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A regression technique to analyze the second-order nonlinear optical
response of thin films
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We present a new technique, based on regression analysis, to determine the second-order nonlinear
optical susceptibility tensor of thin films. The technique does not require the absolute levels or
phases of measured signals to be mutually calibrated. In addition it yields indicators that address the
quality of theoretical models describing the sample. We use the technique to determine the
susceptibility tensor of samples of a nonracemic chiral material which have very low symmetry
~both chiral and anisotropic! and have many independent tensor components. The results show the
importance of using detailed theoretical models that account for the linear optical properties of the
sample. ©2004 American Institute of Physics.@DOI: 10.1063/1.1767151#
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Second-order nonlinear optical processes dep
strongly on material symmetry. For example, inversion sy
metry forbids any second-order effects within the electr
dipole approximation. At interfaces, the symmetry is eas
broken, which makes second-order techniques sens
probes of the structures and properties of surfaces and
molecular films.1–3 In particular, the structure of the secon
order susceptibility tensorx (2), the fundamental quantity de
scribing the nonlinear response of the sample, is determ
by the symmetry of the sample.4

The susceptibility tensor itself cannot be measured
rectly but must be extracted from experimental data with
aid of a theoretical model. For thin films of low symmetr
this can be very complicated because the tensor has m
complex-valued nonzero components, and therefore, re
from several independent measurements must be comb
Nevertheless, only precise information about the suscept
ity tensor allows definitive conclusions to be made about
structure of the sample, such as separating chiral and an
tropic contributions to the nonlinearity5 or addressing the
molecular and structural origins of the chiral nonlinearity.6,7

In a typical thin-film geometry for second-harmonic ge
eration ~Fig. 1!, the intensity of the detected secon
harmonic field can be expressed as8

I ~2v!5u f Ep
2~v!1gEs

2~v!1hEp~v!Es~v!u2, ~1!

whereEs and Ep are thes- and p-polarized~perpendicular
and parallel to the plane of incidence, respectively! compo-

a!Present address: Hunter College, City University of New York.
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nents of the fundamental beam at frequencyv. The expan-
sion coefficientsf, g, and h are in general complex-value
and associated with the various quadratic combinations
the components of the fundamental field and are the qua
ties whose relative values can be uniquely determined
each measured signal in an experiment.9 Theoretically, the
coefficients are linear combinations of the components of
second-harmonic susceptibility tensor that depend on the
perimental geometry and the level of sophistication used
the theoretical modeling.8

Using the experimental coefficientsf, g, and h from a
number of different measurements to determine the com
nents of the susceptibility tensor raises several problems
particular, each measurement yields only the relative val
of the complex coefficients for that measurement. The ab
lute signal levels of different measurements may differ
various reasons.10 Even if the signal levels were someho
fully calibrated, a phase uncertainty between the coefficie
of different measurements would remain. Interferomet
phase measurements11 require very high stability, which is
extremely difficult to maintain if the sample needs to
repositioned between independent measurements. A m
practical problem is that the precision with which the co
ficients f, g, andh are measured may vary. Furthermore, t
choice of the theoretical model will also influence the fin
results. The most complete models12 are tedious to imple-
ment and various approximations are often used with
proper justification. Usually, the final results do not allow t
quality of the model to be estimated.

In this paper, we present a regression-based techniqu
© 2004 American Institute of Physics
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determine the second-harmonic susceptibility tensor of
films. The technique does not require absolute calibration
signal levels or phases, improves the precision of the fi
results through weighted use of many measurements of v
ing accuracy, and allows the quality of different theoretic
models describing the sample to be assessed. We de
strate the technique by determining the susceptibility ten
of a thin film that has very low symmetry due both to anis
ropy in the plane of the film and chirality.

We consider a geometry schematically shown in Fig
The fundamental beam~frequencyv! is incident on a thin
film at angleu. Second-harmonic beams~frequency 2v! gen-
erated by the film are detected in the transmitted and/or
flected directions. The susceptibility tensorx i jk

(2) is expressed
in a Cartesian coordinate systemi jk attached to the sampl
with z along the sample normal andx and y the in-plane
coordinates. The orientation of the sample in the arran
ment is defined through the azimuthal anglew between thex
direction and the plane of incidence.

The relative values of the complex expansion coe
cients f, g, and h in Eq. ~1! for a given second-harmoni
signal can be determined experimentally by using
continuously-rotating quarter-wave plate to manipulate
polarization of the incoming field.9 To determine the value
of the nonvanishing components of the susceptibility ten
the number of independent measurements must be suffi
compared to the number of unknown tensor components.
samples of low symmetry, which have several independ
tensor components, the experimental geometry must be
ied to increase the number of independent measuremen
the case of in-plane anisotropy, this is achieved by perfo
ing measurements at different azimuthal orientationsw.

To avoid problems arising from the uncalibrated lev
and phases of different signals, a complex scaling factorci is
introduced for each measurement.5,13 The factors adjust the
sets off, g, andh coefficients~and the resulting tensor com
ponents! to a common scale and phase. The scaled value
the expansion coefficients obtained from theith measure-

FIG. 1. A schematic of the experimental geometry used to determine
second-harmonic susceptibility of thin film samples. A fundamental beam
frequencyv traveling ink-direction is incident on the thin film at angleu.
Coherent second-harmonic light at frequency 2v is emitted in the transmit-
ted and reflected directions. All beams can be expanded in terms of thep-
and s-components. Thexyz-coordinate system, in which the susceptibili
x i jk

(2) is expressed, is fixed with respect to the sample. The orientation o
sample is characterized by the azimuthal anglew.
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ment are then equated to the corresponding theoretical
pressions as follows:

f i
t5ci f i

m ,

gi
t5cigi

m , ~2!

hi
t5cihi

m ,

where the superscriptm denotes the measured values. T
theoretical expressions denoted by the superscriptt are of the
form

f i
t5(

j 51

q

ai j x j ~3!

with the theoretical coefficientsai j and the number of inde
pendent susceptibility componentsq determined by the ex-
perimental geometry and the theoretical model. The wh
procedure results in a set of linear equations in which
tensor components and scaling factors are the unknown

In the most straightforward application of the procedu
one matches the number of measured coefficients with
number of unknown quantities. This procedure neatly give
solution for the susceptibility components, but any inform
tion concerning the validity of this solution must be obtain
by other means. In addition, the measured signals are
always sensitive to small variations in the values of the
pansion coefficients, which compromises the precision
their determined values. We reduce the relative importa
of the individual measurements by increasing their num
well beyond the number of unknown quantities. Essentia
this results in an over-determined set of linear equations.
solve it using total least squares regression,14 where weight-
ing may be used to compensate for the possibly differ
accuracies of the measurements. The solution yields the
tive values of the susceptibility components and the sca
factors.

The regression procedure also provides indicators
can be used to assess the quality of the final results. In
ticular, the residuals of the total least squares solution
scribe how much the theoretical and experimental expan
coefficients differ. All theoretical models describing samp
of same symmetry have the same number of indepen
susceptibility components but the values of the coefficie
ai j in Eq. ~3! depend on the models’ level of detail and th
measurement data. If the data were perfectly free from no
and measurement errors, a perfectly matching theore
model would produce complete congruity among all eq
tions so that the residuals would all vanish. Any imperfe
tions in the model lead to incorrect theoretical description
the experiment. Therefore, despite having perfect data, o
an approximate regression solution can be found when
number of equations exceeds that of the unknowns, wh
results in nonvanishing residuals. The worse the model,
larger the residuals.

In practice, the measurements inevitably contain at le
some noise. However, if different theoretical models a
compared using the same measurement data, the resi
provide a direct indication of the quality of the theoretic
model for a given set of data.
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In addition to the susceptibility components, the soluti
contains the complex scaling factorsci . Since for homoge-
neous samples the factors should have nearly equal ma
tudes for measurements performed using the same fu
mental beam intensity, their values provide an independ
indicator of the quality of the theoretical model describi
the sample.

To demonstrate the new procedure, we used Langm
Blodgett ~LB! films of a tetradodecyloxyhelicenebis
quinone.15 Materials of this family are known to form LB
films of high quality, which are chiral and anisotropic b
longing to the symmetry groupC2 .16 Due to their compli-
cated structure, such samples are ideally suited to test
new measurement technique.

The only symmetry operation for the samples is a 18
rotation about the sample normal.5,17 Thus the directions of
the in-plane axes cannot be fixed by any symmetry op
tion. Nevertheless, they-axis was chosen to be along th
dipping direction of the film during the LB deposition. Th
samples used had a film on one side of the substrate o
The 1064-nm output of a Q-switched Nd:YAG laser pr
vided the fundamental beam~;10 ns pulse length, 30 Hz
repetition rate,;1 mJ pulse energy!, which was weakly fo-
cused to a diameter of;0.5 mm at the sample and wa
incident at an angle of 45°. Second-harmonic light from
optical components preceding the sample was carefully
tered out. The transmitted second-harmonic light~532 nm!
generated by the sample was filtered appropriately befo
was detected using a photomultiplier tube, a digital osci
scope, and a computer. The signals were recorded while
polarization of the fundamental beam was varied9 by a
computer-controlled quarter-wave plate rotated throu
360°. The procedure was repeated at different azimuthal
entations of the sample.

The results were analyzed using two theoretical mod
based on the electric-dipole approximation and symme
groupC2 . Although the second-order response of chiral th
films may have significant magnetic-dipole cont
butions,13,18 previous work on similar helicenebisquinon
suggests that such higher-order contributions are
important.5 The first model is very detailed and accounts
the linear optical properties and the thickness of the sam
as well as multiple reflections and refraction at t
interfaces.12 Such models are well understood but, unfor
nately, tedious to implement. Therefore the linear opti
properties and thickness of the film are often neglected. T
is done in a second, simplified, model, which assumes
the index of refraction of the film is unity and that its thic
ness is negligible.

The simple model can be evaluated analytically.5 The
detailed model was evaluated numerically using the e
mated values of 1.5 and 1.6 for the indices of refraction
the film at the fundamental and second-harmonic wa
lengths, respectively, and a thickness of 1.95 nm per mole
lar layer. The index of refraction of the substrate was take
be 1.52. These numbers are approximate and based on e
results on similar materials.19 However, our conclusions do
not depend on the exact values of these quantities.

The relative values of the independent tensor com
Downloaded 03 Aug 2004 to 192.51.44.11. Redistribution subject to AIP
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nents for a 16-layer sample determined using the two mo
are shown in Fig. 2. The measurements were performed
18 different azimuthal orientationsw of the sample detecting
both s- andp-polarized signals, yielding 90 independent e
pansion coefficients. This number greatly exceeds the n
ber of unknown quantities~43; 36 scaling constants and eig
independent tensor components, of which one can be sc
to unity!. The relative weight of each equation in the regre
sion problem was assigned according to the uncertaintie
the determinedf, g, andh coefficients. The results of the tw
models are qualitatively similar showing the importance
both chirality and anisotropy in the nonlinear response.
samples with in-plane isotropy,xyz52yxz and zxy50,

FIG. 2. The values of the independent susceptibility components obta
for a thin film sample of helicenebisquinone molecules using the two m
els: simple~open square! and detailed~dot!. The small components, includ
ing zzzof the simple model, are not labeled.

FIG. 3. Histogram bar plots~bin width 0.2%! of the residuals of the regres
sion solutions for the two theoretical models: simple~above! and detailed
~below!. Contour lines and common scale are used to facilitate the comp
son of the plots. Standard deviations of the distributions are 2.5%~simple!
and 1.0%~detailed!. Wider distribution of residuals indicates less accura
solution.
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4 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Siltanen et al.
which clearly do not hold. The chiral and achiral contrib
tions to the nonlinearity can only be discussed in terms of
combinations of components which do not depend on
choice of the orientation of the in-plane axes.5,17 The combi-
nation xyz2yxz, which is associated with chirality, i
clearly dominant as the achiral combinationszzz, zxx
1zyy, andxxz1yyz are very close to zero. In addition, th
large componentzxy is associated with both anisotropy an
chirality.

The residuals of the regression solutions, shown in F
3, on the other hand, reveal significant differences betw
the models. The residuals of the detailed model are m
smaller, on the average, than those of the simple model,
spite the equal number of unknowns in the two models. T
indicates that the detailed model is much more accurate
shows the importance of including all the physical factors
describing the results.

Certain sets of measurements were performed in suc
sion at the same laser intensity. For samples of high qua
the scaling factors for such measurements are expected
equal in magnitude. This is evident in Fig. 4, which sho
the magnitudes of the scaling factors for the two mode
Again, the agreement within a given set is best when
detailed model is used.

Our results agree qualitatively with previous work o
similar materials,5,17,20 i.e., the response is dominated b
chirality. However, our results for the quantitative values
the susceptibility components and their isotropic combi
tions differ significantly from those of Ref. 20 where th
same material and similar Y-type LB-films were investigate
Such differences may be particularly important when diff

FIG. 4. Magnitudes of the solved values of the scaling factorsci for the two
models: simple~open square! and detailed~dot!. The values expected to b
equal assuming a perfect sample are indicated by connecting them
straight lines.
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ent origins of the nonlinear response are considered. We
lieve that the results of the regression technique are m
reliable as it allows several potential problems of earl
techniques to be avoided.

In conclusion, we have developed a new technique
determine the second-harmonic susceptibility tensor of t
films. The technique uses regression analysis and does
require the absolute levels or phases of measured signa
be calibrated. It weights different measurements accordin
their accuracy to improve the precision of the results a
allows the quality of different theoretical models describi
the sample to be assessed. We have demonstrated the
nique using samples ofC2 symmetry, but the technique ca
be applied to other symmetry groups as well. The res
show the importance of using detailed theoretical mod
that account for the linear optical properties of the samp

We acknowledge the support of the Academy of Finla
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