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Abstract. Model-based testing can be hampered by the fact that a
model depicting the system as designed does not necessarily correspond
to the product as it is during development. Tests generated from such a
model may be impossible to execute due to unimplemented features and
already known errors. This paper presents a solution in which parts of
the model can be filtered out and the remainder used to generate tests for
the implemented portion of the product. In this way model-based testing
can be used to gradually test the implementation as it becomes available.
This is particularly important in incremental testing commonly used in
industry.
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1 Introduction

Traditionally software test automation has focused on automating the execution
of tests. A newer approach, model-based testing, allows the automation of the
creation of tests by generating them from a formal model which depicts the
expected functionality of the system under test (SUT). An excellent approach in
theory, widespread deployment of model-based testing is nonetheless hindered
by a number of practical issues.

One such issue is fitting model-based testing into the product life cycle. The
error-detection capability of model-based testing is based on the correspondence
between the model and the SUT; a difference between the two indicates an error
in one or the other. However, testing should begin before a fully functional SUT
is available, which means that this correspondence is in practice broken.

The problem first appears during the early implementation of the product.
The test model can be created based on the design plans, and is likely to be
ready long before all the features of the SUT have been fully implemented, since
modeling is a good method of static testing. In this case, the tests generated from
the model may span the whole system under development, even though the SUT
only contains limited functionality. Developing and updating the model alongside
the product is possible but impractical; it should be possible to model the whole



system before it is fully implemented. How, then, can we use a model of the
complete system to generate tests just for the current implementation?

A similar situation is encountered when the testing pays off and an error is
found. Fixing the error may take some time, especially if it is particularly com-
plicated or not very serious. Testing, of course, should be continued immediately.
But how can we ensure that new generated tests do not stumble on the same,
already known issue?

In these cases, the problem is that the model contains functionality that
cannot be executed on the SUT, yet we need to generate actually executable
tests. The magnitude of the problem depends on how the tests are generated. If
the process is cheap, it may be possible to generate an overabundance of tests
and discard the unfeasible ones. However, if test generation is complicated and
costly, it will be necessary to ensure that as little effort as possible is wasted on
unproductive tests.

This paper presents a solution based on filtering the test model in such a way
that unimplemented or faulty functionality is effectively removed. The remainder
of the model can then be used to generate tests for the implemented functionality.
As new features are implemented they can be allowed into the model and test
generation; as erroneous functionality is uncovered it can be filtered out until
fixed. Using this method, a complete test model can be used to generate tests as
soon as the product is mature enough for automatic test execution. The challenge
is to ensure that the filtered model remains suitable for test generation.

The rest of the paper is structured as follows: Section 2 provides an overall
presentation on our approach to model-based testing. Section 3 explains our
filtering methodology in detail, and Section 4 presents a case study based on it.
Finally, Section 5 concludes the paper.

2 Background

Model-based testing is a testing methodology which automates the generation
of tests. This is done with the help of a test model, which describes the behavior
desired in the tests. Depending on the approach, this may mean the behavior of
the SUT or its user, or both combined.

There are two ways to execute the generated tests. In off-line testing the
model is first used to create the test cases, which are then executed just as if
they had been designed manually. In the alternate approach, online testing, the
tests are executed as they are being generated. The latter method is especially
well suited for testing nondeterministic systems, since the results of the execution
can be continuously fed back into test generation, which can then adapt to the
behavior of the SUT.

Our research focuses on online testing based on behavioral models. The for-
malism in our models is labeled state transition system (LSTS), a state machine
with labeled states and transitions. LSTS is a simple formalism and other behav-
ioral models can be easily converted into it, which allows us to create models also
in other formalisms, if need be. The formal definition of LSTS is the following:



Definition 1 (LSTS).
A labeled state transition system, abbreviated LSTS, is defined as a sextu-
ple (S, Σ, ∆, ŝ, Π, val) where S is the set of states, Σ is the set of actions
(transition labels), ∆ ⊆ S × Σ × S is the set of transitions, ŝ ∈ S is the
initial state, Π is the set of attributes (state labels) and val : S −→ 2Π is
the attribute evaluation function, whose value val(s) is the set of attributes
in effect in state s.

Creating a single model to depict the whole SUT is virtually impossible
for any practical system. Therefore we create several model components, each
depicting a specific aspect of the SUT, and combine these into a test model
in a process called parallel composition. We use a parallel composition method
developed in [7], generalized from CSP (Communicating Sequential Processes)
[11]. It is based on a rule set which explicitly specifies which actions are executed
synchronously. The formal definition is as follows:

Definition 2 (Parallel composition ‖R).
‖R (L1, . . . , Ln) is the parallel composition of LSTSs L1, . . . , Ln, Li =
(Si, Σi, ∆i, ŝi, Πi, vali), according to rules R, such that ∀i, j; 1 ≤ i < j ≤
n : Πi ∩Πj = ∅. Let ΣR be a set of resulting actions and

√
a “pass” symbol

such that ∀i; 1 ≤ i ≤ n :
√

/∈ Σi. The rule set R ⊆ (Σ1 ∪ {√})× · · · × (Σn ∪
{√}) × ΣR. Now ‖R (L1, . . . , Ln) = repa((S, Σ, ∆, ŝ, Π, val)), where

– S = S1 × · · · × Sn

– Σ = ΣR

– ((s1, . . . , sn), a, (s′
1
, . . . , s′n)) ∈ ∆ if and only if there is (a1, . . . , an, a) ∈

R such that for every i (1 ≤ i ≤ n) either
• (si, ai, s

′

i) ∈ ∆i or
• ai =

√
and si = s′i

– ŝ = (ŝ1, . . . , ŝn)
– Π = Π1 ∪ · · · ∪ Πn

– val((s1, . . . , sn)) = val1(s1) ∪ · · · ∪ valn(sn)
– repa is a function restricting LSTS to contain only the states which are

reachable from the initial state ŝ.

The parallel composition allows us to use a relatively small number of simple
model components to create a huge test model. In practice, the test model may
well be too large to calculate in its entirety, so the parallel composition is usually
performed on the fly for the needed portion of the model. The available model
components comprise a model library [6], from which individual components can
be composed into a suitable test model.

The model components are divided into two tiers corresponding to the con-
cepts of action words and keywords [1, 4]. Action words define user actions, such
as those commonly used in use case definitions. Accordingly, the upper tier mod-
els based on action words, called action machines, describe the functionality of
the SUT. Action words and action machines are independent of implementation,
and can often be reused in testing other similar systems.



Keywords describe UI events, such as pressing keys or a text appearing on a
display. The lower tier models, refinement machines, use keywords to define im-
plementations for the action words in the action machines. Refinement machines
are specific to implementation, so every different type of SUT requires its own.

The execution of a keyword returns a Boolean value, which tells whether
the SUT executed the keyword successfully or not. Usually a certain value is
expected, and a different result indicates an error. However, in online testing of
nondeterministic systems it may be reasonable to accept either value, since the
exact state of the SUT may not be known. This is modeled by adding a separate
transition for successful and unsuccessful execution. The actions of such transi-
tions are negations of each other. These branching keywords allow the implemen-
tations of action words to adapt to the state of the SUT. If the nondeterminism
affects the execution of the test beyond a single action word, a similar branching
action word is needed. Such action words can be used to direct an online test
into an entirely different direction depending on the state of the SUT. Branching
actions do not fit well into the linear sequences of off-line testing, though, and
the unpredictability especially at the action word level makes the generation of
online tests somewhat more difficult.

Tests are generated with guidance algorithms based on coverage require-
ments. A coverage requirement [8] defines the goal of the test, such as executing
all actions in the model or a sequence of actions corresponding to a use case.
A guidance algorithm is a heuristics whose task is to decide how the test will
proceed. A straightforward algorithm may simply seek to fulfill the coverage re-
quirement as quickly as possible. Others may perform additional tasks on the
side, such as continuously switching between different applications in order to
exercise concurrency features; yet another may be completely random.

Facilitating such diverse goals and methods places some requirements for the
test model. The most important of these is that the model must be strongly con-
nected, that is, all states must be reachable from all other states. A test model
that is not strongly connected poses great difficulties for test generation, since
the execution of any transition may render portions of the model unreachable for
the remainder of the test run. Coverage requirements can no longer be combined
freely, since their combination may be impossible to execute even if they are
individually executable. Finally, online test generation becomes effectively im-
possible, because the only way to ensure that the whole test can be executed is to
calculate it out entirely before beginning the execution and making potentially
irreversible choices.

If strong connectivity is for some reason broken, it must be restored by limit-
ing the model to the maximal strongly connected portion of the model containing
the initial state, which we will call the initial strong component. Unfortunately,
finding the initial strong component can be difficult if the model is too large to
calculate in its entirety. In particular, strong connectivity of model components
does not in itself guarantee strong connectivity in the composed test model.

Ensuring the strong connectivity and general viability of the models is in the
end up to the test modeler, who is responsible for the creation and maintenance



of the models. The test designers, who are responsible for the actual test runs,
should be able to use the models for test generation without needing to worry
about their internal structure. Such distribution of concerns relieves most of the
testing personnel from the need of specialized modeling expertise [9].

3 Filtering

In this section we present our filtering method. First we go through some basic
requirements for the method, and then present a solution based on those. After
that, we examine implementation issues concerning the filtering process, espe-
cially regarding strong connectivity. Following is some analysis of the algorithm
used in implementation, and finally an example of its use.

3.1 Basic Criteria

A method for filtering out unwanted functionality from the models should fulfill
the following criteria:

1. The execution of faulty or unimplemented transitions can be prevented.

2. The model should not be restricted more than necessary.

3. The model must remain strongly connected.

4. Filtering may not require modeling expertise or familiarity with the models.

5. The manual effort involved in the process may not be excessive.

6. Filtering must be performed without modifications to the models themselves.

The first three criteria define the desired result for the filtering process.
Criterion 1 is the very goal of the filtering process. Criterion 2 is likewise ob-
viously necessary, since we want to keep testing the SUT as extensively as pos-
sible. Criterion 3 ensures that the process does not break the basic requirement
placed on the test model. As a consequence, the filtering cannot be performed
by just banning (refusing to execute) problematic transitions or actions, since
such a strategy might effectively lead to deadlocks or otherwise break the strong
connectivity necessary for test generation.

The next two criteria are procedural requirements. Criterion 4 requires that
the filtering process can be performed with no manual involvement with the
models. Ideally, the process would be carried out by test designers, who may
not be familiar with the models or the formal methods involved [9]. Since the
process may need to be carried out often and repeatedly, Criterion 5 states that
it may not require much manual effort.

Finally, Criterion 6 is an implementation requirement. Modifying the models
for filtering purposes would require extensive tool support, so that individual
changes could be made and rolled back as needed, all without breaking the
models. Enabling such a feature might also place additional requirements on the
structure of the models.



3.2 Methodology

There are a number of potential methods by which the tester might perform the
filtering of banned functionality. Most of these require additional actions in order
to keep the model strongly connected, as per Criterion 3; however, with properly
designed models such actions can be automated. The examined methods are:

1. Ban the execution of specific transitions of the composed test model.
2. Ban the execution of specific transitions within model components.
3. Ban the execution of specific actions.
4. Remove model components from the composition.

Actions are general labels for the events of the SUT, whereas transitions
represent the SUT moving from a specific state to another through such an
event; therefore, banning an individual action corresponds to banning all of
the transitions labeled with it. Likewise, banning a transition from a model
component may correspond to banning several transitions from the composed
test model.

Method 1 fulfills all of the specified criteria except Criterion 5, where it fails
spectacularly. An individual faulty transition in a model component is likely
to correspond to many transitions in the test model. Even if the problem is a
concurrency issue and appears only with a specific combination of applications,
it is unlikely to be limited to a situation where all of the tested applications are
in exactly specific states. As such, the method is thoroughly impractical.

Method 2 is more promising, since removing the faulty transition from a
model component will remove all of its instances from the test model. This
method is no longer minimal (Criterion 2): in case of a concurrency issue, this
method may remove more functionality than is strictly necessary. However, it
does not greatly limit continued testing; furthermore, a more specific method
based on multiple components at once would likely require a deeper understand-
ing of the models, violating Criterion 4. Another problem is that transitions do
not have inherent identifiers, although they can be uniquely identified by their
source state and action. States are only identified with numbers, whose use would
at the very least require some inspection of the model components.

In practice, Method 3 works very much the same as Method 2. It may restrict
the models more, but only if the model component uses the same action in
multiple places, only one of which actually fails. Unlike transitions, actions are
clearly labeled and test designers will work with them in any case, so they can
be easily used also for this purpose.

Finally, Method 4 is also easy to use. In fact, it might well be worth imple-
menting for other purposes such as limiting the size of the test model. However,
removing whole components from the model goes against Criterion 2, since it
could drastically reduce the amount of functionality available for testing. It does
have one additional benefit: it is relatively easy to design the models so that the
removal of a component leaves the rest of the test model strongly connected.

Of these four, Method 3, based on banning actions, appears to be the best. It
does not restrict the models much more than is necessary and is quite easy to use.



It does require some additional effort in order to retain the strong connectivity
of the models, though.

In contrast, Methods 1 and 2 involve serious procedural issues and in practice
do not leave much more of the model available. On the other hand, Method 4 is
considerably more restrictive than necessary. However, as mentioned, it may be
worth implementing anyway for other reasons, in which case it can be also used
to filter models where suitable.

3.3 Banning Actions

There are three implementation issues to take care of. First, we need a means to
obtain a test model with individual actions removed without altering the original
models, as per Method 3 and Criterion 6. Second, we must devise a method for
restoring the strong connectivity of the test model (Criterion 3), since removing
individual actions may break it. Third, we must take into account the branching
actions, whose both branches must be retained or removed together.

The simplest way to obtain a modified test model is to create a modified copy
of the rules of parallel composition such that banned actions will not show up
in the test model. This method is simple to implement and limits modifications
to one place. Alternatively, modified copies of the model components could be
created with banned actions removed, and then composed as usual. However,
such an approach would require modifications in several places, and modifying
a model component is liable to be more difficult than removing rules from a list.

Ensuring the strong connectivity of the test model is more difficult. It is
obviously not possible to design all models so that any actions could be removed
without breaking strong connectivity. As for automation, in a general case it is
not possible to determine whether a test model is strongly connected without
calculating it entirely, which may be impossible due to the potential size of the
model. As a solution, our filtering algorithm seeks to deduce the initial strong
component from the model components and the rule set, but without calculating
the parallel composition. The result is an upper bound for the initial strong
component, that is, a limited portion of the original model which contains the
initial strong component. The algorithm is based on the following principles:

1. an action must be banned if it labels a transition which leads away from the
initial strong component of a model component

2. an action may be banned if it does not label any transition within the initial
strong component of a model component

3. an action may be banned if there remain no rules which allow its execution
4. a rule may be removed if any of its component actions is banned

The first principle is the most important: leaving the initial strongly con-
nected component of a model component cannot be allowed, since there would
be no way back, and the strong connectivity of the test model would be broken.
In contrast, the other three principles ban actions and remove rules which could
not be executed in the test model anyway. Actions outside the initial strong



components are effectively unreachable, an action without rules does not appear
in the composed test model, and a rule without all of its actions can never be
applied. Therefore, these three do not limit the models needlessly. They are also
not useful in themselves, but may allow greater application of the first principle.

Based on these principles, we have developed Algorithm 1 and implemented
it as a part of the TEMA open source toolset [10]. The lines from 1 to 11 set the
initial values for the data structures, as well as marking for handling the initially
banned actions and removed rules. The loop on line 12 additionally marks for
handling those actions for which there are no rules. The three main parts of
the algorithm are within the loop on line 16. First, the loop on line 18 handles
banned actions, removing any rule which requires them. Second, the loop on
line 24 handles rules in a similar way, banning all actions for which there are no
rules left. Third, the loop on line 32 calculates the initial strong components of
the model components and marks for handling those actions which lead outside
the component or cannot be reached within it. These three are repeated until
no more actions can be banned or rules removed. The calculation of the strong
components, which can be performed for example by Tarjan’s algorithm [13], is
the most time-consuming part of the algorithm. It is therefore only performed
when no other method for progress is available.

The algorithm returns both a set of removed rules and one of banned actions;
either can be used to perform the actual filtering. The list of banned actions is
also useful to the modeler, since it can be used to estimate the effects of filtering.
This is important because the algorithm does not necessarily yield the exact
initial strong component but only an upper bound for it. The rest will be up to
the modeler, who should design the models so that the bound is in fact exact,
and there is no way out of the initial strong component.

The nature of the algorithm makes it easy to define not only an initial set of
banned actions, but also one of removed rules. This may be occasionally useful,
for example to remove some kinds of actions across the model components.

Specific model semantics may require some changes or additions to the basic
algorithm. Branching actions are such a case: if one branch gets banned, the
other one must, too. To take this into account, we modify the algorithm such
that every time an action is marked to be handled, we check for other branches
and mark them also. It might also be useful to allow the modeler to define similar
dependencies on a case-by-case basis, where strong connectivity demands it; we
have yet to implement such a method, however.

3.4 Analysis

Following is a brief analysis of the time requirements of Algorithm 1. For an arbi-
trary model component m ∈ M , we will mark m = (Sm, Σm, ∆m, ŝm, Πm, valm).
All set operations used in the algorithm (addition and removal of elements, check
for membership or emptiness) can be performed in amortized constant time.

The handling of each rule requires O(|M |) time: it may get marked for han-
dling by each action it refers to, and may have to mark for handling each of



Algorithm 1 The filtering algorithm for the set of model components M com-
posed with the rules R, with the rules remove ∈ R initially removed and the
actions ban(m) ∈ Σm of model components m ∈ M initially banned.

banned_actions, unhandled_actions, removed_rules := ∅
unhandled_rules := remove
changed_models := M
for all model components m ∈ M do

5: for all actions a ∈ ban(m) do

add (m, a) to unhandled_actions
for all actions a of m do

remaining_rules(m,a) := ∅
for all rules r ∈ R do

10: for all actions a of model components m in r do

add r to remaining_rules(m,a)
for all model components m ∈ M do

for all actions a of m do

if remaining_rules(m,a) = ∅ then

15: add (m, a) to unhandled_actions
while unhandled_actions 6= ∅ or unhandled_rules 6= ∅ do

while unhandled_actions 6= ∅ or unhandled_rules 6= ∅ do

for all model-action pairs (m, a) ∈ unhandled_actions do

for all rules r ∈ remaining_rules(m,a) do

20: if r /∈ removed_rules then

add r to unhandled_rules
add (m, a) to banned_actions

unhandled_actions := ∅
for all rules r ∈ unhandled_rules do

25: for all actions a of model components m in r do

remove r from remaining_rules(m,a)
if remaining_rules(m,a) = ∅ and (m, a) /∈ banned_actions then

add (m, a) to unhandled_actions
add m to changed_models

30: add r to removed_rules
unhandled_rules := ∅

while changed_models 6= ∅ and unhandled_actions = ∅ do

m := any element from changed_models
remove m from changed_models

35: reachables := ∅
isc := the initial strong component of m with banned actions removed
for all transitions (s, a, s′) of m do

if s within isc then

add a to reachables
40: if s′ not within isc and (m, a) /∈ banned_actions then

add (m, a) to unhandled_actions
add m to changed_models

for all actions a of m do

if a /∈ reachables and (m, a) /∈ banned_actions then

45: add (m,a) to unhandled_actions
add m to changed_models

return removed_rules, banned_actions
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Fig. 1. Two example model components and their composition with the rules
R = {(a,

√
, a), (b,

√
, b), (c, c, c), (d,

√
, d), (e, e, e)}.

those actions. For all rules, this gives O(|R||M |). In addition to this, the han-
dling of each action takes only constant time, yielding O(

∑
m∈M |Σm|). Calcu-

lating the strong components of a single model m ∈ M with Tarjan’s algorithm
takes Θ(|Sm| + |∆m|) time. However, since we are only interested in the ini-
tial strong component, effectively |Sm| ≤ |∆m| + 1, resulting in Θ(|∆m|). The
subsequent handling requires Θ(|∆m| + |Σm|) = Θ(max(|∆m|, |Σm|)). The cal-
culation is carried out for each model only after new actions have been banned;
since all unreachable actions get banned on the first (compulsory) time, the cal-
culation will be performed at most min(|Σm|, |∆m|) + 1 times. The result is
O(

∑
m∈M min(|Σm|, |∆m|)max(|∆m|, |Σm|)) = O(

∑
m∈M |Σm||∆m|).

Putting the above figures together, we get O(|R||M | +
∑

m∈M |Σm||∆m|).
This means linear dependence on the number of rules times the size of a single
rule, plus quadratic dependence on what is essentially the sizes of the model
components. The first term is quite reasonable, since the same time is required
to simply write out the rules. The second term, while not insignificant, is still
perfectly manageable if individual model components are kept small enough.

3.5 Example

We will now present an example of Algorithm 1 with the models in Figure 1,
combined with the rules R = {(a,

√
, a), (b,

√
, b), (c, c, c), (d,

√
, d), (e, e, e)}. Let

us assume that the implementation of action d of Model 1 is faulty and initially
ban (1, d).

Since the action (1, d) is banned, we remove the rule (d,
√

, d) which refers to
it. After that, we must calculate strong connectivity; we shall do it for Model 1



Model 1 x Model 2

aa

Model 2Model 1

aa

Fig. 2. Filtered versions of the example model components and their composition with
the filtered rules R = {(a,

√
, a)}.

(calculating the strong connectivity for Model 2 would not yield anything new
anyway). We notice that in Model 1 the action c leads out of the initial strong
component and ban (1, c). Consequently, we also remove (c, c, c) and then, be-
cause there are no longer any rules for it, (2, c).

Again we must calculate strong connectivity. This time, we do not learn any-
thing from calculating it for Model 1, but in Model 2 we notice that (2, e) is
unreachable and ban it. Following that, we remove (e, e, e) and ban (1, e). We
note that now the action b breaks the strong connectivity of Model 1, and ban
(1, b) and remove (b,

√
, b). Finally, Model 2 has changed since our last connec-

tivity calculation for it, so we perform one, but learn nothing new. At this point
the algorithm returns the results and terminates.

In the end, we have banned the actions b, c, d and e from Model 1; banned the
actions c and e from Model 2; and removed the rules (b,

√
, b), (c, c, c), (d,

√
, d)

and (e, e, e). All that is left of the model components is a two-a loop in Model 1,
which is also exactly what will show up in the test model composed with the
single remaining rule (a,

√
, a), as seen in Figure 2. Looking at the original com-

posed model in Figure 1, it is easy to see that this is what should happen with
the action d banned.

3.6 Other Composition Methods

If the algorithm is to be used with a different method of parallel composition, it
will be necessary to create a rule set that implements corresponding functionality.
For example, the basic parallel composition where actions of the same name are
always executed synchronously would correspond to the rules

R = {(σ1, . . . , σn, σR) ∈ (Σ1 ∪ {√}) × · · · × (Σn ∪ {√}) × (Σ1 ∪ · · · ∪ Σn) |
∀i; 1 ≤ i ≤ n : (σR ∈ Σi → σi = σR) ∧ (σR /∈ Σi → σi =

√
)}

Although the rule set is needed for the execution of the algorithm, it is
not necessary to actually implement rule-based parallel composition. The list of
banned actions the algorithm returns can be used to perform filtering within the
model components, and these can then be combined with the original method
of composition.



4 Case Study

As a case study, we will examine the process of modifying models from an existing
model library to conform to the requirements of filtering. The purpose is to
ensure that test models composed from the library can be relied on to remain
strongly connected when arbitrary actions are filtered out; afterward, filtering
can be performed automatically. First, we will present the model library and
how its model components might in practice be filtered. We will then examine
the actual modifications made to the models of one application in the library,
and finally analyze the results.

4.1 Setup

The model library we will examine has been designed for the testing of smart-
phone applications [5]. The latest version contains models for eight applications
such as Contacts and Messaging, over four different phone models, on differ-
ent platforms such as S60 and Android. The model components in the library
have been designed to yield a usable test model even if only some of them are
included in the composition, as long as specified dependencies are met. How-
ever, they have not been designed to withstand the arbitrary removal of actions
gracefully.

In this case study we will focus on the models of the Contacts application.
It consists of six action machines and a corresponding number of refinement
machines, and has about 330 states altogether. As such it is one of the smaller
applications in the library, and simple enough to be a comprehensible example.

When examining the effects of filtering, we can safely limit ourselves to ban-
ning action words in the action machines, since they represent the (potentially
unavailable) functionality of the SUT. The task is performed by banning action
words one at a time and examining the results with the help of the filtering
algorithm. From the results we can determine whether the composed test model
would remain strongly connected or not.

4.2 Modifications

An initial execution of the algorithm with no actions banned yields a list of a
few unimplemented actions; these appear in the action machines but have no
implementation. Such actions would not appear in the test model anyway, so
they can be safely banned. We then proceed to banning individual action words,
and find two problematic situations.

The first problem we encounter is in the model component depicting the func-
tionality of the list of contacts (Figure 3). The only action word in the model,
awVerifyContactsExist , is a branching action word used to find out whether
there are any contacts in the application (the negative branch is prefixed with
a ‘∼’). This action can only be executed if we are unsure of the current situa-
tion regarding contacts; the preceding synchronization actions check from other
model components whether we know anything about the existence of contacts.
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Fig. 3. The Contacts List action machine, with the action word awVerifyContactsExist

on the right.

The filter algorithm quite intuitively suggests that if the action word is
banned, the action WAKEapp<ReturnVerifyContactsExist: Unknown> should
also be banned to preserve strong connectivity. However, that would actually
cause a deadlock elsewhere in situations where the existence of contacts really is
unknown. The solution here is to add a transition with a new comment action
from the state on the right between the synchronization and the action word
back to the central state on the middle left. A comment action can be executed
with no effect to the other model components or the SUT, allowing us to bypass
the verification of contacts’ existence. Now the synchronizing action no longer
needs to be removed with the action word, and strong connectivity is preserved.

The second problem spot is also related to the way the models keep track
of the number of contacts. The existence of contacts is abstracted into three
categories: contacts exist, contacts do not exist, and unknown, with unknown
used as the initial value. The problem shows up in the model component re-
sponsible for the deletion of contacts (Figure 4), if we ban one of the actions
awToggleContact , awAttemptDelete or awDelete.

The immediate result of the ban is that contacts can no longer be removed
individually (or at all for awDelete). However, the individual removal of contacts
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Fig. 4. The Delete Contacts action machine, with the action words awToggleContact

and awAttemptDelete at the right side of the octagon, and awDelete at the bottom
left. awAttemptDelete fails if no contacts are selected.

is the only way that the existence of contacts, once known, can become unknown
again. This means that their existence cannot ever be allowed to become known,
which results in banning every action related to their creation and handling. The
test model becomes next to useless, though is does remain strongly connected.
Despite the apparent complexity of the problem, the solution is simple: modify
the models so that the knowledge of the existence of contacts can be ‘forgotten’,
moving us back into the unknown state.

4.3 Results

All in all, the Contact models withstood the banning of action words fairly well.
The first described problem is likely typical, with complex synchronizations be-
tween the model components resulting in a deadlock whose existence the fil-



tering algorithm cannot deduce. The second problem shows that broken strong
connectivity is not the only potential issue; one should also consider whether
connectivity could be preserved with lesser limitations.

The filtering algorithm was very useful in finding the problematic situations
in the models. While the first problem would have been easy enough to spot
in manual inspection, the second was more obscure and might have been easily
missed. Using the algorithm to calculate the effects of removing actions was also
much faster than manual examination would have been.

Making the necessary modifications to the models clearly requires some mod-
eling expertise. This is not a serious issue, since they would usually be made by
the original modeler, as part of the normal modeling process. In this case the
whole modification process took less than an hour, and was performed man-
ually apart from using the filtering algorithm. Thus, there should not be any
significant increase in the modeling effort.

5 Discussion

Using model-based testing in the early phases of product implementation can be
difficult, because the product does not yet correspond to the model depicting the
entire system. The problem can be solved by altering the model so that unimple-
mented or faulty functionality is removed and no tests are generated for it. This
way the model can be matched to the product throughout its implementation.

Model transformations [2] can be used to modify the test models as needed;
their use to keep the test models up to date during development is described in
[12]. The use of parallel composition to limit the model to specific scenarios is
mentioned in [3, 14], although no mention is made of ensuring the viability of
the resulting models. All in all, there does not appear to be much previous work
on restricting the functionality of test models and the consequences thereof.

The basic method presented in our paper is very simple, based on banning the
actions corresponding to unexecutable functionality in the models or removing
the rules acting on them in the parallel composition. The greatest challenge is
ensuring that the model remains conducive to test generation; specifically that
it remains strongly connected. The algorithm presented in the paper seeks to
estimate the initial strong component of the model as well as possible without
actually calculating the composed test model. The rest is left up to the modeler.

Our case study showed that modifying existing models to withstand filtering
without losing strong connectivity is feasible; by extension, so is designing models
to match the same requirement from the first. The filtering algorithm proved very
useful in the task, since it can be used to show the effects of banning specific
actions and thus reveal problematic structures in the models.

The filtering algorithm takes advantage of the explicit set of synchronization
rules used by our method of parallel composition. It can also be used with other
parallel composition methods, if a suitable rule set is created to describe the
synchronizations. The practical issues related to this are left for future work.



Likewise for the future are left the methods for filtering non-behavioral models
and test data.
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