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Abstract—MEMS gyroscopes are gaining popularity because of
their low manufacturing costs in large quantities. For navigation
system engineering, this presents a challenge because of strong
nonstationary noise processes, such as1/f noise, in the output of
MEMS gyros. In practice, on-the-fly calibration is often required
before the gyroscope data are useful and comparable to more
expensive optical gyroscopes. In this paper, we focus on an
important part of MEMS gyro processing, i.e., predicting the
future bias given a calibration data with known (usually zero)
input. We derive prediction algorithms based on Kalman filtering
and the computation of moving averages, and compare their
performance against simple averaging of the calibration data
based on both simulations and real measured data. The results
show that it is necessary to model fractional noise in order to
consistently predict the bias of a modern MEMS gyro, but the
complexity of the Kalman filter approach makes other methods,
such as the moving averages, appealing.

Index Terms—1/f noise, calibration, gyroscopes, microelec-
tromechanical systems, navigation, stochastic processes.

I. I NTRODUCTION

A LTHOUGH today’s MEMS gyroscopes are inferior to
optical sensors from the accuracy point of view, their

low cost, tiny size, low power consumption, and suitability
to production in large quantities are undeniable advantages
that have enabled their integration into a variety of low-
cost consumer devices [1]–[3]. It is clear that the tradi-
tional inertial navigation mechanization [4] is not directly
suitable for MEMS-based inertial units, but by adding on-
the-fly calibration [5], nonholonomic constraints [6], and,
preferably, sensors measuring the traveled distance directly,
the accuracy of the navigation solution approaches a level
that is suitable for many applications. Recently introduced
temperature-conditioned MEMS gyros [7] avoid the most
significant external error source, i.e., the effect of the ambient
temperature in the gyro bias [8]. Studying the noise processes
of temperature-controlled MEMS sensors is of great interest
because the external factors are negligible and the remaining
processes can be considered purely stochastic.

The quality of a MEMS gyro is often defined by the
magnitude of the constant additive bias. In positioning and
navigation applications, the angular rate measurement output
by the gyro is integrated to obtain an angle measurement; any
constant bias error in the angular rate is then integrated into
a linearly increasing angle error. The bias can be eliminated
by means of carouseling [9] or direct estimation. In strapdown
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applications, carouseling is not an option because of the high
power consumption, large size, and extra weight of the gimbal
assembly required for slewing the sensor.

If the gyro error consisted of a constant bias and additive
white noise only, the bias could be calibrated out by recording
a long sequence of data with known input. However, this
does not work in practice because the bias of a MEMS gyro
has a significant day-to-day component that changes every
time the device is powered up. Another reason is that the
MEMS gyro error processes are clearly nonstationary and,
therefore, cannot be separated into a constant part and a white
noise part. Thus, the calibration should be done whenever
possible, i.e., whenever the input rotation rate is known. For
land vehicle navigation, a practical scenario is to calibrate the
gyro bias whenever the vehicle is at standstill; stationarity
can be detected based on, e.g., an odometer. In this paper
we will focus on this scenario, the bias calibration problem
then being a prediction problem given the gyro data of the
standstill period.

Bias instability can be defined as “the random variation
in bias as computed over specified finite sample time and
averaging time intervals. This nonstationary (evolutionary)
process is characterized by a1/f power spectral density” [10].
A large amount of literature is devoted to understanding
1/f (flicker) noise and other fractional noise processes [11]–
[14]. As shown by Voss [15], the Allan variance of1/f noise
is constant; without temperature control, external temperature
effects mask this behavior, as can be seen in Fig. 1. The Allan
variance of the MEMS gyro without temperature control shows
an increasing trend at long averaging times. Because of the
low availability of temperature-conditioned sensors, MEMS
navigation research has been concentrating on other types of
errors.

The contribution of this article is to link the properties of
1/f noise and the prediction problem involved in gyro bias
calibration. We first derive the optimal Kalman predictor for
the 1/f noise model. Then, noting the computational com-
plexity of the Kalman predictor, we derive a simpler predictor
based on moving averages and compare the performance of
these prediction algorithms. According to the experimental
results, taking the1/f characteristic of bias instability into
account enables more accurate predictions of the gyro bias,
thus improving the accuracy of the navigation system for
which the gyro is being used.

II. RELATED WORK

Calibration methods for gyroscopes have been extensively
researched in the literature. For example, when integrating
a traditional inertial navigation mechanization with satellite
positioning, the inertial sensor errors can be estimated on
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the fly using a Kalman filter [16]. In the context of MEMS
gyros, day-to-day errors are often so significant that an initial
calibration is necessary. In principle, estimating the gyro bias
is straightforward given the true angular rate. A common
approach is to average a sequence of data measured while
the sensor is standing still [17]–[19]; this way, the input is
constant (equal to the component of Earth rotation parallel
to the sensing axis) and the obtained average is used as a
prediction of the future bias. While modeling the bias this
way, i.e., as piecewise constant, can be optimal for stationary
errors, the nonstationarity of the1/f component of the gyro
signal causes problems with this approach.

Another approach to model the bias instability process
is to use an autoregressive (AR) model. For instance, [20]
investigates fitting AR models of order up to four on data
where wavelet denoising has been applied. A least-squares
AR model fitting procedure is described in [21] where using a
fourth-order AR model is proposed. In [22], an AR model
of order 120 was constructed using system identification
methods.

In the articles described above, however, the AR model
was not tuned for1/f noise only, but also for the effect of
temperature changes and other factors that tend to dominate
the 1/f phenomenon at long averaging times. In contrast,
in this paper, the model is built based on the properties of
1/f noise instead of fitting coefficients on measured data,
and we use a temperature-conditioned gyro to minimize the
effect of long-term errors that would otherwise mask the
1/f behavior.

III. G YROSCOPENOISE PROCESSES

The output of a gyro is an angular rate measurement which
can be modeled at timet as [23]

y(t) = Mω(t) + ǫ(t) (1)

whereM is the 1 × 3 cross-coupling and scale factor error
matrix,ω(t) is the angular rate vector between the sensor body
and an inertial reference frame, andǫ(t) is the additive mea-
surement error. In this article, we neglect the cross-coupling
and scale factor effects and divide the additive errorǫ(t) into
three components: constant bias, uncorrelated (white) noise,
and 1/f noise. The influence of the most significant error
sources can be characterized by computing the Allan variance
of the sensor signal, which is discussed below. It should be
noted that Allan variance is not the only available method
for identifying gyro error structures [24]; nevertheless,it is
recommended in [25].

A. Allan Variance

Also known as the two-sample variance, the Allan variance
was originally developed for describing the stability of fre-
quency standards [26]. The Allan varianceσ2

A is a function of
the averaging timeτ , computed as

σ2
A(τ) =

1

2 (N − 1)

N−1∑

i=1

(ȳ(τ)i+1 − ȳ(τ)i)
2 (2)

(a)

(b)

Fig. 1. Effect of temperature control on Allan variance. (a): Angular rate as
measured by two gyroscopes; (b): the corresponding Allan variances.

where the values of̄y(τ)i are obtained by dividing the datay
into N disjoint bins of lengthτ ; ȳ(τ)i is the average value of
the ith bin.

Allan variance is usually visualized as a log-log graph.
Given the Allan variance plot of a sensor, it is easy to
find the optimal averaging time that minimizes the effect
of uncorrelated and time-correlated errors: at short averaging
times, uncorrelated noise dominates the output, whereas long
averaging times are prone to drifting errors. Fig. 1 shows
two sets of data and the corresponding Allan variance curves;
it can be seen that for both data sets, an averaging time of
1000 seconds would be a reasonable choice.

B. Gyroscope Noise Components

The accuracy of MEMS gyroscopes is degraded by many
error sources and the most significant is bias. A comprehensive
description of the different error sources is given in [25,
Annex C] in the context of laser gyros but the same error
sources apply to MEMS gyros as well. Long-term bias can
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be calibrated fairly accurately but there is always a day-to-
day bias component. When the actual input, i.e., the angular
rate, is zero, the bias can be estimated by averaging the sensor
output. However, averaging cannot work perfectly because of
certain fluctuating (not necessarily zero-mean) errors in the
signal.

White noise(also referred to as angle random walk [25]),
originating from, e.g., thermal noise [27], is a simple stochastic
process that consists of independent and identically distributed
samples. Its variance is inversely proportional to the averaging
time, thus the effect of white noise can be seen as an initial
negative slope in the Allan variance graph.
1/f noise, however, is a more complicated stochastic pro-

cess. Although discovered almost a century ago [11], [28]
and encountered in many different contexts, such as semi-
conductors, river Nile’s flood levels, and pitch fluctuations
in music, its origin is not exactly known [15]. As opposed
to uncorrelated white noise,1/f noise is a long-memory
process, i.e., the mutual correlations between samples decay
slowly [29]. It can be modeled as an ARFIMA(0, d, 0) process
(autoregressive fractionally integrated moving average) whose
dth difference is a white noise process. Thedth difference of
the sequencex0, x1, . . . is computed as [14], [29], [30]

∆dxk =

k∑

i=0

(
(−1)k−i Γ(k − i+ d)

Γ(k − i+ 1)Γ(d)
xi

)
(3)

whereΓ(·) denotes the gamma function. Another quantity to
characterize a long-memory process is the Hurst exponentH ,
which is related to the orderd by [14]

d = H − 1

2
. (4)

The Hurst exponent is commonly encountered in literature
where long-memory processes are discussed but, in this article,
d will be used as the memory parameter.

Another error source in the sensor output israte random
walk (RRW), which is caused when the bias changes (slowly)
with time. This can be due to, e.g., aging of the sensor
components or changes in the temperature of the gyro; MEMS
sensors are typically highly sensitive to temperature varia-
tions [8]. RRW causes a positive slope to the Allan variance
at long averaging times. Unlike1/f noise, RRW is a Markov
process, i.e., memoryless: its value at stepk+1 only depends
on the value at stepk, not on any other (past or future) values.

Since white noise causes imprecision at short averaging
times and RRW degrades the accuracy at long averaging times,
the optimal averaging time is found between these two. The
minimum of the Allan variance of a gyro is called thebias
instability and can be used as a measure of the power of
1/f noise [25].

IV. PROPOSEDGYROSCOPEERROR PREDICTORS

In this section, we present two approaches of predicting
the evolution of the bias: one based on Kalman filtering and
one based on computing a moving average. In Section V,
these predictors will be compared to the simple approach of
averaging the entire calibration data.

A. Kalman Filter Approach

The Kalman filter (KF) [31] is a tool for analyzing dynamic
systems and is widely used in positioning and navigation,
along with its nonlinear extensions. Given the observationand
system evolution models and an initial state, it estimates the
state of the system. In this study, the KF is employed for
tracking1/f noise.

As state variables we take the current and previous noise
realizations. This means that the length of the state vector
increases at each time step; the solution cannot be optimal
unless the state vector is infinite-dimensional [32]. It hasbeen
shown that one state variable per decade of samples (i.e., one
for the most recent sample, one for the latest10 samples,
one for the last100 etc.) are sufficient to characterize a
1/f process [13], [33]. Nevertheless, in this study, one state
variable was used for each sample. Therefore, the state is
propagated from sample(j − 1) to j as a fractional integral

xj =

[
I
fTj

]
xj−1 (5)

where I is the identity matrix,T denotes the transpose, and
the ith element of the vectorfj ∈ Rj−1 is obtained as [14],
[29]

[fj ]i = − Γ(j − i− d)

Γ(j − i+ 1)Γ(−d)
. (6)

The formula is remarkably similar to (3)—only the sign ofd is
different. This formula is, in principle, only valid for−1/2 <
d < 1/2, i.e., when the process is stationary and invertible;
for d ≥ 1/2, these conditions do not hold [14]. Therefore,
the prediction obtained using the values (6) may be biased if
d = 1/2 is used. For covariance propagation, the variance of
the driving noise of the1/f noise needs to be known.

The coefficients obtained from (6) have absolute value less
than one. Thus, as time passes, the forecast eventually decays
towards zero. Nevertheless, it would be desirable that the pre-
diction would tend towards the sample mean instead. This can
be changed by taking the sample mean as an additional state
variable and modeling the bias as the sum of1/f noise and the
sample mean. This makes observation updates straightforward
as well, as long as the variance of white noise is known. If it is
not given in the specifications of the gyro, it can be estimated
from the Allan variance.

B. Moving Average Approach

As the optimal prediction using Kalman filter is too complex
for practical implementation, we introduce simpler predictor
based on moving averages. Assuming that the Allan variance
of the noise process is constant, i.e.,

1

2 (N − 1)

N−1∑

i=1

(ȳ(τ)i+1 − ȳ(τ)i)
2
= β ∀τ, (7)

and further assuming that the increments in the block
averagesȳi are mutually independent, the best predictor
for ȳ(τ)i+1 given ȳ(τ)i would be ȳ(τ)i itself. Thus the
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prediction of τ future samples would be the mean of past
τ samples. Generalizing this leads to the simple predictor

ŷj =
1

j

0∑

i=−j+1

yi (8)

wherej = 0 is the time index of the last calibration sample.
This is by no means an optimal predictor for1/f noise, as
the second assumption (independence of the increments) does
not hold. However, the predictor is very easy to implement
and the results presented in Section V show that its prediction
performance is not far from the Kalman predictor values. If
the calibration period is shorter than the navigation mission
(as often is the case), the simple average of the calibration
data

ŷj =
1

k

0∑

i=−k+1

yi, j ≥ k, (9)

wherek is the length of calibration data, can be used to extend
the moving average.

V. EXPERIMENTS

The performance of the proposed predictors was evaluated
by running them on a large number of data sets with zero
angular rate input; there were both artificial data sets and
authentic gyroscope data. In each run, the first half of the
data were used for calibration, based on which the evolution
of the bias was predicted in the latter half. This resembles the
scenario of driving a vehicle: occasionally, the vehicle must
stop, e.g., at crossroads, which gives an opportunity for a zero-
velocity update. Another application is pedestrian walking [34]
where there is a stance phase followed by a swing phase,
although the durations of the phases considerably shorter.

The artificial data were generated as ARFIMA(0, 1/2, 0)
sequences according to (3) and the authentic data originated
from an immobile gyro; the data sets used in Section V-B
contained2 400 samples each, whereas the results of Sec-
tion V-C are based on2 000-sample-long sets. The angular
rate caused by the rotation of Earth was not treated in any
way—since the gyro was static during the experiments, the
effect of Earth rotation was constant and can be seen as a part
of the bias. In all test runs, an integration orderd = 1/2 was
used for modeling1/f noise; this is not necessarily optimal
for the real data as some other choice ofd could model the
gyro noise correlations better. However, the exact local Whittle
estimate [12] of the gyro data used is0.535, which suggests
that the chosen value ofd is reasonable.

In theory, because of the zero angular rate, the integral (in
discrete time, the sum) of the difference between the data and
the predicted bias should equal zero. Therefore, we use two
error metrics to quantify the prediction error:

• integrated error (IE): the sum of the prediction errors, i.e.,
the difference between the data and the predicted bias

• root sum of squared errors (RSSE): the sum of the squares
of the prediction errors.

Obviously, the IE describes the accumulated angle error after
the prediction phase, and the absolute value of the IE is what
we ultimately want to minimize. The RSSE is computed for

validation purposes: the KF should, in theory, minimize the
error variance among linear estimators. Therefore, if the KF
does not yield the lowest RSSE, the models used in the KF
are probably incorrect.

In the following sections, we first discuss the choice of the
gyroscope. Then, we study the behavior of the proposed pre-
dictors in example runs based on both artificial and authentic
data. Finally, the performance of the predictors are compared
in an extensive batch test in order to assess how the methods
perform in general.

A. Choosing the Sensor

In order to get gyroscope data whose power spectral density
obeys a1/f shape as well as possible (when properly aver-
aged), we need a gyroscope with negligible RRW. As shown
in Fig. 1, this can be achieved even using a MEMS sensor
if it is temperature-conditioned: in the Allan variance curve
of the temperature-controlled gyro, no RRW slope is visible
at averaging times smaller than105 seconds and the Allan
variance is almost constant for averaging times longer than
102 seconds. The same figure shows that this is certainly not
the case for the gyroscope that is not temperature-conditioned:
its Allan variance starts to increase at averaging times longer
than approx.4·103 seconds because of RRW. The temperature-
conditioned gyro appearing in Fig. 1 is [7] and the other gyro
is [35].

In applications, temperature-conditioning has its drawbacks;
for instance, the power consumption and physical size of
the oven where the sensor is located may prevent using the
technology in mobile devices. However, these considerations
are beyond the scope of this paper.

B. Example Runs

Fig. 2 shows the results of applying the estimation methods
discussed in Section IV on artificial data. The samples were
generated by half-integrating Gaussian white noise according
to (3) and adding a constant bias; no other components, such as
additive white noise or random walk, were introduced. It can
be seen that the KF estimate (Fig. 2a) decays smoothly towards
the mean of the calibration data while the moving average
(Fig. 2b) is more oscillatory, especially at the beginning where
the average is computed over a smaller number of samples.

With this data set, the KF performs better in terms of both
IE and RSSE: the KF error integrates to−201 (dimensionless;
no units assumed for the simulated data) while the integrated
moving average error is535. The RSSE values are123
and127, respectively. For comparison, the errors obtained by
using the mean of the calibration data as the sole estimate of
the bias were−2910 (integrated) and146 (RSSE). Hence, the
improvement is obvious in this case. Fig. 2a also shows the
two-sigma confidence interval of the KF estimate; the bounds
seem to agree with the data.

An example of estimator performance using real gyro data
is shown in Fig. 3. To be able to use the KF, the standard
deviations of additive white noise and the driving noise of
the 1/f process had to be estimated first. The values45◦/h
and14◦/h, respectively, were found to be appropriate, which
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Fig. 2. Prediction results for simulated data (no white noise): (a) Kalman
filter; (b) moving average.

is reflected by the consistency of the two-sigma confidence
interval estimate in Fig. 3a. It should be noted that these are
the confidence bounds of the signal including white noise;
the confidence interval for the1/f component only would be
narrower.

The KF outperforms the moving average and calibration
data mean with this set of data, too. The IE and RSSE for
the KF estimate are2.46◦ and0.410◦, respectively. The cor-
responding values for the moving average estimate are3.13◦

and 0.424◦, and for the mean of the calibration data,3.55◦

and0.415◦. In this test case, the mean of the calibration data
was a better estimator in the RSSE sense than the moving
average.
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Fig. 3. Prediction results with authentic data: (a) Kalman filter; (b) moving
average.

C. Batch Test

In the example cases described above, it was only known
that the prediction model was correct in the case of Kalman
filter with simulated data. To validate the modeling, similar
tests with different sets of data—1 000 simulated and1 000 au-
thentic sets—were conducted in a batch and the performance
of the three approaches were logged. A new set of data was
half-integrated for every simulation run whereas the authentic
data sets were obtained by taking consecutive disjoint sections
of 2 000 samples from a long set of data. In each run, the
first 1 000 samples were used for calibration and the rest
1 000 samples for prediction.

The results of the batch runs are shown in Table I. It can
be seen that both of the proposed methods yield a lower
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TABLE I
PERFORMANCE OF THE PREDICTION APPROACHES. ABBREVIATIONS: KF:

KALMAN FILTER ; MA: MOVING AVERAGE; CM: CALIBRATION DATA
MEAN ; IE: INTEGRATED ERROR; RSSE:ROOT SUM OF SQUARED ERRORS.

Simulated Real data

KF MA CM KF MA CM

mean IE -119 -142 -115 -0.0214 -0.0258 -0.0728
IE std 2120 2210 2280 3.86 3.92 4.22
mean RSSE 136 139 138 0.390 0.393 0.394
RSSE std 23.3 25.4 24.9 0.0326 0.0339 0.0350

average IE than the traditional CM approach with authentic
data whereas CM shows best performance in simulations, but
the error standard deviations are fairly large. Dividing the error
standard deviations by

√
1000 gives the standard deviations

of the sample means; the differences in IE are smaller than
these standard deviations. Therefore, these differences cannot
be regarded as significant.

In contrast, the differences in RSSE between KF and the
other approaches are more considerable. Between the MA and
CM methods there is a one-sigma difference in favor of CM
in the simulations and vice versa with authentic data, but the
KF mean RSSE is smaller by two sigmas in the simulated runs
and by four sigmas with real data than the CM mean RSSE.
This is in accordance with the optimality of KF among linear
estimators and, on the other hand, suggests that the models
used in the KF are appropriate.

VI. CONCLUSIONS

In this article, two methods for predicting the evolution
of the additive bias of a MEMS gyro were presented and
compared to the traditional approach of plain averaging. The
results suggested that one of the proposed methods, i.e., the KF
approach, yields more accurate estimates in the RSSE sense,
but the integral errors, which are of more importance in
gyro applications, were not as significantly smaller. Another
advantage of the KF is that it directly allows for computation
of confidence intervals; the results showed that the obtained
bounds are consistent with the data. Knowing the variance of
the bias estimate is important when the measurements are used
for position computations because the uncertainty in the gyro
bias estimate affects the uncertainty of the resulting position
solution.

The optimality property of the Kalman filter is only valid
given that the models used are correct. Therefore, it is im-
portant to ensure that the environmental conditions are not
changing during the calibration and prediction phases; for
instance, temperature fluctuations or sudden vibrations may
affect the gyro bias. In this study, these factors were mitigated
by using a temperature-conditioned sensor with vibration
isolation.

As future work, the fractional integration model, possibly
with different choices ofd, could be compared with AR mod-
els obtained using system identification algorithms, such as
in [22], in terms of both model structure and prediction
performance. A performance comparison could be made for
the moving average estimator as well in order to see if the extra

complexity of the AR models pays off. Moreover, confidence
interval estimators should be derived for these suboptimalpre-
dictors. Given the estimate variances of the different methods
it would be easier to decide if for a particular application
it is sufficient to use, e.g., the simpler MA method instead
of the computationally demanding KF approach, despite the
degraded prediction performance.
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