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Abstract. We show that electric-dipole-allowed surface second-harmonic (SH)
generation with focused Gaussian beams can be described in terms of Mie-
type multipolar contributions to the SH signal. In contrast to the traditional
case, where Mie multipoles arise from field retardation across nanoparticles,
the multipoles here arise from the confined source volume and the tensorial
properties of the SH response. We demonstrate this by measuring strongly
asymmetric SH emission into reflected and transmitted directions from a
nonlinear thin film with isotropic surface symmetry, where symmetric emission
is expected using traditional formalisms based on plane-wave excitation. The
proposed multipole approach provides a convenient way to explain the measured
asymmetric emission. Our results suggest that the separation of surface and bulk
responses, which have dipolar and higher-multipolar character, respectively, may
be even more difficult than thought. On the other hand, the multipolar approach
may allow tailoring of focal conditions in order to design confined and thin
nonlinear sources with desired radiation patterns.
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1. Introduction

The optical responses of materials are usually described by considering only electric-dipole
interactions between light and matter. Such an electric-dipole approximation is justified by
the fact that the higher-multipole interactions, most importantly magnetic-dipole and electric-
quadrupole interactions, tend to be much weaker [1]. Such interactions, however, need to be
considered, e.g., to explain optical activity of chiral materials [2].

For the case of nanostructured materials, one needs to consider two different types of
multipole effects. The first arises from the atomic-level light–matter interaction Hamiltonian [3]
and the other from Mie scattering theory even when the atomic-level interaction has purely
electric-dipole origin [4]. In the latter case, retardation of electromagnetic fields across
nanoscale particles gives rise to effective multipole terms in the scattering pattern. Although
Mie theory is usually associated with spherical particles, it is possible to show that any
scattering pattern outside a finite sphere enclosing the sources can always be expanded in similar
multipole terms [1, p 439]. Multipole effects can become considerable when the particle sizes
are comparable to wavelength, as recent studies of nanoparticles have shown [5–12]. But a
complete understanding of such phenomena is still lacking in order to utilize multipole effects
in applications such as in metamaterials or optical antennas [13–15].

Multipole effects have particular importance in nonlinear optics, because second-order
nonlinear effects are electric-dipole-forbidden in centrosymmetric materials [16]. A dipole-
allowed second-order signal can therefore arise only from the broken symmetry at the material
surface or interface [17]. The second-order effects, however, can also occur in the bulk of
centrosymmetric materials due to magnetic and quadrupole effects. Separation between the
surface and the bulk effects has been notoriously difficult [18–20], only recently achieved in
an unambiguous and quantitative way [21, 22]. Effective, Mie-type multipoles can also play
a role in nonlinear optics as shown by several nonlinear studies from colloids and arrays of
nanoparticles [5–12, 23–28].

Independent of their atomic-level or effective origin, the various multipole sources
differ with regard to their far-field radiation patterns and polarization [1]. More specifically,
interference between appropriate multipole terms can be used to control the directionality of
the radiation pattern [14, 24]. In nonlinear optics, this could lead to nanoscale sources, in other
words optical antennas, with emission enhanced in one direction and suppressed in the opposite
direction. In traditional nonlinear optics, this is only possible through phase-matching effects,
which require samples much larger than wavelength.
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In this paper, we show that multipole effects can occur also due to the finite profile
of focused Gaussian laser beams. In addition, we show that the multipole effects can even
be efficiently controlled in nonlinear optics by using focused Gaussian beams, although the
atomic-level light–matter interaction has an electric-dipole origin. The source region is then
inhomogeneous and limited by diffraction to the scale of a wavelength. On the other hand,
from the viewpoint of far-field radiation, the source region is well confined, implying that the
radiation pattern can be expressed as a multipole expansion, where a number of multipoles are
expected to contribute to the total radiation pattern. We demonstrate these effects by measuring
second-harmonic generation (SHG) from thin films of silicon nitride (SiN), which have the
symmetry of an isotropic surface. The experiments are performed using focused Gaussian
TEM00 beams at normal incidence. By fully accounting for the vector properties of the spatially
varying focal fields and the tensorial character of the nonlinearity, we observe strong differences
between the SHG signals emitted in the transmitted and reflected directions. The results are
shown to be compatible with the characteristics of the effective multipole moments of the source
distribution.

2. Theory and simulations

In order to understand qualitatively how focused beams lead to effective multipole effects, we
write the second-harmonic (SH) polarization at a frequency ω in the form

P(r) = ε0χ
(2)(r) : E(r)E(r) ∀r ∈ R3, (1)

where E is the field at the fundamental frequency ω/2, χ
(2)

i jk is the second-order susceptibility
tensor for SHG and r = (x, y, z) denotes the position vector in the three-dimensional Euclidean
space R3. This form represents the traditional electric-dipole approach to nonlinear optics,
where the fields and the nonlinear source polarization are spatially varying [29, 30]. For the
case when the fundamental beam is a focused Gaussian beam, the source polarization decays
rapidly in space and can be expressed using the Helmholtz decomposition as [1, p 241]

P = Pv + ∇ × Pp, (2)

where ∇ × Pp is the divergence-free and Pv is the curl-free part. In the presence of nonlinear
magnetization M, the effective source polarization would be of the form [19]

Peff = P +
1

ω2µ
∇ × M, (3)

where µ is the permeability. Comparison of equations (2) and (3) thus suggests that the
divergence-free part of the polarization is equivalent to a magnetic source term.

The connection between the spatially varying sources and the multipole approach can be
made explicit by expressing the electric component of the emitted field at the SH frequency
as [1, p 431]

ESH = η

∞∑
l=1

l∑
m=−l

[
i

k
aE

l,m∇ × h(1)

l (kr)Xl,m + aM
l,mh(1)

l (kr)Xl,m

]
, r = |r| > R, (4)

where aE
l,m and aM

l,m are electric and magnetic multipole moments, respectively, Xl,m are the
vector spherical harmonics (functions of the spherical polar angles), h(1)

l are the spherical
Hankel functions of the first kind and lth order, η is the intrinsic impedance and k is the
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Figure 1. Schematic representation of the focusing scheme and the coordinates
used. For the case of a thin, homogeneous surface sample, the SH emission is
traditionally thought to be symmetric.

wavenumber of the SH field. The sources are required to vanish outside a sphere S of radius R.
The time-dependence exp(−iωt) is also assumed. Note that the electric (magnetic) moments of
successive orders have opposite parity, whereas the electric and magnetic terms of a given order
also have opposite parity [1, p 436]. An obvious way to control the directional properties of the
emission is therefore to interfere an electric dipole source with a magnetic dipole and/or electric
quadrupole. The multipole moments are obtained from the electric-dipole sources as (for the
derivation see the supplementary data, available from stacks.iop.org/NJP/14/113005/mmedia)

aE
l,m ∝

∫
S

Y ∗

l,m

(
−c∇ · P

∂

∂r
(r jl(kr)) + kωr · P jl(kr)

)
dV, (5)

aM
l,m ∝

∫
S

Y ∗

l,mr · (∇ × P) jl(kr)dV, (6)

where Yl,m are the spherical harmonics and jl are the spherical Bessel functions of the first kind
and lth order [1, p 441]. Note that for sources confined to volumes much less than wavelength
kr � 1, the second term of the integrand in equation (5) vanishes. For l = 1 the first term
becomes ∇ · PY ∗

1,mr , and its integration yields the components of the total dipole moment in the
volume. For larger sources, the interpretation is more complicated, because a number of electric
and magnetic multipoles can contribute to the emission in the far field. The interpretation of
equation (6) is always relatively straightforward, i.e. an effective magnetic moment arises from
the curl of the source polarization. Thus we see that in general a non-zero ∇ × P is required to
obtain a magnetic response.

In order to demonstrate these general principles and study the role of ∇ × P in SHG, we
use samples with isotropic achiral surface symmetry. Such samples have the highest possible
surface symmetry and thus provide a convenient model case to investigate the role of the various
multipoles in the nonlinear response. Our samples are thin films (20 and 50 nm thicknesses) of
amorphous SiN, prepared by depositing SiN on fused silica substrates using plasma enhanced
chemical vapor deposition [33]. Such samples have full rotational symmetry about the film
normal. They are therefore equivalent to isotropic surfaces with the non-vanishing components
of the electric-dipole susceptibility tensor χ

(2)

i jk as zzz, zxx = zyy and xxz = xzx = yyz = yzy,
where z is the film normal (figure 1). In addition, phase matching issues can be neglected
because of the small film thickness. The focusing conditions correspond to normal incidence,
numerical aperture (NA) of 0.8 and a pupil filling factor of 1. Note that the focusing conditions
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Figure 2. Calculated amplitudes of (a) x- and (b) z-components of the
fundamental electric field and the corresponding radiated SH powers per unit
solid angle from the isotropic SiN surface (c–f). The field amplitudes in panels
(a) and (b) are normalized to 10. The tensor components used in the calculations
are indicated in plots (c–f). The numbers beside the patterns denote the maximum
values of the emitted power, normalized to the maximum value of the full χ (2)

tensor case.

give rise to longitudinal (z direction) field components required for coupling with the present
susceptibility tensor at normal incidence.

For a qualitative understanding, we first consider an x-polarized fundamental beam and
calculate the resulting electric field at the waist of the focused beam using an angular spectrum
representation (figures 2(a) and (b)). The normal (z) component of the focal field is odd in x , i.e.
it consists of two lobes with opposite phases. The other components, on the other hand, are even.
It is then easy to see that the nonlinear polarization P due to the zzz or zxx components can
never be an odd function (with respect to the x coordinate) [1]. But when the xxz component
and the corresponding P are also considered, we see that similarly to Ez, also Px is now an
odd function. This leads to a situation where the contribution from ∇ × P over the interaction
volume can be expected to be large.

Using equation (1), we then calculate the source polarization for SHG at the beam waist
(z = 0), and finally the emitted SH powers per unit solid angle using both Green’s function
approach [31, 32] and the proposed multipole approach. As expected, both approaches led
to the same results, which are shown in figures 2(c)–(f). In order to understand the origin
of the directionality and the interference effects in the SH emission, we present the results
separately for different susceptibility components. In the calculations, we use relative values of
zzz = 1, zxx = 0.19 and xxz = 0.2 for the non-zero susceptibility components, corresponding
to the recently measured values for the SiN films [33]. For simplicity, only free-space Green’s
functions are considered, since reflections due to the interfaces cannot explain the measured
differences of SH emission and would only improve the quantitative accuracy of the proposed
multipolar formalism. Also, the scattered fields at the fundamental frequency are neglected
in the calculations since the samples are transparent and thus weakly scattering. Finally, we
calculate the normalized multipole moments aE

l,m and aM
l,m and find that the only non-zero electric

moments occur for m = 0, ±2. The non-zero magnetic moments correspond to m = ±2 and the
first seven of the l terms are found to be most dominant. We note that when using isolated tensor
components, the non-vanishing moments are such that corresponding multipoles have the same
parity. When considering the full tensor, this condition is no longer met and interference can
occur.
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Figure 3. The setup for measuring transmitted and reflected SH emission.
The fundamental beam was first linearly polarized with a polarizer (P) and
passed through a rotating quarter-wave plate (QWP). In order to keep the input
polarization pure, the dichroic filter (DF) was only slightly tilted from normal
incidence. The reflected SHG from DF was guided to a photomultiplier tube
(PMT) using a D-shaped mirror (DM). Interference filters were used in both
detection arms to block the fundamental beams.

3. Experiment

In our experiments, we measure the transmitted and reflected total radiated SH powers into
the far-field while changing the polarization of the input beam (figure 1). The polarization
measurements are important because our calculations predict that, in addition to different
SH emission strengths in the two directions, their polarization dependences are qualitatively
different, allowing key evidence to be obtained even without relying on precise calibration of
the signal collection efficiencies in reflection and transmission.

For measurements, a custom-built SHG microscope setup with input femtosecond laser
(central wavelength at 1060 nm) providing 200 fs pulses at 82 MHz repetition frequency was
used (figure 3). The fundamental beam with an average power of 10 mW was focused onto the
samples with an NA = 0.8 microscope objective. The reflected SHG emission was collected
by the same focusing objective, and the transmitted SH emission was collected by an additional
identical microscope objective placed to the back of the sample. The collected SH emission thus
corresponds now to the calculated SH powers per unit solid angle (figures 2(c)–(f)), integrated
over the numerical aperture (NA = 0.8) of the collecting objectives. In addition, the use of high-
NA collecting objectives is important, since there is no radiation into the strictly forward and
backward directions, as can be seen in figure 2(c). The SH emission was then separated from
the fundamental beam by dichroic and interference filters, and measured simultaneously by two
photomultiplier tubes connected to a photon counting unit. The polarization control of the input
beam was done by a rotating QWP, and measurement times of 30 s and angle steps of 5◦ for the
QWP were used. The QWP angles of 0◦, 90◦, 180◦, etc corresponded to linear input polarization
and angles of 45◦, 135◦, 225◦ and 315◦ to circular input polarizations.

4. Results and discussion

First we measured SHG responses from gold nanodots (radius 75 nm) in order to calibrate
the relative detection efficiencies of both detection arms. The collection efficiency for the
transmitted SHG was seen to differ from that of reflected SHG by a factor of 2.13, which
was used for the mutual calibration of the two SHG signals. We emphasize, however, that
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Figure 4. Measured SHG responses from an SiN thin film (thickness 50 nm) as
a function of rotating QWP. The transmitted (black line) and the reflected (red
line) emission clearly differ from each other and agree well with the calculations
(dotted lines).

the calibration was performed only to increase the accuracy of our measurements, and is not
necessary for demonstrating the effect.

After the calibration, we measured the SHG from SiN thin films. Figure 4 shows the
measured and calculated SHG responses as a function of the rotation angle of the QWP from
the SiN film with a thickness of 50 nm. The average ratio for transmitted and reflected SHG was
measured to be 4.06, and more importantly, the polarization dependences of the reflected and
transmitted SHG responses clearly differ from each other. The measured SHG responses also
correspond surprisingly well with the modeled responses based on both the Green’s function and
the proposed multipolar approaches (see section 2 for details). For the calculations, no fitting
besides normalization to the maximum of transmitted SHG response was performed.

We emphasize that our samples are highly transparent and very thin (thickness less than
λ/10). Possible phase matching or Fabry–Perot issues can be ruled out due to the sample
thickness, because no significant phase accumulation of the fields can occur over such a short
distance. Neither can absorption explain the observed differences, since it could not explain the
polarization dependences. The samples should therefore emit symmetrically in the transmitted
and reflected directions. We also exclude any response from the fused silica substrate as an
explanation, since we were not able to get any measurable SHG from the substrate even
with input beam powers exceeding 30 mW. The most plausible explanation for the results
is thus interference between multipoles of different parities, in particular between electric
and magnetic multipoles. We believe that magnetic multipoles play an important role due to
non-vanishing ∇ × P. This is also supported by the calculated multipole moments, where the
magnetic moments were considerably large as is seen in figure 5.

The proposed multipole approach also provides an elegant explanation for the measured
polarization dependence of the SH emission. When the input polarization changes from linear
to circular, the calculated multipole moments change, respectively. The behavior is seen in
figure 5(e), where the calculated multipole moments for left-handed circular input polarization
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Figure 5. The magnitudes of the multipole moments of the nonlinear polarization
source induced by a focused TEM00 beam. The tensor components used in
the calculations are indicated in plots (a)–(e). The vertical axis corresponds to
the l values and the horizontal axis to the m values. The numbers above the
plots indicate the maximum value. It is important to note that only when (a)
the full χ (2) tensor is considered, multipoles with different parity arise, giving
rise to interference effects. Interference effects between different multipoles can
also occur when circularly polarized input beams are used (e), but are reduced
compared to linearly polarized input (a).

are shown. In essence, the strengths of multipoles with different parities are reduced by
changing the input polarization into circular. This leads to reduced interference effects and thus
a decreased ratio between the transmitted and the reflected emission as was measured.

Our results provide new insights for understanding the connection between SHG and
multipolar effects. Firstly, the results show the power of focused beam geometry and consequent
theoretical formalism [32, 34], since SHG is forbidden from our samples at normal incidence
and in the limit of plane-wave excitation [16]. Secondly, the results show that electric-dipole
interactions can give rise to strong effective magnetic responses, if the source polarization is
spatially varying and the condition ∇ × P 6= 0 is satisfied. In our case, this occurred when the
excitation field was a focused TEM00 Gaussian beam and the second-order susceptibility had
non-zero xxz component.

Interestingly, our results have similarities to the suggestion of Bethune already in 1981
that multimode beams could enhance the bulk responses of higher-multipole origin in surface
SHG [35], as was further studied by Bernal and Maytorena [36]. In our case, however, the
higher-multipole responses arise from atomic-level electric-dipole responses, and do not rely on
atomic-level higher multipoles. This suggests that the dilemma of differentiating the bulk and
surface contributions from each other could be even harder than previously thought, in particular
when focused Gaussian beams are used. This problem is due to the fact that the separation
of bulk and surface contributions in general relies on measuring either interference effects or
different polarization dependences of the SH emission [21, 22, 24]. But our calculations and
experimental data show that similar effects can also occur when the source volume is confined.

The results also demonstrate the general principle that the SH emission from confined
volumes can be affected by tailoring the excitation, in our case the focusing, conditions.
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In addition, the introduced multipole approach is expected to facilitate more arbitrary control
of SH emission by providing an understanding of how certain types of multipoles could be
enhanced, e.g. by utilizing higher-order vector beams.

5. Conclusion

To conclude, we have shown that traditional electric-dipole-allowed SHG can be interpreted in
terms of effective higher-multipole terms when the excitation occurs using focused Gaussian
beams. In particular, magnetic terms become important whenever the quantity ∇ × P is non-
vanishing. The approach was demonstrated using thin SiN films as the nonlinear source, where
the SH emission was strongly asymmetric between the reflected and transmitted directions. Such
multipolar approaches provide a way of obtaining directional nonlinear emission from confined
and thin source volumes, where traditional phase matching is irrelevant. Nonlinear sources with
desired radiation patterns can therefore be tailored by the choice of focal conditions to enable
or suppress selected multipoles in the response.
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Macroscopic electric and magnetic

multipole moments

Let all sources be embedded inside a �nite sphere S ⊂ R3 of radius R. Out-
side B, the electric and magnetic �elds can then be expressed as a multipole
expansion. The multipole expansion for the electric �eld is [1, p. 431]

E = η

∞∑
l=1

l∑
m=−l

[
i

k
aEl,m∇× h

(1)
l (kr)Xl,m + aMl,mh

(1)
l (kr)Xl,m

]
, r = |r| > R,

where aEl,m are the electric multipole moments and aMl,m are the magnetic
multipole moments. These coe�cients can be determined from sources via
integration over S.

The multipole moments can be obtained from [1, p. 431]

aEl,m =
k2

i
√
l(l + 1)

∫
S

Y ∗
l,m

(
cρ(r)

∂

∂r
(rjl(kr)) + ikr · J(r)jl(kr)

)
dV,

aMl,m =
k2

i
√
l(l + 1)

∫
S

Y ∗
l,m∇ · (r× J(r))jl(kr)dV,

where ρ = ∇ · J/(iω). We can use partial derivation to obtain:

∇ · (r× J) = −r · ∇ × J

so that

aMl,m = − k2

i
√
l(l + 1)

∫
S

Y ∗
l,mr · ∇ × J(r)jl(kr)dV.

1



If the source is a polarization P, then we may use substitution J = −iωP
and ρ = −∇ ·P, whence

aEl,m =
k2

i
√
l(l + 1)

∫
S

Y ∗
l,m

(
−c∇ ·P(r)

∂

∂r
(rjl(kr)) + ωkr ·P(r)jl(kr)

)
dV,

(S1)

aMl,m =
k2

i
√
l(l + 1)

∫
S

Y ∗
l,miωr · ∇ ×P(r)jl(kr)dV. (S2)

In our case the source is a second-order nonlinear polarization P = ϵ0χ
(2) :

ee, where e is the electric �eld of a focused beam at the fundamental fre-
quency.

Moments of thin source polarization

Suppose now that the polarization is con�ned to a very thin layer so that it
can be treated as a distribution of the form

P(x, y, z) = δ(z)P′(x, y),

where (x, y) ∈ D ⊂ R2 and z ∈ R i.e. a current density distribution sup-
ported by a plane. For the electric moments, �rst de�ne

ξl,m(x, y) = Y ∗
l,m(x, y, 0)

∂

∂r
(rjl(kr))

∣∣∣
r(x,y,0)

,

ζl,m(x, y) =
∂

∂z

[
Y ∗
l,m

∂

∂r
(rjl(kr))

]
r(x,y,0)

,

ϕl,m(x, y) = Y ∗
l,m(x, y, 0)jl(kr(x, y, 0)).

Then, by understanding the derivative of δ in the weak sense, the electric
moment is

aEl,m =
k2

i
√
l(l + 1)

∫
D

c (ζl,mP
′
z − ξl,m∇t ·P′) + ωkϕl,mr ·P′dxdy.

For the magnetic moments, de�ne

ψl,m(x, y) =
∂

∂z
(Y ∗

l,mjl(kr))z=0.
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The magnetic moment becomes

aMl,m =
ωk2√
l(l + 1)

∫
D

ϕl,m

(
x
∂P ′

z

∂y
− y

∂P ′
z

∂x

)
+ ψl,m

(
xP ′

y − yP ′
x

)
dydx.

The derivatives in ζl,m and ψl,m can be evaluated explicitly. The z-
derivatives of the polar coordinates are

∂r

∂z
= cos θ,

∂θ

∂z
=

cos2 θ − 1

r sin θ
,
∂ϕ

∂z
= 0.

At z = 0, i.e., θ = π/2 we get ∂r/∂z = 0 and ∂θ/∂z = −1/ϱ, where
ϱ =

√
x2 + y2. By using these results, we get

ψl,m =

[
∂Y ∗

l,m

∂z
jl(kr) + Y ∗

l,m

∂

∂z
jl(kr)

]
z=0

=

[(
∂Y ∗

l,m

∂θ

∂θ

∂z
+
∂Y ∗

l,m

∂ϕ

∂ϕ

∂z

)
jl(kr) + Y ∗

l,m

∂

∂r
jl(kr)

∂r

∂z

]
z=0

= −1

ϱ

∂Y ∗
l,m

∂θ

∣∣∣∣
θ=π/2

jl(kϱ)

and

ζl,m =

[
∂Y ∗

l,m

∂z

∂

∂r
(rjl(kr)) + Y ∗

l,m

∂

∂z

∂

∂r
(rjl(kr))

]
z=0

=

[(
∂Y ∗

l,m

∂θ

∂θ

∂z
+
∂Y ∗

l,m

∂ϕ

∂ϕ

∂z

)
∂

∂r
(rjl(kr)) + Y ∗

l,m

∂2

∂r2
(rjl(kr))

∂r

∂z

]
z=0

= −1

ϱ

∂Y ∗
l,m

∂θ

∣∣∣∣
θ=π/2

∂

∂ϱ
(ϱjl(kϱ)).

Furthermore:

∂Yl,m
∂θ

= m cot θYl,m +
√

(l −m)(l +m+ 1)e−iϕYl,m+1,

where in the case l = m the second term vanishes. Lastly

∂

∂ϱ
(ϱjl(ϱ)) = ϱjl−1(ϱ)− ljl(ϱ).

The derivatives of the polarization in Eqs. (S1) and (S2) were evaluated
by using the central �nite di�erence and the integration was performed nu-
merically by using the Simpson's quadrature. The diameter of the integrated
disk was 4µm.
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