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ABSTRACT

We present a delayed stochastic model of transcription at the single nucleotide level. The
model accounts for the promoter open complex formation and includes alternative pathways
to elongation, namely pausing, arrest, misincorporation and editing, pyrophosphorolysis,
and premature termination. We confront the dynamics of this detailed model with a single-
step multi-delayed stochastic model and with measurements of expression of a repressed
gene at the single molecule level. At low expression rates both models match the experiments
but, at higher rates the two models differ significantly, with consequences to cell-to-cell
phenotypic variability. The alternative pathway reactions, due to, for example, causing
polymerases to collide more often on the template, are the cause for the difference in
dynamical behaviors. Next, we confront the model with measurements of the transcriptional
dynamics at the single RNA level of an induced gene and show that RNA production, besides
its bursting dynamics, also exhibits pulses (2 or more RNAs produced in intervals smaller
than the smallest interval between initiations). The distribution of occurrences and ampli-
tudes of pulses match the experimental measurements. This pulsing and the noise at the
elongation stage are shown to play a role in the dynamics of a genetic switch.
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1. INTRODUCTION

Stochastic fluctuations in gene expression have a significant role at the single-cell level (McAdams

and Arkin, 1997; Arkin et al., 1998; Elowitz et al., 2002; Ozbudak et al., 2002), for example, in

phenotypic expression and differentiation pathway selection (Süel et al., 2006). The relevance of accurately

accounting for the noise in gene expression, especially in transcription (Elowitz et al., 2002), is enhanced by

the low number of transcription events and its regulators (transcription factors and promoters) (Becskei et al.,

2005; Bernstein et al., 2002; Bon et al., 2006). Thus, the favored approach to simulate gene expression is the

stochastic simulation algorithm (Gillespie, 1977; McAdams and Arkin, 1998).

While the first stochastic models assumed transcription to be instantaneous (McAdams and Arkin, 1997),

it takes a considerable time for an RNA polymerase (RNAp) to create an RNA strand. This time interval
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depends on the gene length and, thus, varies from gene to gene. Therefore, recent models introduced time

delays in the appearance of the products of gene expression (Ribeiro et al., 2006). Although models using

only non-delayed reactions can mimic gene expression fluctuations (Raser and O’Shea, 2004), these studies

focused on steady state dynamics, where usually delayed and non-delayed models match after a transient

(Zhu et al., 2007). Models of complex gene networks (e.g., with feedback loops) require delayed reactions to

accurately reproduce the dynamics (Gaffney and Monk, 2006; Bratsun et al., 2005).

Also, most models of gene expression and gene networks assume that transcription regulation occurs only

during initiation, via its rate constant and transcription factors (Kierzek et al., 2001). However, during

elongation, the RNAp is in constant kinetic competition with other regulatory pathways (Greive et al., 2005),

and regulatory mechanisms act at this stage in both prokaryotes and eukaryotes (Davenport et al., 2000; Core

and Lis, 2008).

Recently, the real-time expression of a repressed lac promoter was directly monitored in individual E. coli

cells in an epifluorescence microscope with a single-protein resolution (Yu et al., 2006). It was found that

proteins are produced in bursts, with the distribution of bursts fitting a Poisson distribution, while the number

of proteins per burst follows a geometric distribution (Yu et al., 2006). The delayed stochastic model of gene

expression, that models transcription and translation as multiple time delayed reactions, reproduces the

observed kinetics (Zhu et al., 2007).

This gene was kept strongly repressed, thus its expression was sparse in time. When less repressed, its

expression increases and several alternative reaction pathways, not previously considered, play a relevant

role. Delayed stochastic simulations and detailed models of transcription, where the template strand is

explicitly modeled, were shown to match except when two-body effects (collisions between polymerases or

‘‘traffic’’) are important (Roussel and Zhu, 2006b). Thus, the importance of modeling, at the elongation

stage, events such as pauses or arrests since these affect traffic significantly and their effects have not yet

been studied.

A detailed model of transcription, similar to the one proposed in Roussel and Zhu (2006a), but includ-

ing backtracking, was recently analyzed (Voliotis et al., 2008). This study focused on the distribution of

elongation times and showed the relevant role of backtracking at the elongation stage. This model did not

include, for example, RNA polymerase halting (Greive et al., 2005), promoter complex formation (McClure,

1980) or premature termination.

The alternative pathways that can occur at the elongation stage play a role in transcription regulation (Greive

et al., 2005; Landick, 2006). For example, their occurrence can amplify traffic events between preceding

RNAp molecules. Finally, the time duration of promoter binding and open complex formation, that can last

from a few seconds to several minutes before elongation begins (McClure, 1980) and thereby, affect the

dynamics of even the simplest gene networks (Ribeiro, 2007), have not yet been accounted for in models of

transcription at the single nucleotide level (Roussel and Zhu, 2006b; Kosuri et al., 2007; Voliotis et al., 2008).

We propose a detailed model of transcription, at the single nucleotide level, based on the model proposed

in Roussel and Zhu (2006), but that incorporates promoter occupancy time, pausing, arrest, misincorporation

and editing, pyrophosphorolysis, premature termination, and accurately accounts for the region occupied by

an RNAp when on the DNA template. A variable time delayed reaction models the formation of the

promoter-RNAp complex (McClure, 1980), to account for the time that the RNAp is not moving while

occupying the promoter, preventing further transcription initiations. Since most experimental measurements

of transcriptional dynamics are from Escherichia coli, we model transcription in E. coli.

First, we show that when transcription is sparse in time, the detailed model here proposed matches the delayed

model proposed in Zhu et al. (2007), here referred to as the ‘‘reduced model,’’ and that both models accurately

match measurements of gene expression at the single molecule level (Yu et al., 2006). Next, we compare the

dynamics of the two models when the promoter is not repressed. Finally, we show that the detailed model

matches the experimental measures of transcription at the single RNA level (Golding et al., 2005), while the

reduced model is unable to capture some of the dynamics observed, and that noise of events at the elongation

stage affect the dynamics of a simple gene network, the toggle switch, and therefore, are relevant.

2. MODEL OF TRANSCRIPTION

The dynamics of simulations (Ribeiro and Lloyd-Price, 2007) is driven by the delayed Stochastic Si-

mulation Algorithm (Roussel and Zhu, 2006b), based on the original SSA (Gillespie, 1977). Delayed events
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in reactions are represented as, for example, A?BþC(t). When occurring at moment t, B is instanta-

neously produced at t and C placed on a waitlist until it’s released, at tþ t seconds. t can be drawn from a

distribution each time the reaction occurs.

Gene expression has two main steps: transcription and translation. Transcription is the copying of a gene

in the DNA strand by an RNA polymerase (RNAp) into an RNA molecule which is then translated into a

protein. The RNAp unwinds and reads the DNA, making the RNA step by step, adding matching nucleotides

while going through the DNA strand (Alberts et al., 2002).

Transcription has three main phases: initiation, elongation, and termination. Initiation consists of the

RNAp attaching to a promoter and unwinding a portion of the DNA double helix to expose the template

DNA strand. After this, the RNAp speeds up and elongation begins. The nucleotide sequence of the growing

RNA chain is determined by the base sequence of the template DNA. Behind the region where ribonu-

cleotides are added, the RNA chain is displaced and the DNA double helix is reformed. In termination, at the

end of the gene, a single-stranded RNA molecule is released.

The RNAp, at nucleotide ni, can go forward along the DNA template, but can also stop due to pausing or

arrest (Davenport et al., 2000), or go backwards due to editing to correct a misincorporation, or by pyr-

ophosphorolysis (Greive et al., 2005). In addition, the RNAp can prematurely fall off from the DNA strand

(premature termination) (Uptain et al., 1997). The probability of occurrence of each of these pathways is

often sequence-specific and can depend on the presence of specific transcription factors (Greive et al., 2005).

2.1. Reduced delayed model of transcription

The reduced model of transcription consists of a multi-delayed reaction of transcription (reaction 1)

(Ribeiro et al., 2006). To model the experiment in Yu et al., (2006) one also needs reactions of repres-

sion (reaction 2) and un-repression (reaction 3) of the gene promoter region, Pro, by a repressor molecule,

X, since this gene was kept under strong repression (Yu et al., 2006) (reactions 2 and 3 will be identical

when using the detailed model of transcription). Rate constants (in s�1) are set to: kt¼ 0.01, krep¼ 1, and

kunrep¼ 0.1. Time delays (in s) are set to: t1¼ 40, t2¼ 90, and t3¼ 2. Initially, Pro¼ 1, RNAp¼ 40,

RNA¼ 0, and X¼ 100 (Zhu et al., 2007).

ProþRNAp �!kt
Pro(s1)þRNAp(s2)þRNA(s2) (1)

ProþX �!
krep

ProX (2)

ProX �!
kunrep

ProþX (3)

2.2. Detailed model of transcription at the single nucleotide level

During elongation the RNAp occupies *25 nucleotides (Greive et al., 2005). Thus, at nucleotide n, the

RNAp occupies nucleotides [n�D, nþD], where D¼ 12 is the number of nucleotides occupied by an

RNAp to the left and right of its center in the template. Hence, the active centers of two consecutive RNAp’s

cannot be less than 25 nucleotides apart.

The number of RNAp’s free for transcribing at any moment is estimated to be 28 per cell (Bremer et al.,

2003). This amount set here differs from Zhu et al., (2007). However, the initiation rate constants also differ

so that the propensities of transcription initiation are equal in the two models. It’s noted that the amount of

RNAp’s never limited transcription in any simulation.

The following abbreviations are used: Un is an unoccupied nucleotide at position n of the chain. On is a

nucleotide at position n occupied by an RNAp. An is a nucleotide occupied and activated by an RNAp. Pro is

the gene promoter region and a¼ 10, is the number of nucleotides that form the region of elongation initi-

ation. When at these first 10 nucleotides, the RNAp has a slower elongation rate (Hansen and McClure, 1980).

2.2.1. Promoter binding and open complex formation. When the RNAp detects the promoter in the

DNA strand, it binds and forms the closed complex. Next, it unwinds the DNA double helix creating the

open complex, revealing the template DNA strand and allowing the RNAp to begin forming the RNA strand

from nucleotide n1.

The promoter binding (closed complex formation) and the open complex formation are rate-limiting steps

of transcription (McClure, 1980) and, during this stage, that can last from a few seconds to several minutes
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(McClure, 1980), the RNAp does not move to start transcribing. We model this by introducing a delay, toc,

on the promoter release (reaction 1), drawn from a Gaussian distribution with a mean of 40 s and standard

deviation of 4 s, according to experimental measures of an active unrepressed lac promoter (Lutz et al.,

2001).

While previous detailed models do not include this delay, it plays a relevant role, especially when

([RNAp].kinit< toc
�1), for example, causing the distribution of intervals between initiation events to be

Gaussian-like rather than exponential. Transcription initiation is modeled by reaction 4:

ProþRNAp �!kinit
RNAp:Pro(gaussian:soc, soc std) (4)

After the delay elapses and if the first 13 nucleotides are unoccupied, the RNAp can initiate elongation

(reaction 5). When it does, the promoter becomes again available for reactions.

RNAp:ProþU½1, (Dþ 1)� �!
kmove

O1þ Pro (5)

2.2.2. Elongation initiation. In the initial steps, the RNAp moves slower on the DNA template and the

likelihood of pausing and premature termination are greater than in other elongation periods (Artsimovitch,

2000; Hansen and McClure, 1980; Kapanidis et al., 2006; Roberts, 2006). This is due to the different

conformation of RNAp at this stage and, especially, due to the need of having a s factor attached, required

for promoter recognition (Mooney et al., 2005; Lewin, 2008). s usually relaxes its hold from the RNAp after

the first 10 nucleotides (Alberts et al., 2002; Hansen and McClure, 1980) and allows the RNAp to speed up to

its normal elongation speed. Thus, we set the elongation rate at the first 10 nucleotides to five times smaller

than for subsequent ones (the exact difference has not yet been experimentally accessed; reaction 8).

Since we assume a constant pool of nucleoside triphospates (NTPs), reaction 6 and identical ones below

are pseudo-first-order processes (Roussel and Zhu, 2006a).

O1 ���!
kact first

A1 (6)

After transcribing the first nucleotide, the RNAp can move to the next one (reaction 7), activating and

transcribing it (reaction 8). During this period, the RNAp is still occupying all initial nucleotides, so no

preceding nucleotide is released.

AnþUfnþ (Dþ 1)g �!
kmove

O(nþ 1); n\a (7)

O(nþ 1) ���!
kact first

A(nþ 1); n\a (8)

2.2.3. Elongation. During elongation, nucleotides are added one at a time to the growing RNA

molecule according to the DNA sequence. Elongation is divided into two steps. First, the RNAp moves from

the activated nucleotide n to nucleotide nþ 1 (reaction 9).

AnþUfnþ (Dþ 1)g �!
kmove

O(nþ 1)þU(n�D); n[a (9)

Once occupying nucleotide Onþ1, there are several competing pathways. The most likely to occur is

activation (reaction 10), after which the RNAp can again move forwards. The activation step models the

addition of the complementary nucleotide to the growing RNA molecule (Roussel and Zhu, 2006a).

O(nþ 1) �!
kact

A(nþ 1); n[a (10)

The RNA chain elongation rate is usually inferred from the time interval between ‘‘beginning and

end’’ states of transcription. Thus, the rate comprises events such as pausing and arrest, resulting in a

lower ‘‘average’’ elongation rate than in reality (Darzacq et al., 2007). Thus, we set the elongation rate, kact¼
75 nt/s, to the upper range of values measured (Greive et al., 2005; Uptain et al., 1997). The elongation rate

can vary with the growth rate of E. coli (Vogel and Jensen, 1994). The 75 nt/s is consistent with the

duplication time of 55 minutes (Vogel and Jensen, 1994; Yu et al., 2006).
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2.2.4. Termination. When the RNAp reaches the termination sequence, the transcription bubble col-

lapses as the RNA-DNA hybrid disrupts and the RNAp and RNA are released. We modeled termination so that

when the last nucleotide is activated and the mature RNA is released, the RNAp is released and the 12 last

nucleotides are unoccupied (reaction 11). The rate for the transcript release, kf, is 2 s�1 (Greive et al., 2008).

Anlast
�!

kf

RNAþRNAPþUn½last;last�D� (11)

2.2.5. Pausing. Elongation in prokaryotes and eukaryotes is frequently interrupted by pauses (reaction

12) (Herbert et al., 2006; Landick, 2006; Shundrovsky et al., 2004), where the RNAp is halted at a nucleotide

(Davenport et al., 2000). It is noted that pauses, especially due to their high frequency of occurrence, ought to

be explicitly modeled, especially when more than one RNAp can be on the DNA strand.

Pausing is reversible and after a while the RNAp resumes its movement. This interval varies between

pause events. Longer pauses, over 20 s, appear to occur at specific DNA template points. Most pauses last

less than 5 s (Herbert et al., 2006). The rate of occurrence of pause is 0.55 s�1 (Greive et al., 2005; Neuman

et al., 2003).

Notice that this reaction competes with the elongation reaction. The relative value between these two rates

determines the fraction of times each occurs (Gillespie, 1977). Since kpause*kact/136, a pause event occurs,

on average, every 136 activation events, which, in a template of 2445 nucleotides is significant, for example,

for causing traffic when the promoter is expressing at a high rate.

On �!
kpause

Onpaused
(12)

The paused complex can be freed at any time, but on average is spontaneously released after 3 seconds

(reaction 13, dpause¼ 3) or sooner if there is a collision (reaction 14) with a following RNAp (Epshtein and

Nudler, 2003; Greive et al., 2005). Sometimes, the collision causes the other RNAp to pause as well (reaction

15). This is set to have a probability of occurrence of 20% (reaction 15).

Onpaused ���!
1=dpause

On (13)

Onpaused
þA(n� 2D� 1) ����!

0:8 · kmove
OnþA(n� 2D� 1) (14)

Onpaused
þA(n� 2D� 1) ����!

0:2 · kmove
Onpaused

þO(n� 2D� 1)paused
(15)

2.2.6. Arrest. An RNAp can stop irreversibly, if no external factor rescues it, via arrest (reaction 16).

This reaction also competes with activation. Arrests are infrequent, with an estimated rate, karrest, of

0.00027 s�1 (Greive et al., 2005).

On �!
karrest

Onarrested
(16)

RNAp’s can escape from this state with the help of transcription repair coupling factors Mfd or GreA/B

proteins (Borukhov et al., 2005; Park et al., 2002). We set the rate of arrest escape to 0.01 s�1 (darrest¼ 100;

reaction 17). Since, on average, an RNAp is arrested for 100 s, when these rare events occur, transcription is

significantly affected.

Onarrested ���!
1=dpause

On (17)

The RNAp can escape arrest also due to the collision with a trailing RNAp (reaction 18) (Epshtein and

Nudler, 2003). Sometimes this collision leaves the first RNAp still arrested and causes the colliding RNAp to

pause (reaction 19). We set to 80% the fraction of collisions that free the arrested RNAp.

Onarrested
þA(n� 2D� 1) �����!

0:8 · kmove
OnþA(n� 2D� 1) (18)

Onarrested
þA(n� 2D� 1) �����!

0:2 · kmove
Onarrested

þA(n� 2D� 1)paused
(19)
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2.2.7. Misincorporation and editing. Misincorporation stands for the RNAp polymerizing an in-

correct nucleotide at the growing transcript. Mismatches between the RNA and DNA hybrid weaken the

stability of the elongation complex and slow down or halt elongation. This decrease in the binding affinity is

presumed to give the RNAp proofreading capability (Greive et al., 2005). RNAp can cleave, with the help of

elongation accessory proteins such as GreA, a short oligonucleotide sequence containing the mis-

incorporated residue from the growing RNA chain, and correct the error (Erie et al., 1993). This process is

called editing (modeled by reactions 20 and 21). Since during editing the RNAp can back-slide several

nucleotides, we set in the reaction channel via which RNAs with errors are corrected, dcorrect to 5 s (reaction

21), which corresponds to the average time necessary for such correction to completed.

The rate at which the RNAp misincorporates nucleotides varies. Usually, it occurs at 0.05 to 1 min�1 (Erie

et al., 1993; Greive et al., 2005); thus, kerror correct¼ 0.00875 s�1.

On �����!
kerror correct

Oncorrecting
(20)

Oncorrecting ���!
1=dcorrect

On (21)

Not all errors due to misincorporations are corrected, and some RNAs can lead to proteins that are non-

functional. Via reactions 20 and 21, errors are corrected, and the time to do so is accounted for. The cases

where errors are not corrected are accounted for by reaction 22, which competes with the normal termination

reaction (11). We estimated kmis to be 0.05 s�1, given the misincorporation rate per nucleotide and the

number of nucleotides in the gene constructed in Yu et al., (2006).

Anlast
�!kmis

RNAerroneousþRNAp (22)

2.2.8. Pyrophosphorolysis. Pyrophosphorolysis is the inverse of elongation, i.e., it’s the sequential

removal of nucleotides from the growing end of the RNA (reaction 23). It is estimated that the elongation is

favored over pyrophosphorolysis by a factor of *100 (Greive et al., 2005); thus, we set the rate constant of

pyrophosphorolysis, kpyro, to 0.75 s�1.

OnþUfn� (Dþ 1)g �!
kpyro

O(n� 1)þU(nþD) (23)

2.2.9. Premature termination. The RNAp molecule can prematurely fall off the template DNA,

failing to synthesize the full-length RNA (reaction 24). Although rare, this premature termination can affect

regulation of gene expression (Grundy and Henkin, 2006). In general, the elongation complex is stable. The

half-time for dissociation of the RNAp is 60 min (Lewin, 2008). Thus, we set the rate constant of premature

termination to kprem¼ 0.00019 s�1.

On �!
kprem

RNAPþU½(n�D);(nþD)� (24)

3. RESULTS AND DISCUSSION

We first validate our detailed model by confronting it with the reduced model (Zhu et al., 2007) and with

experimental measurements of gene expression at the single protein level (Yu et al., 2006). This experiment

measured the expression of the gene construct tsr-venus, which has 2445 nucleotides. To allow an exact

count of the number of proteins and RNAs, the gene was strongly repressed. Thus, besides the reactions

modeling gene transcription, we include reactions 2 and 3 that model the repression and unrepression of the

promoter with a repressor molecule (Zhu et al., 2007).

In each simulation we measure the dynamics of the expression of a single tsr-venus gene. Thus, we refer to

each simulation as a ‘‘cell.’’ Each ‘‘cell’’ has a lifetime of 55 minutes (Yu et al., 2006) and is initialized with

100 repressor molecules X (Zhu et al., 2007).

Figure 1 shows the distribution, from 1000 simulations, of the fraction of cells with a given number

of completed transcription events (i.e., number of RNAs produced). The two models match with the
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measurements from (Yu et al., 2006). We use the two-sample Kolmogorov-Smirnov test (KS test) to access

the goodness of fit of simulation to experimental results. The p-values of reduced and detailed model

distributions confronted with the experimental data are 0.87 and 0.95, respectively. Thus, under strong

repression, both models match the experimental data very accurately and thus, are equivalent.

In both models, since krep¼ 1 and kunrep¼ 0.1, and since X is 100, repression is 1000 times more propense

than unrepression, and thus, only *0.1% of the time should the promoter be available to transcribe. Since the

cell lifetime is 3300 s, the expected interval that the gene is available is 3.3 s. Because [RNAp].kinit¼ 0.4,

the expected number of transcription events during this time is *1.3. This quantity is slightly lower since the

promoter release is delayed, which decreases the interval that the promoter is free to transcribe. In agree-

ment, the three distributions have an average number of transcriptions per cell of *1.2 (Fig. 1).

Since transcription events are rare, reduced and detailed model have identical dynamics. This is not

expected to hold if the number of transcription events increases significantly, due to the emergence of traffic

events and other alternative reaction pathways such as pause.

Thus, we now compare the transcriptional dynamics of the two models in the absence of repressor

molecules X. In Figure 2, we plot the normalized distribution of the number of cells, out of 1000 cells, which

produced a given amount of RNAs during their lifetime.

The transcriptional dynamics of the two models differ significantly. The distribution of the number of

RNA molecules produced in the reduced model has a mean of 75.7 per cell whereas the detailed model has

Table 1. Values of the Rate Constants Used in the Detailed Model

Reactions Parameter Rate constant Reference

Repression krep 1 s�1 Zhu et al., 2007

Unrepression kunrep 0.1 s�1 Zhu et al., 2007

Initiation kinit 0.0145 s�1 www.openwetware.org

Elongation initiation kact first 15 s�1 Estimated

Elongation kmove, kact 75 s�1 Vogel et al., 1994

Termination kf 2 s�1 Greive et al., 2008

Pausing kpause 0.55 s�1 Greive et al., 2005

Release pause kpause release 1/3 s�1 Greive et al., 2005

Arrest karrest 0.000278 s�1 Greive et al., 2005

Release arrest karrest release 1/100 s�1 Estimated

Editing kerror correct 0.00875 s�1 Greive et al., 2005

Release editing kedit release 1/5 s�1 Estimated

Misincorporation kmis 0.05 s�1 Estimated

Pyrophosphorolysis kpyro 0.75 s�1 Greive et al., 2005

Premature termination kprem 0.00019 s�1 Lewin et al., 2008

Open complex form. toc m¼ 40 s, s¼ 4s Zhu et al., 2007

The estimated values fit experimental data from Yu et al., (2006) of single gene expression at the single protein level (Zhu et al.,

2007) and for which the experimental values are not yet published.

FIG. 1. Distributions of the fraction of cells with a given number of completed transcription events (i.e., number of

RNAs produced) of the two models and experiments from Yu et al. (2006). The p-values of the KS test of reduced and

detailed models distributions confronted with the experimental data are 0.87 and 0.95, respectively. For the two models,

the distributions are from 1000 independent simulations each lasting 3300 s where genes are subject to repression.
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73.4 (this quantity does not account for the 1.9 erroneous RNAs produced on average in each cell). The

coefficients of variation (CV) are 0.008 and 0.024, respectively, differing significantly.

The difference in CV can be explained by the fact that the detailed model has more sources of sto-

chasticity. In the reduced model there is only one stochastic event, transcription initiation, while the detailed

model has additional noise sources, such as pauses, arrests, premature terminations, and traffic.

As said, a traffic event occurs (in the detailed model) when an RNAp molecule is impeded to move

forward due to the presence of another RNAp molecule in the nucleotides ahead. Traffic can play a major

role in transcriptional dynamics (Roussel and Zhu, 2006b). Thus, we measure traffic occurrences, i.e., when

an RNAp molecule is inhibited from moving forward due to the presence of another RNAp occupying

subsequent nucleotides. It is noted that while traffic can decrease the elongation rate, it can also have the

opposite effect, by diminishing the duration of pauses and arrests (Epshtein and Nudler, 2003) due to

collisions between RNAp’s (reactions 14, 15, 18, and 19). The binned distribution of the number of cells

with total number of traffic events, from a set of 1000 cells, is shown in Figure 3.

The repression to which the gene is subject to is controlled by the propensity of reaction 2 (Gillespie,

1977), which is determined by the product krep.[X]. We can observe how the number of traffic events varies

with the number of transcription events by repeating the previous simulation for cells with various values

of krep.

As seen in Figure 4, traffic increases sharply when krep< 0.2. Thus, one could expect that the tran-

scriptional dynamics of the two models match for krep> 0.2. We used the Kolmogorov-Smirnov test (KS

test) to access the similarity of the transcriptional dynamics of reduced and detailed model, for each value of

krep. Usually, a threshold of 0.1 for the p-bias is set to accept or reject the null hypothesis. The two models

matched only for krep> 0.8, meaning that traffic is not the only cause for differences in the dynamics of the

FIG. 2. Normalized distribution of the fraction of cells out of 1000 cells that transcribed a given number of RNA

molecules during their lifetime of 3300 s, for the reduced and detailed models, in the absence of repressor molecules.

The cell-to-cell phenotypic variability of cells with a detailed model of transcription is much higher due to the

stochasticity at the elongation stage.

FIG. 3. Normalized binned distribution of the fraction of cells, out of 1000 cells, with a given number of traffic events

during their lifetime of 3300 s (the bin size is 50).
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two models as previously assumed (Roussel and Zhu, 2006a). Even when traffic is not significant, as soon as

the noise in the elongation phase due to the occurrence of pauses, arrests, premature terminations, etc starts

playing a role, the dynamics of the two models diverge significantly (see Table 2 for the frequency of

occurrence of these events).

One important difference between the dynamics of the two models, only partially due to traffic events in

the detailed model, concerns the length of the intervals between transcription completions. From simulations

of 1000 cells, where the repressor molecule is absent, we accessed that the mean time interval between

completions is *42.6 s (reduced model) and *42.7 s (detailed model), but due to the stochasticity of the

processes occurring during elongation, the standard deviations differ significantly, equaling 2.64 s in the

reduced model and 18.9 s in the detailed model.

The amount of traffic caused by each alternative reaction pathway ‘‘separately’’ can be estimated by

simulating cells where each alternative reaction pathway is removed, one at a time. For example, to remove

pauses one sets kpause¼ 0. In Table 3, we show the average number of traffic events observed in 1000 cells,

with several alternative reaction pathways removed, one at a time.

As seen from Table 3, three alternative reaction pathways (pause, arrest and pyrophosphorolysis) con-

tribute to traffic (the other alternative reaction pathways do not have a significant contribution), confirming

that the number of traffic events is significantly underestimated if these alternative reaction pathways are not

modeled.

Gene expression has been shown to occur by bursts, that is, several RNAs produced in short time intervals,

followed by periods of inactivity (Berg, 1978) (Golding et al., 2005; Yu et al., 2006). This is accurately

captured by reduced and detailed models (Zhu et al., 2007) given an accurate initiation rate of transcription.

FIG. 4. Average number of traffic events in single cells, averaged over 1000 cells per data point, during their lifetime

of 3300 s, for cells with promoters subject to various degrees of repression.

Table 2. Average Number of Events during Cells’ Lifetime, Averaged over

1000 Cells, for Various Values of k
rep

krep RNA

Erroneous

RNA

Premature

terminations Pauses Arrests Pyrophos. Traffic events

0 73.4 1.91 0.22 697.7 0.347 948.011 234.5

0.1 11.0 0.26 0.04 103.5 0.058 142.077 4.71

0.2 5.9 0.15 0.03 55.7 0.025 76.286 1.149

0.3 4.1 0.10 0.02 39.0 0.018 53.466 0.181

0.4 3.1 0.09 0.01 29.2 0.018 40.235 1.283

0.5 2.5 0.06 0.01 23.9 0.008 32.801 0.159

0.6 2.0 0.05 0.01 19.1 0.007 25.984 0.026

0.7 1.7 0.04 0.004 16.4 0.014 22.437 0

0.8 1.63 0.039 0.003 15.4 0.012 20.751 0

0.9 1.435 0.041 0.004 13.7 0.005 18.519 0

1 1.252 0.035 0.008 12.1 0.009 16.361 0
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However, if the gene is not subject to repression, when observed in detail, it’s visible that the time series of

RNA production of cells modeled with detailed and reduced models differ. Namely, in small time scales

(*60 s), while in the reduced model the RNAs are produced in intervals equal or larger than the promoter

time delay, the RNAs in the detailed model can appear in ‘‘pulses’’ that is, several RNAs completions can

occur within an interval smaller than the promoter delay length.

The pulses are a result of the stochasticity at the elongation stage. For example, an RNAp might be

delayed due to one or several events, and a following RNAp might approach it at the strand. The RNAp’s

will then eventually complete transcription separated by a very short time interval. Due to the minimum

separation of 25 nucleotides, the minimum interval between completions is *1 s, which is much smaller

than the *40 s which initially separate the two RNAp’s due to the promoter delay.

This pulsing in transcription completions, combined with the stochastic nature of decay events, explains

the higher variability in the RNA concentration in small time scales and thereby, proteins concentration,

since RNA and protein concentrations correlate in E. coli (Golding et al., 2005). Therefore, the pulsing might

play a role in cellular dynamics, especially in the contexts in which noise in gene expression plays a role. For

example, differentiation is in some cases dependent on concentration thresholds (Kaern et al., 2005), who’s

variance depends on the size distribution of the bursts and, at a smaller time scale, on the size distribution of

pulses. Stronger variance can allow overcoming thresholds otherwise unreachable.

To show the ‘‘pulsing’’ in the RNA concentrations captured by the detailed model, Figure 5 shows a detail

of the time series of RNA production in single cells of the two models. The RNAs in the detailed model

fluctuate further away from the expected value (attained assuming a constant and continuous production of

RNAs over time) than for the reduced model, due to long intervals where no RNA is produced, compensated

by the occurrence of pulses of completion of RNAs. Notice that we chose a time interval for which both cells

have identical number of RNAs produced in the beginning and end of the time series, to show that this

pulsing does not affect mean values of RNA concentration, only its variance in time.

We now compare the dynamics of the pulsing of RNA concentrations during cells’ lifetime in the two

models with experimental measurements reported in Golding et al., (2005). To model this experiment, in

which RNA concentrations were measured at the single cell level in intervals of 60 s (cell lifetime is 6000 s)

(Golding et al., 2005), we need, besides the reactions related to transcription, to introduce a decay reaction

for the RNAs. Additionally, this gene has *4000 nucleotides (Golding and Cox, 2004).

The average time between the productions of consecutive RNAs was measured to be *150 s (Golding et

al., 2005). From this, one can infer that the production rate of RNAs must be at least (150*[RNAp])�1 s�1,

which equals 0.00024 s�1. Also, it was measured that the average number of RNAs in the cell after a long

transient was *10 (Golding et al., 2005). From this, the decay rate of RNA is set to 0.00067 s�1.

The initiation rate of transcription, kinit, to result in the desired production rate of RNAs must account for

eventualities such as premature termination that cause the number of RNAs produced to be smaller than the

number of transcription initiations.

Also, the model must account that, during the cell lifetime, the gene promoter region is only available for

transcription *1/6 of the time, being inactive the rest of the time (Golding et al., 2005). We added this

alternative reaction pathway by, at randomly chosen moments, setting the promoter inactive, being available

to express 1/6 of the time.

The kinit that matches the measured RNA production rate is 0.00216 s�1 given which the detailed model

matches the measured RNA production rate, RNA decay rate, and RNA quantities at equilibrium of *10

molecules (Golding et al., 2005). The average time to reach the concentration at equilibrium (*3000 s) also

matches the measurements (Golding et al., 2005).

Table 3. Average and Coefficient of Variation of the Number of

Traffic Events per Cell (1000 Cells Simulated)

Reaction pathways P0 mtraffic cvtraffic

Detailed model 0.12 204.13 1.75

kpyro¼ 0 0.11 203.83 1.85

karrest¼ 0 0.15 171.30 2.02

kpause¼ 0 0.70 41.461 3.98

kpyro, karrest, kpause¼ 0 0.99 9.8430 14.5

In the first column, P0 is the fraction of cells where traffic events did not occur.
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Both reduced and detailed model can accurately match the average number of RNAs produced, since the

interval between initiations is long, thus traffic rarely occurs. But when comparing the number of occur-

rences and amplitude of pulses, the two models differ significantly, and only the detailed model can

accurately match the observations.

Because in the experiments the measurements were taken in intervals of 1 minute, we measure the RNA

time series in the models with this sampling frequency. A ‘‘pulse’’ is defined as an increase in number of

RNAs (by 2 or more) occurring in a time step and the pulse amplitude is the amount by which the number of

RNAs increases in that interval.

Notice that in the reduced model, RNAs cannot be produced in intervals shorter than 40 s, thus, pulse

amplitudes are never higher than 2, unlike in the detailed model. Also, the total number of pulses observed in

the detailed model is much higher, matching the experimental measurements, due to the noise at the

elongation stage. From 100 simulations of the detailed model, we obtained the average pulsing distribution

during cell lifetime, and confronted it to average pulsing distribution obtained from experimental mea-

surements (Fig. 6). As seen from Figure 6, the detailed model accurately captures the dynamics of pulsing.

These pulses can play a significant role in the dynamics of gene regulatory networks, especially con-

sidering that RNAs have a short lifetime, thus the importance of a modeling strategy that captures this

dynamical feature.

To exemplify how the differences in the stochasticity in transcription of the two models of gene

expression can affect the dynamics of gene regulatory networks, we simulate a toggle switch using the two

modeling strategies. A toggle switch consists of two mutually repressive genes (Gardner et al., 2000).

Transcription reactions are those of the detailed and the reduced models and the gene length is set to 2445

nucleotides. The other reactions are identical for both toggle switches and follow the model of toggle switch

used in Ribeiro et al., (2006). Namely, there are reactions for the translation of RNAs (reaction 25),

dimerization and undimerization of the proteins (reaction 26), repression of the promoter of each gene by the

other gene’s dimer (reaction 27) and decay of proteins (reactions 28 and 29). These reactions rate constants

and delays are set to: t3¼ 2, t4¼ 58, t5,avg¼ 370 and t5,std¼ 140, ktr¼ 0.00042 (Zhu et al., 2007), krep¼ 0.5,

kunrep¼ 0.005, kd¼ 10 and kud¼ 0.1, and pd¼ 0.003 (Zhu et al., 2007). Initially, there is one promoter of

each gene, the number of RNAp’s is 28 (Bremer et al., 2003), and there are 100 ribosomes (rib) (Zhu et al.,

2007).

RNAiþ rib �!ktr
RNAi(s3)þ rib(s4)þPi(gaussian : s5, avg, s5, std) : i¼ 1; 2 (25)

PiþPi �!
kd

 �
kud

Di : i¼ 1, 2 (26)

ProiþDj �!
krep

 �
kunrep

ProiDj,8i, j¼ 1, 2 ^ i 6¼ j (27)

FIG. 5. Time series, from 900 s to 2400 s (1 data point per second), of the number of RNAs produced by a cell with

the detailed model of gene expression and by another with the reduced model.
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ProiDj �!
pd

Proi : 8i, j¼ 1, 2 ^ i 6¼ j (28)

Pi �!
pd

B : i¼ 1, 2 (29)

We set high rates for dimerization and decay of monomers, and weak decay for dimers. These two

combined conditions result in short lifetimes of monomers and long lifetime of dimers, so that pulses in

transcription are mostly responsible for the production of dimers which otherwise almost do not form. Less

dimers results in a loss of stability of the toggle switch. Thus, counter-intuitively, the detailed model, with

higher noise level at the transcriptional level, is the one whose toggle switch has more stable dynamics, i.e.,

toggles less frequently.

We simulated 1000 cells, each with a toggle switch, using reduced and detailed models of transcription.

On average, the toggle switch with the detailed model has an average toggling frequency of *2.10�6 s�1

while the one with the reduced model has an average toggling frequency of *7.10�6 s�1. The major

difference between the two models is the mean level of proteins dimers over time (D1þD2). In the reduced

model (D1þD2)*13.1 while in the detailed model (D1þD2)*13.9, explaining the higher toggling fre-

quency in the reduced model. As an example, a time series of dimer amounts (Fig. 7) shows the bistable

behavior of the model of toggle switch analyzed.

The difference in the toggling dynamics of the two switches show that events occurring at a fast time scale

(proteins’ concentration variation due to RNA pulsing) can affect the dynamics of events that occur at a

much slower time scale (switching).

FIG. 6. Average distribution of increments of the RNA quantity, from one time step to the next, during cells’ lifetime.

Experimental data of three cells (Golding et al., 2005) and detailed model data of 100 cells.

FIG. 7. Sample of a time series of the dimer quantities of a toggle switch whose genes’ expression is modeled

according to the detailed model.
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4. CONCLUSION

We presented a new delayed stochastic model of transcription that models elongation explicitly, at the

single nucleotide level, and thereby allows to model pause, arrest, misincorporation and editing, pyropho-

sphorolysis, and premature termination as explicit events. The model, whose parameter values are taken

from experimental measurements, is validated by matching its transcriptional dynamics with a multi-delayed

reduced model (Ribeiro et al., 2006) and measurements of gene expression at the single protein level (Yu

et al., 2006) of a strongly repressed gene, since in this scenario the dynamics depends mostly on transcription

initiation.

When the gene is less repressed, the dynamics of our detailed model and of the reduced delayed model do

not to match, indicating that the noise at the elongation stage cannot be neglected. Importantly, the dif-

ferences in the dynamics of reduced and detailed model are not solely due to the emergence of traffic. Events

such as pauses and arrests have a non-negligible role even when not sufficiently frequent to cause collisions

between RNA polymerases. This result is of importance since single-step multi-delayed models of tran-

scription were assumed accurate as long as there were no collisions between RNAp’s in the strand (Roussel

and Zhu, 2006a).

Importantly, our detailed model matched, at the single RNA level, the dynamics of transcription of an

induced gene (Golding et al., 2005) while the reduced model failed to do so in some aspects, such as in the

distribution of intervals between RNA completions. Also, the alternative reaction pathways incorporated in

our detailed model have dynamical consequences not captured in previous models with explicit elongation

(Roussel and Zhu, 2006a; Voliotis et al., 2008) especially due to causing collisions between RNAp’s.

The realistic time length for the promoter complex formation (McClure, 1980) here modeled is also

nonnegligible, since it also plays a very significant role (e.g., in traffic intensity).

One important feature observed in the dynamics of an induced gene modeled with the detailed model is

the existence of pulses in the time series of RNA production (RNA completions separated by a time interval

smaller than the minimum interval between transcription initiations). The simulations results matched the

average number of pulses and the distribution of pulses intensities obtained from measurements of gene

expression at the single RNA level (Golding et al., 2005), showing that when gene expression is not strongly

repressed, the detailed model dynamics is more accurate than the delayed single-step model.

Several works focusing on the dynamics of single gene expression have suggested that noise at the

elongation stage might play a relevant role in the dynamics of gene regulatory networks (Golding et al.,

2005; Voliotis et al., 2008; Ozbudak et al., 2002; Käern et al., 2005). Here, we investigated some of the

consequences by comparing the dynamics of two toggle switches, where in one transcription is modeled by

the reduced model and in the other, modeled by the detailed model.

We showed that, as suggested, the transcriptional noise arising at the elongation stage does affect tran-

scriptional dynamics of single genes, even in the absence of traffic, and affects significantly the dynamics of

the toggle switch, even though the frequency of toggling events is much smaller than the frequency of the

fluctuations in RNA levels due to the noise at the elongation stage.

This modeling strategy provides means to investigate in silico the role that each of the alternative reaction

pathways included plays in transcriptional dynamics. Here, we focused on how these alternative reaction

pathways contribute to the emergence of traffic and to the variability in RNA time series of individual cells.

More importantly, we showed that the dynamics of gene networks is affected by the noise arising at the

elongation stage. Many other questions require future addressing, such as how the alternative reaction

pathways (e.g., pause) might be used by cells to regulate gene expression.
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