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Abstract—MEMS gyroscopes are gaining popularity because of applications, carouseling is not an option because of the hi
their low manufacturing costs in large quantities. For navigation  power consumption, large size, and extra weight of the gimba
system engineering, this presents a challenge because afosty assembly required for slewing the sensor.

nonstationary noise processes, such noise, in the output of R . L.
MEMS gyrosY In pragtice, on-the-fly czﬁ/tﬁation is often reqﬁired I_f the gyro error COUS'Sted of a con_stant bias and addlt}ve
before the gyroscope data are useful and comparable to more White noise only, the bias could be calibrated out by recagdi
expensive optical gyroscopes. In this paper, we focus on ana long sequence of data with known input. However, this
important part of MEMS gyro processing, i.e., predicting the does not work in practice because the bias of a MEMS gyro
future bias given a calibration data with known (usually zerm) has a significant day-to-day component that changes every

input. We derive prediction algorithms based on Kalman filtering . - . .
and the computation of moving averages, and compare their time the device is powered up. Another reason is that the

performance against simple averaging of the calibration dea MEMS gyro error processes are clearly nonstationary and,
based on both simulations and real measured data. The resslt therefore, cannot be separated into a constant part andte whi

shOV\{ that it is necessary to model fractional noise in orderd pgjse part. Thus, the calibration should be done whenever
consistently predict the bias of a modern MEMS gyro, but the  ,qqihje j e whenever the input rotation rate is knover. F
complexity of the_ Kalman filter approa_ch makes other methods land vehicle navigati ical L .
such as the moving averages, appealing. gation, a practical scenario is to catibtae
gyro bias whenever the vehicle is at standstill; statidpari
can be detected based on, e.g., an odometer. In this paper
we will focus on this scenario, the bias calibration problem
then being a prediction problem given the gyro data of the
I. INTRODUCTION standstill period.
LTHOUGH today’s MEMS gyroscopes are inferior to Bias instability can be defined as “the random variation
optical sensors from the accuracy point of view, thein bias as computed over specified finite sample time and
low cost, tiny size, low power consumption, and suitabilitveraging time intervals. This nonstationary (evolutiyha
to production in large quantities are undeniable advastaggrocess is characterized byl Af power spectral density” [10].
that have enabled their integration into a variety of lowA large amount of literature is devoted to understanding
cost consumer devices [1]-[3]. It is clear that the tradit/f (flicker) noise and other fractional noise processes [11]-
tional inertial navigation mechanization [4] is not didgct [14]. As shown by Voss [15], the Allan variance df f noise
suitable for MEMS-based inertial units, but by adding oris constant; without temperature control, external terapee
the-fly calibration [5], nonholonomic constraints [6], andeffects mask this behavior, as can be seen in Fig. 1. The Allan
preferably, sensors measuring the traveled distancetligirecvariance of the MEMS gyro without temperature control shows
the accuracy of the navigation solution approaches a lewl increasing trend at long averaging times. Because of the
that is suitable for many applications. Recently introdlicdow availability of temperature-conditioned sensors, MEM
temperature-conditioned MEMS gyros [7] avoid the mostavigation research has been concentrating on other tyipes o
significant external error source, i.e., the effect of théommt errors.
temperature in the gyro bias [8]. Studying the noise prazess The contribution of this article is to link the properties of
of temperature-controlled MEMS sensors is of great interels/ f noise and the prediction problem involved in gyro bias
because the external factors are negligible and the rengaincalibration. We first derive the optimal Kalman predictor fo
processes can be considered purely stochastic. the 1/f noise model. Then, noting the computational com-
The quality of a MEMS gyro is often defined by theplexity of the Kalman predictor, we derive a simpler predict
magnitude of the constant additive bias. In positioning arithsed on moving averages and compare the performance of
navigation applications, the angular rate measurememiudutthese prediction algorithms. According to the experimenta
by the gyro is integrated to obtain an angle measurement; aegults, taking thel/f characteristic of bias instability into
constant bias error in the angular rate is then integrated iraccount enables more accurate predictions of the gyro bias,
a linearly increasing angle error. The bias can be elim@hatéhus improving the accuracy of the navigation system for
by means of carouseling [9] or direct estimation. In strapao which the gyro is being used.

Index Terms—1/f noise, calibration, gyroscopes, microelec-
tromechanical systems, navigation, stochastic processes
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the fly using a Kalman filter [16]. In the context of MEMS  Y(t) [/s]
gyros, day-to-day errors are often so significant that amini

no temperature control
temperature-controlled

calibration is necessary. In principle, estimating theoglyias 0.6

is straightforward given the true angular rate. A common
approach is to average a sequence of data measured while
the sensor is standing still [17]-[19]; this way, the inpst i 0.4
constant (equal to the component of Earth rotation parallel
to the sensing axis) and the obtained average is used as a
prediction of the future bias. While modeling the bias this ¢,
way, i.e., as piecewise constant, can be optimal for statjon
errors, the nonstationarity of the/ f component of the gyro
signal causes problems with this approach. 0

Another approach to model the bias instability process ’
is to use an autoregressive (AR) model. For instance, [20]
investigates fitting AR models of order up to four on data
where wavelet denoising has been applied. A least-squares
AR model fitting procedure is described in [21] where using a
fourth-order AR model is proposed. In [22], an AR model
of order 120 was constructed using system identification
methods. 1073

In the articles described above, however, the AR model
was not tuned forl/f noise only, but also for the effect of
temperature changes and other factors that tend to dominate
the 1/f phenomenon at long averaging times. In contrast,
in this paper, the model is built based on the properties of 107
1/f noise instead of fitting coefficients on measured data,
and we use a temperature-conditioned gyro to minimize the
effect of long-term errors that would otherwise mask the
1/f behavior.
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I1l. GYROSCOPENOISE PROCESSES

The output of a gyro is an angular rate measurement which
can be modeled at timeas [23]

y(t) = Mw(t) + €(t)

T[s]
(b)

Fig. 1. Effect of temperature control on Allan variance.: @)gular rate as
measured by two gyroscopes; (b): the corresponding Allaiavees.

1)
whereM is the 1 x 3 cross-coupling and scale factor error
matrix,w(t) is the angular rate vector between the sensor bod¥] . L
and an inertial reference frame, and) is the additive mea- Where the values of(r); are obtained by dividing the data
surement error. In this article, we neglect the cross-dngpl N0 N disjoint bins of lengthr; (7); is the average value of
and scale factor effects and divide the additive eefoy into e ith bin. , o

three components: constant bias, uncorrelated (whitejepoi Allan variance is usually visualized as a log-log graph.
and 1/f noise. The influence of the most significant erroPiven the Allan variance plot of a sensor, it is easy to
sources can be characterized by computing the Allan vagiarfthd the optimal averaging time that minimizes the effect
of the sensor signal, which is discussed below. It should §& uncorrelated and time-correlated errors: at short @iega
noted that Allan variance is not the only available methdimes, uncorrelated noise dominates the output, wherews lo

for identifying gyro error structures [24]; neverthelegsis averaging times are prone to drifting errors. Fig. 1 shows
recommended in [25]. two sets of data and the corresponding Allan variance curves

it can be seen that for both data sets, an averaging time of
1000 seconds would be a reasonable choice.
A. Allan Variance
Also known as the two-sample variance, the Allan variance .
was originally developed for describing the stability ogfr B: Gyroscope Noise Components
quency standards [26]. The Allan varianeg is a function of
the averaging time, computed as

The accuracy of MEMS gyroscopes is degraded by many
error sources and the most significant is bias. A comprebhensi
description of the different error sources is given in [25,
Annex C] in the context of laser gyros but the same error
sources apply to MEMS gyros as well. Long-term bias can

N-1
o4 Z (H(1)iz1 — §(1)s)* (2

1
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be calibrated fairly accurately but there is always a day-té. Kalman Filter Approach

day bias component. When the actual input, i.e., the angulatl.he Kalman filter (KF) [31] is a tool for analyzing dynamic

rate, is zero, the bias can be estimated by averaging therseré stems and is widely used in positioning and navigation
output. However, averaging cannot work perfectly becatise ong with its nonlinear extensions. Given the observagiod

certain fluctuating (not necessarily zero-mean) errorshim tsystem evolution models and an initial state. it estim t
signal. . !
. . state of the system. In this study, the KF is employed for
White noise(also referred to as angle random walk [25])trackingl/f ngise Y ploy
originating from, e.g., thermal noise [27], is a simple $iastic )

: : . . - As state variables we take the current and previous noise
process that consists of independent and identicallyiloligerd N -
. o ) . realizations. This means that the length of the state vector
samples. Its variance is inversely proportional to the agieig

. . . ? .increases at each time step; the solution cannot be optimal
time, thus the effect of white noise can be seen as an initja| R .

. : . unhless the state vector is infinite-dimensional [32]. It hasn
negative slope in the Allan variance graph.

1/f noise however, is a more complicated stochastic pri{lown that one state variable per decade of samples (ie., on

: r the most recent sample, one for the laté8tsamples,
cess. Although discovered almost a century ago [11], [2 P P

and encountered in manv different contexts. such as se ne for the last100 etc.) are sufficient to characterize a
: . Y o . T}f process [13], [33]. Nevertheless, in this study, one state
conductors, river Nile’s flood levels, and pitch fluctuason

. A S ariable was used for each sample. Therefore, the state is
in music, its origin is not exactly known [15]. As oppose ropagated from samplgi — 1) to j as a fractional integral
to uncorrelated white noisel/f noise is a Iong-memoryIO pag Pe I 9

process, i.e., the mutual correlations between samplesydec I
slowly [29]. It can be modeled as an ARFIMA(d, 0) process Xj = |:ij| Xj—1
(autoregressive fractionally integrated moving averagose ’

dth difference is a white noise process. Tdth difference of wherel is the identity matrix,” denotes the transpose, and

®)

the sequencey, z1, ... is computed as [14], [29], [30] the ith element of the vectof; € R7~! is obtained as [14],
[29]
k .
_; Tk—i+d) T(i—i—d
Adgy, = ((—1)k 7¢> 3) 1o Th-i-d)
; F(k — 1+ 1)F(d) [fJ]z‘ F(] it 1)F(7(1)' (6)

whereT'(-) denotes the gamma function. Another quantity t¥he formula is remarkably similar to (3)—only the signdis
characterize a long-memory process is the Hurst expoHent different. This formula is, in principle, only valid for1/2 <

which is related to the ordet by [14] d < 1/2, i.e., when the process is stationary and invertible;
1 for d > 1/2, these conditions do not hold [14]. Therefore,
d=H - 3 (4) the prediction obtained using the values (6) may be biased if

= 1/2 is used. For covariance propagation, the variance of
e driving noise of thd /f noise needs to be known.

The coefficients obtained from (6) have absolute value less
. . than one. Thus, as time passes, the forecast eventuallysleca
S‘Eoér:_\?r errot:_csr? l.mceam ége ﬁiﬂsgw;obg;pugﬁ reemdolrg It wards zero. Nevertheless, it would be desirable that the p
walk (RRW), which is caused w 1as ges (s Wi¥iction would tend towards the sample mean instead. This can

with time. This can be_ due to, e.g., aging of the _sens ’ changed by taking the sample mean as an additional state
components or changes in the temperature of the gyro; ME riable and modeling the bias as the suni 6f noise and the
sensors are typically highly _s_ensitive to temperaturea_v'arisample mean. This makes observation updates straightihrwa
tions [8]. RRW. causes a po_smve slqpe o the _AIIan varlancg well, as long as the variance of white noise is known. K it i
at long averaging times. Ur_1||kL=/f noise, RRW is a Markov not given in the specifications of the gyro, it can be estighate
process, i.e., memoryless: its value at step1 only depends from the Allan variance
on the value at step, not on any other (past or future) values. ’

Since white noise causes imprecision at short averaging
times and RRW degrades the accuracy at long averaging timgs,Moving Average Approach

the optimal averaging time is found between these two. The . e . N
minimum of the Allan variance of a gyro is called théas As the optimal prediction using Kalman filter is too complex

instability and can be used as a measure of the power fgf practical implementation, we introduce simpler prealic
1/f noise [25]. based on moving averages. Assuming that the Allan variance

of the noise process is constant, i.e.,

. L d
The Hurst exponent is commonly encountered in ||teratU{ﬁ
where long-memory processes are discussed but, in thitearti
d will be used as the memory parameter.

IV. PROPOSEDGYROSCOPEERRORPREDICTORS 1 N-1

_ _ 2 _
In this section, we present two approaches of predicting 2(N—1) G(T)ivr —y(r)i)" =B v, ™

the evolution of the bias: one based on Kalman filtering and =l

one based on computing a moving average. In Section ahd further assuming that the increments in the block
these predictors will be compared to the simple approach aferagesy; are mutually independent, the best predictor
averaging the entire calibration data. for y(7)i+1 given g(7); would be g(7); itself. Thus the
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prediction of = future samples would be the mean of pastalidation purposes: the KF should, in theory, minimize the
7 samples. Generalizing this leads to the simple predictor error variance among linear estimators. Therefore, if tife K
o does not yield the lowest RSSE, the models used in the KF
g].:l Z i (8) are probably incorrect.
J In the following sections, we first discuss the choice of the
gyroscope. Then, we study the behavior of the proposed pre-

wh_ergy = 0 is the time |nde>f of the Ia§t cahbratlon_ sampledictors in example runs based on both artificial and autbenti
This is by no means an optimal predictor foff noise, as

N : ata. Finally, the performance of the predictors are coegpar
the second assumption (mde_pend_ence of the mcre_ments) d:jean extensive batch test in order to assess how the methods
not hold. However, the predictor is very easy to impleme

. . . . —perform in general.
and the results presented in Section V show that its predlct:ae ° genera

performance is not far from the Kalman predictor values. If )
the calibration period is shorter than the navigation roissi A+ Choosing the Sensor
(as often is the case), the simple average of the calibratiorin order to get gyroscope data whose power spectral density

S i=—jt1

data obeys al/f shape as well as possible (when properly aver-
. - . aged), we need a gyroscope with negligible RRW. As shown
Yi=g > v izk ©) in Fig. 1, this can be achieved even using a MEMS sensor
=k if it is temperature-conditioned: in the Allan variance \aair
wherek is the length of calibration data, can be used to extenrl the temperature-controlled gyro, no RRW slope is visible
the moving average. at averaging times smaller thai®® seconds and the Allan
variance is almost constant for averaging times longer than
V. EXPERIMENTS 102 seconds. The same figure shows that this is certainly not

The performance of the proposed predictors was evaluatBg case for the gyroscope that is not temperature-coneitio
by running them on a large number of data sets with zel§ Allan variance starts to increase at averaging timegdon
angular rate input; there were both artificial data sets atftRn approx4-10* seconds because of RRW. The temperature-
authentic gyroscope data. In each run, the first half of tig@nditioned gyro appearing in Fig. 1 is [7] and the other gyro
data were used for calibration, based on which the evolutién[35]-
of the bias was predicted in the latter half. This resemtiles t In applications, temperature-conditioning has its draskisa
scenario of driving a vehicle: occasionally, the vehiclesmufor instance, the power consumption and physical size of
Stop, e.g., at Crossroads, which gives an opportunity fara-z the oven where the sensor is located may preVent USing the
velocity update. Another application is pedestrian wajifg4] technology in mobile devices. However, these consideratio
where there is a stance phase followed by a swing phad&e beyond the scope of this paper.
although the durations of the phases considerably shorter.

The artificial data were generated as ARFIMA(O, 1/2, 03. Example Runs
sequences according to (3) and the authentic data originaterig 5 shows the results of applying the estimation methods
from an immobile gyro; the data sets used in Section V-figcyssed in Section IV on artificial data. The samples were
contained2 400 samples each, whereas the results of Seganerated by half-integrating Gaussian white noise adogrd
tion V-C are based or2 000-sample-long sets. The angulaky (3) and adding a constant bias; no other components, such a
rate caused by the rotation of Earth was not treated in af)gitive white noise or random walk, were introduced. It can
way—since the gyro was static during the experiments, i@ seen that the KF estimate (Fig. 2a) decays smoothly teward
effect of Earth rotation was constant and can be seen as a Ra&t mean of the calibration data while the moving average
of the bias. In all test runs, an integration order 1/2 was (rig 2p) is more oscillatory, especially at the beginnirizene
used for modelingl/f noise; this is not necessarily optimakhe ayerage is computed over a smaller number of samples.
for the real data as some other choicedoéould model the it this data set, the KF performs better in terms of both
gyro noise correlations better. However, the exact locait¥éh | 44 RSSE: the KF error integrates-t@01 (dimensionless;
estimate [12] of the gyro data used(i$35, which suggests g nits assumed for the simulated data) while the intedrate
that the chosen value af is reasonable. _ moving average error i$35. The RSSE values ar@23

_In theory, because of the zero angular rate, the integral tfg197, respectively. For comparison, the errors obtained by
discrete time, the sum) of the difference between the daa §fkjng the mean of the calibration data as the sole estimate of
the predlc‘ted bias sh(_)uld equal zero. Therefore, we use tWR pias were-2910 (integrated) and 46 (RSSE). Hence, the
error metrics to quantify the prediction error: improvement is obvious in this case. Fig. 2a also shows the

« integrated error (IE): the sum of the prediction errors, i.&wo-sigma confidence interval of the KF estimate; the bounds

the difference between the data and the predicted biageem to agree with the data.
« root sum of squared errors (RSSE): the sum of the squareq\n example of estimator performance using real gyro data
of the prediction errors. is shown in Fig. 3. To be able to use the KF, the standard

Obviously, the IE describes the accumulated angle errer aftleviations of additive white noise and the driving noise of
the prediction phase, and the absolute value of the IE is wiiaé 1/f process had to be estimated first. The valdggh
we ultimately want to minimize. The RSSE is computed foaind 14°/h, respectively, were found to be appropriate, which



IEEE SENSORS JOURNAL 5

y. [unitless] Y; (1]
l 0.08 I I
data data
predicted 1/ f predicted 1/ f
10} mean of calibration data mean of calibration data
- - —%20 oosllm— %20
| m i/ il | i
“ i M‘ ”d f I i i ‘\h I i h‘
! |1 m M I m m e i
1l
y v‘ ‘ ' 1 l
|
-1000 0 1000 -1000 0 1000
j j
(@ @
, lunitless] [ Is]
A 0. 08 1 !
data data
predicted 1/ f predicted 1/ f
10+ mean of calibration data mean of calibration data
0.06
| ii l i \ [l I
l It w “ Hﬂ‘ H‘l"""'u i W\M i \h : \ M LU U \1!‘ L ‘H \
Il I |
N NI \[I W \kuu l
-10r |

1000 0 1000 % 1000 ‘ 0 ‘ 1000
j j
(b) (b)

Fig. 2. Prediction results for simulated data (no white epi¢a) Kalman Fig. 3. Prediction results with authentic data: (a) Kalmaerfi (b) moving
filter; (b) moving average. average.

C. Batch Test

is reflected by the consistency of the two-sigma confidence,, the example cases described above, it was only known
interval estimate in Fig. 3a. It should be noted that thege g yhe prediction model was correct in the case of Kalman
the confidence bounds of the signal including white noisghe \yith simulated data. To validate the modeling, simila
the confidence interval for the// component only would be tests with different sets of datat+800 simulated and 000 au-
narrower. thentic sets—were conducted in a batch and the performance

The KF outperforms the moving average and calibratiaof the three approaches were logged. A new set of data was
data mean with this set of data, too. The IE and RSSE fbalf-integrated for every simulation run whereas the aniihe
the KF estimate ar@.46° and0.410°, respectively. The cor- data sets were obtained by taking consecutive disjoinicsect
responding values for the moving average estimate3ai®® of 2000 samples from a long set of data. In each run, the
and 0.424°, and for the mean of the calibration dat)5° first 1000 samples were used for calibration and the rest
and0.415°. In this test case, the mean of the calibration dafia000 samples for prediction.
was a better estimator in the RSSE sense than the movin@he results of the batch runs are shown in Table I. It can
average. be seen that both of the proposed methods yield a lower
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TABLE | . "
PERFORMANCE OF THE PREDICTION APPROACHERABBREVIATIONS: KF: Fomplex'ty'Of the AR models pays off. Moreover, Con'ﬁdence
KALMAN FILTER ; MA: MOVING AVERAGE; CM: CALIBRATION DATA interval estimators should be derived for these suboptpre

MEAN; |E: INTEGRATED ERROR RSSEROOT SUM OF SQUARED ERRORS  (ictors. Given the estimate variances of the different meth

it would be easier to decide if for a particular application

Simulated Real data it is sufficient to use, e.g., the simpler MA method instead
KF MA  CM KF MA CcM of the computationally demanding KF approach, despite the
mean |E -119  -142 -115 -0.0214 -0.0258 -0.0728 degraded prediction performance.
IE std 2120 2210 2280 3.86 3.92 4.22
mean RSSE 136 139 138  0.390  0.393  0.394
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