average value with time and can
therefore affect potential profiles. This can be eliminated by
scaling coordinates of all atoms in every simulation frame
back to the initial size of the box. We use such a scaled
coordinate system throughout the paper.

By far most simulation studies of lipid bilayers have
used the classical form of the Poisson equation [Eq. (2)] with
boundary conditions ¥ (0)=0 and E(0)=0, z being set to
zero at the left-hand side of a simulation box along the
z-axis.® In Fig. 2 (top) we plot the electrostatic potential cal-
culated following this recipe for a symmetric POPC bilayer.
Figure 2 (top) reveals a serious problem with the calculated
potential profiles of a symmetric bilayer; the electrostatic
potential turns out to be nonsymmetric. It is also very sensi-
tive to the length of trajectory used for calculating the poten-
tial. Surprisingly, extending simulations to longer times does
not make potential profiles more symmetric, see Fig. 2 (top).

The origin of this artifact is closely related to the fact
that the position of the CM of a bilayer with respect to
z=0 can fluctuate over the course of simulations. To elimi-
nate this effect, one needs to center the positions of all atoms
in the system with respect to the CM of a bilayer in each
frame of simulations; accordingly z=0 should be chosen at
the bilayer CM. Figure 2 (bottom) shows that such an ap-
proach indeed considerably improves the potential profile
making it much more symmetric. Importantly, the electro-
static potential is now very slightly sensitive to the simula-
tion time. In fact, one can observe such a sensitivity only in
the water phase nearby the lipid/water interface, see inset in
Fig. 2 (bottom); the potential profile turns out to almost fully
converge within 100 ns of production run. Therefore, the
classical form of the Poisson equation gives symmetrical po-
tential profiles for symmetrical PC bilayers provided that
all atoms are centered with respect to the bilayer CM and the
simulations are long enough (a production run of at least
100 ns is required).

However, there is yet another subtle detail which has not
been brought about yet: the effects of undulations. Current
state-of-the-art for lipid membrane simulations allows stud-
ies of bilayers that cover tens of nanometers” in the bilayer
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FIG. 2. (Color online) (Top) Electrostatic potential W(z) of a symmetric
POPC bilayer as a function of distance z from the left-hand side of a simu-
lation box along the z axis. The potential is calculated from Eq. (2) with
boundary conditions W (0)=0 and E4(0)=0. Shown are the results for nu-
merical integration of Eq. (2) when simulation trajectories of different
lengths (from 10 to 200 ns) are employed. (Bottom) Electrostatic potential
calculated from Eq. (2) as a function of distance z from the CM of a POPC
bilayer, done individually for every frame of the simulation trajectory. The
potential is chosen to be zero at the CM of the bilayer. Again, shown are
results for simulation trajectories of different lengths (the inset shows a
close-up view on the potential profiles in the water phase close to the
interface).

plane. Even for membranes rich in cholesterol, undulations
in systems of this size are rather pronounced, implying that a
calculation of the charge density and the resulting potential
profile is not a straightforward matter to do. Apparently, the
most direct way to compute the electrostatic potential profile
is to employ small systems that remain planar during the
simulation time scale.

Note that due to the bilayer symmetry the essence of the
membrane potential can be considered to be well character-
ized by the potential across a monolayer. For instance, for
the POPC bilayer presented here we found an overall poten-
tial drop across a monolayer (from the bilayer center to bulk
water) to be ~560 mV, see Fig. 2 (bottom). In the past
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FIG. 3. (Color online) Electrostatic potential of a symmetric POPC bilayer
as a function of distance z from the left-hand side of a simulation box.
Shown are results for the potential calculated using the approach by Sachs
et al. (solid line) and the classical form of the Poisson equation (dashed
line), see Eqgs. (4) and (2), respectively. The latter potential profile was
centered with respect to the bilayer center and then shifted such that z=0
was located at the left side of a box.

many computational studies simply symmetrized the electro-
static potential over two bilayer leaflets and discussed the
potential across a monolayer only.33’35’36 As we demon-
strated, the potential profile of a symmetrical bilayer after
centering with respect to the bilayer CM shows only a slight
asymmetry, which disappears when simulation time goes up,
see Fig. 2 (bottom). This justifies the use of symmetrization
for getting reasonable potential profiles, especially when
simulation time scales are limited.

We conclude this section with a calculation of the elec-
trostatic potential following the approach proposed by Sachs
et al.’ The corresponding potential profile calculated over
200 ns trajectory is shown in Fig. 3. While the potential
difference across a bilayer is by definition nil, i.e., W4(0)
=W(L)=0, the resulting potential turns out to be symmetric.
Importantly, the approach by Sachs er al. and the classical
method for calculating the electrostatic potential gives the
same profiles, provided that the simulations are long enough
and the potential calculated from Eq. (2) is centered with
respect to the CM of a bilayer (note that in Fig. 3 the latter
potential profile is also shifted for the sake of comparison).

We emphasize that this finding is not surprising and can
readily be expected from Egs. (4) and (11); the only differ-
ence between the two approaches lies in the correction term
A(z), which is proportional to the total dipole moment of a
system P,,,. The dipole moment P, of a symmetrical lipid
bilayer can be nonzero only if the length of simulations is
limited, so that the full phase space is not sampled and the
effects due to different fluctuations in the two leaflets have
not averaged out. Otherwise, P, 1s essentially zero for
symmetrical bilayers and there is no difference between the
two approaches, see also Fig. 3.

J. Chem. Phys. 130, 215107 (2009)

B. Asymmetric lipid bilayers

The situation becomes quite different when a bilayer
system possesses a nonzero dipole moment across a simula-
tion box. This can be encountered, e.g., in computational
studies of electroporation phenomena in lipid bilayers; a con-
stant external electric field is applied perpendicular to the
bilayer surface to every atomic charge in the system, thereby
inducing a nonzero potential difference at the opposite sides
of a simulation box.'*"> Another example is an asymmetric
lipid bilayer; transmembrane asymmetry in distribution of
(both zwitterionic and anionic) lipid molecules across the
bilayer gives rise to a nonzero potential drop in water phases
separated by the asymmetric bilayer.l&]g’26

Because the condition Wg(0)=W4(L) is no longer ful-
filled, the approach by Sachs et al.’ becomes inadequate for
the bilayer systems with a nonzero net dipole moment and
the classical formulation of the Poisson equation [Eq. (2)]
should be used.

Note that if a simulation box has a nonzero dipole mo-
ment, it inevitably results in the appearance of surface charge
on the box, or, for a system under periodic boundary condi-
tions, on the periodically replicated multibilayer system. Ac-
cording to Tieleman,'' such a surface charge does not require
a correction, provided that the Ewald summation method is
employed to handle electrostatic interactions: the infinite
Ewald lattice is implicitly embedded in a conducting me-
dium with a certain dielectric constant. Most computational
studies set this dielectric constant to infinity, which corre-
sponds to so-called tin-foil boundary conditions. In our case
such a choice is also appropriate since the dielectric constant
of the bulk medium (water) is high. Thus, the surface charge
on the periodically replicated multibilayer system is exactly
balanced by tin-foil boundary conditions used in the Ewald
summation."" Below we demonstrate that the classical form
of the Poisson equation, being combined with tin-foil bound-
ary conditions, does provide an adequate description of the
electrostatic properties of asymmetric lipid bilayers.

To this end, we first calculate the electrostatic potential
of a bilayer comprised of POPC and POPE single-
component monolayers, see Fig. 1(b). The asymmetry in dis-
tribution of the zwitterionic phospholipids across the mem-
brane gives rise to the asymmetric potential profile
characterized by a nonzero potential difference of about
107 mV between the two water phases separated by the bi-
layer, see Fig. 4. This potential drop originates from the
slight difference in dipole moments of the two leaflets of the
asymmetric PC/PE bilayer.18 The PME method in conjunc-
tion with tin-foil boundary conditions was used to handle the
long-ranged electrostatic interactions and the potential pre-
sented in Fig. 4 was calculated with the use of Eq. (2) with z
chosen to be zero at the CM of the bilayer.

To demonstrate that the method used for calculating the
electrostatic potential does not suffer from artifacts related to
the overall nonzero dipole moment across a simulation box,
we performed additional MD simulations of two PC/PE
membranes arranged in an antiparallel (PC-PE to PE-PC)
fashion, see Fig. 1(c). Such a setup nullifies an overall dipole
moment of a system,26 so we can now use both Egs. (2) and
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FIG. 4. (Color online) Electrostatic potential of two asymmetric POPC/
POPE bilayers arranged in an antiparallel manner as a function of distance z
from the CM of the left bilayer (solid line). The potential was centered and
symmetrized with respect to the CM of the bilayer on the left-hand side. For
comparison, the potential of a single POPC/POPE bilayer is shown (dashed
line).

(4) for calculating the potential. In practice, we chose to
employ Eq. (2) along with centering of the potential with
respect to the CM of the bilayer on the left-hand side in a
simulation box (the potential was symmetrized over two bi-
layers in a simulation box). The result of such calculations is
shown in Fig. 4, while the overall potential drop across the
simulation box is essentially zero, each of the PC/PE bilayers
yield the asymmetric potential profile. Remarkably, the po-
tential profile of a PC/PE bilayer, which is measured from
the double bilayer simulations, turns out to be very similar to
the potential profile calculated from single bilayer simula-
tions (Fig. 4). What is more, the potential difference across a
PC/PE bilayer was also found to be very close in both cases:
107 mV versus 100 mV for single and double bilayer simu-
lations, respectively. This justifies the method used for cal-
culating the electrostatic potential of a single asymmetric
bilayer characterized by a nonzero net dipole moment.

To complete the picture, we also considered an alterna-
tive approach to nullify the overall dipole moment of a simu-
lation box with an asymmetric lipid bilayer, namely, we per-
formed simulations of a PC/PE bilayer with vacuum
boundary conditions (slab geometry).27 Two vacuum slabs of
around 10 nm were adjoined to the water phases on both
sides of a bilayer. Such large vacuum regions are meant to
ensure that the potential difference, although being nonzero
at the positions where water phases end, drops to zero in
vacuum at the opposite sides of a simulation box. The elec-
trostatic potential for the PC/PE bilayer with vacuum bound-
ary conditions was calculated with the use of Eq. (2) and is
presented in Fig. 5 (again, all atoms were centered with re-
spect to the bilayer CM). First of all, the potential profile
turns out to be qualitatively similar to what was observed for
the system with conventional periodic boundary conditions.
Second, it is seen that against expectations the potential does
not return to zero at the opposite sides of a simulation box.

J. Chem. Phys. 130, 215107 (2009)
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FIG. 5. (Color online) Electrostatic potential of an asymmetric POPC/POPE
bilayer with vacuum boundary conditions as a function of distance z from
the bilayer CM (solid line). For comparison, the potential of a POPC/POPE
bilayer system with conventional periodic boundary conditions is shown by
dashed line.

This is due to the fact that some of water molecules get
detached from bulk solution during the course of simulations
and can travel across the vacuum regions. This makes the
charge density of the vacuum slabs nonzero. The implication
is that the overall dipole moment of a simulation box again
deviates from nil, this time due to the dipoles of detached
water molecules. Such a “water noise” prohibits accurate de-
termination of the intrinsic potential drop of an asymmetric
PC/PE bilayer.

IV. CONCLUSIONS

In this article, we addressed methodological issues of
calculating the electrostatic potential from atomic-scale MD
simulations of lipid bilayers. Two forms of the Poisson equa-
tion were explored. (i) A classical form, where the potential
and the electric field are chosen to be zero at a certain posi-
tion in a simulation box (normally, on one of the sides of the
box along the direction of the bilayer normal). (ii) An alter-
native form, where the potential is set to be the same (equal
to zero) on the opposite sides of a simulation box, as derived
by Sachs et al.’ Both forms differ by a position-dependent
correction term, which was shown to be proportional to the
overall dipole moment of a bilayer system (for neutral
systems).

For conventional symmetric bilayers, we have shown
that both approaches give essentially the same potential pro-
files, provided that MD simulations are long enough and the
fluctuation of the CM of a bilayer is properly taken into
account in the classical method. In other words, if a sym-
metrical bilayer is properly equilibrated and the analyzed tra-
jectory covers a time scale of at least 100 ns, the total dipole
moment of the system is essentially zero, implying that the
above mentioned correction term vanishes (and so does the
difference between the two approaches).

In contrast with the symmetric bilayers, a simulation box
with an asymmetric lipid bilayer is characterized by a non-
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zero dipole moment across the box. Therefore, the approach
(ii) is no longer appropriate as it is essentially based on the
assumption that W(0)—W(L)=0, which is not the case in
asymmetric membranes, and the classical form of the Pois-
son equation should be employed. With the help of a double
bilayer setup, we demonstrated that the classical approach
indeed provides an adequate description of the electrostatic
potential of a single asymmetric lipid membrane, provided
that it is used in conjunction with tin-foil boundary condi-
tions, which are implemented in the PME method and ex-
actly balance the nonzero surface charge of a periodically
replicated multibilayer system. Furthermore, we have shown
that the potential of an asymmetric bilayer with vacuum
boundary conditions is qualitatively similar to what was ob-
served with the use of the conventional periodic boundary
conditions. However, accurate measurement of the intrinsic
potential drop across an asymmetric bilayer is hindered in
this case by water molecules, which occasionally can get
detached from bulk aqueous solution and travel across the
vacuum slabs.

The present results highlight the importance of account-
ing for a number of methodological details in simulations of
lipid membranes and in derivation of electrostatic membrane
potential profiles. First, the simulation times even for simple
systems should be at least of the order of 100 ns. Otherwise,
insufficient sampling may give rise to artifacts whose mag-
nitude is difficult to assess. This condition becomes more
severe for complex membranes that model circumstances in
biomembranes under physiological conditions, since binding
and unbinding events of ions are slow processes, and sam-
pling of their phase space likely requires time scales that are
considerably larger than the limit of 100 ns found in this
work. Second, the position of a membrane in the simulation
box fluctuates in time, leading to prominent artifacts in the
electrostatic profile unless the profile is computed with re-
spect to instantaneous CM positions of the bilayer. Third, for
large membranes, undulations come into play and may com-
plicate the analysis of the potential profile. This issue be-
comes topical in the near future when simulations of large
membranes with, e.g., voltage-gated ion channels together
with asymmetric transmembrane ion distributions become
more common. This last issue remains to be explored in
future studies.
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