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This thesis aims to describe the mathematical methodology of multi-channel tran-
scranial electrical stimulation (MC-tES) and its computational implementation in
the open Matlab-based Zeffiro Interface (ZI) toolbox. The goal is to extend the
current solver capabilities of ZI, and by using the solver implementation, among
other things, to enlighten the process of finding a focal optimized, and preferably
sparse, current pattern, as well as to provide the necessary codes for further soft-
ware development. The present implementation covers both forward and inverse
MC-tES solver. The former inherits for ZI’s finite element method based forward
solver for electroencephalography. Here the mathematical framework of this solver is
described and its connection to MC-tES explained. The application of the complete
electrode model boundary conditions ensures the high accuracy of the model at the
vicinity of the current-injecting electrodes. The inverse problem is approached via ℓ1-
regularized optimization and the dual-simplex linear programming algorithm. The
performance of the implementation is evaluated in numerical experiments in which
the volume current density caused by the stimulus is steered using a synthetic 10
nAm source with a reference extent of 253 mm3 as a target. A rough initial range
for the regularization and tolerance parameter is found with somatosensory, visual
and auditory cortex as the reference target areas, using a realistic multi-layered head
model discretized with 1 mm accuracy.
Keywords: Multi-Channel Transcranial Electrical Stimulation (MC-tES), Elec-
troencephalography (EEG), Forward and Inverse Problem, Finite Element Method
(FEM), Optimization

The originality of this thesis has been checked using the Turnitin Originality Check
service.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Neurological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 The brain and it functionality . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Central Nervous System (CNS) . . . . . . . . . . . . . . . . . . . 4
2.1.2 Neural Circuitry in the Brain . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Action Potential and Post-Synaptic Potentials . . . . . . . . . . 7

2.2 Understanding Electroencephalogram (EEG) . . . . . . . . . . . . . . 9

3 Transcranial Electrical Stimulation (tES) . . . . . . . . . . . . . . . . . . . 10
3.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Methods and Dosage . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Transcranial Direct Current Stimulation (tDCS) . . . . . . . . . 12
3.2.2 Transcranial Alternating Current Stimulation (tACS) . . . . . . 13
3.2.3 Transcranial Pulsed Current Stimulation (tPCS) . . . . . . . . . 14
3.2.4 Transcranial Random Noise Stimulation (tRNS) . . . . . . . . . 14

3.3 Need for Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Maxwell’s equations and quasi-static approach . . . . . . . . . . . . . 16
4.2 Complete Electrode Model (CEM) . . . . . . . . . . . . . . . . . . . 19
4.3 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Point Electrode Model (PEM) . . . . . . . . . . . . . . . . . . . 21
4.4 Resistivity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Volume current matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Implementation for MC-tES in Zeffiro Interface . . . . . . . . . . 26
5.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Head model description . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Synthetic sources and placement . . . . . . . . . . . . . . . . . . 27
5.2.3 Numerical optimization approach: general, regularized and ac-

tive cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Case I - Somatosensory Cortex . . . . . . . . . . . . . . . . . . . . . 31
6.2 Case II - Visual Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Case III - Auditory Cortex . . . . . . . . . . . . . . . . . . . . . . . . 40



7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A Optimization Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



1

1 Introduction
This thesis project aims to extend the capabilities of Finite Element Method (FEM)-
based forward and inverse methodology in the mathematical modeling the electro-
magnetic fields generated by and targeting the human brain in the detection and
manipulation of brain activity. Following up from previous electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) studies and implementations (Mi-
inalainen et al. 2019), the intention is to implement a combination of mathematical
statistics and principles of optimization for enhancing focality of the stimulus within
the brain and sparsity of the corresponded current pattern, i.e., reducing the number
of required electrodes utilized during a EEG/MC-tES session. The main approach
of the study is implemented in MATLAB, MathWorks1.

Zeffiro Interface (ZI)2 is an open-source brain imaging toolbox designed to pro-
vide a multi-modality platform for FEM-based, graphic processing unit (GPU)-
accelerated forward and inverse computations (He et al. 2019). As part of this
thesis, a script was generated serving as an update to the current version. The
goal is to extend forward solvers into including multi-channel transcranial electrical
stimulation (MC-tES), a non-invasive brain stimulation (NIBS) technique, in addi-
tion to EEG and MEG solvers that ZI already presents. It also serves as the initial
contribution for preparing the MC-tES workbench in ZI and provides direction for
further development of forward and inverse modeling software.

The contents of this thesis are to provide sufficient information to understand
the basis of the activities executed on this project: health informatics in the form
of biosignal analysis, mathematics in the form of statistics and optimization, and
information technologies in the form of code development. Each of the chapters
presented in this thesis constitutes a timid introduction to their respective fields,
the goal and focus being in the mathematical methodology and its application to
MC-tES.

After describing the principles of MC-tES, the mathematical forward model and
it discretization, that is the lead field matrix of MC-tES, is briefly reviewed. Subse-
quently, the mathematical optimization on ℓ1 norm minimization and regularization,
thereby focal and sparse distribution (Kaipio and Somersalo 2006) is described. To
examine the performance of the present implementation, the combination of for-
ward and inverse solvers is applied to find a focal stimulus pattern concentrated
in a given target area of the brain. A realistic multi-layer head model discretized
with 1 millimeter (mm) resolution is applied in this process, and a dipolar source

1https://www.mathworks.com/
2https://github.com/sampsapursiainen/zeffiro_interface
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current placed in the cerebral cortex is used as targeted brain activity with so-
matosensory, visual and auditory brain areas as reference locations. To enhance
the sparsity and quality of the elicited current pattern injected by the electrodes,
we consider both thresholding and re-optimization of said thresholded pattern, as
potential approaches.

This thesis is organized as follows: Neurological background is explained in Chap-
ter 2; Transcranial Electrical Stimulation, application and methods, are described in
Chapter 3. Furthermore, mathematical background that encompasses the forward
model is described in Chapter 4. Optimization procedure, including linear pro-
gramming, is described in Chapter 5. Results are presented in Chapter 6. Lastly,
conclusions are presented in Chapter 8.
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2 Neurological Background
This chapter provides a general overview of the human brain including their struc-
ture, neural circuitry and cognitive basics. Profound anatomical knowledge is not
required as required information is kept to a minimum. On this chapter, the corre-
sponding electrical activity is explained in section 2.1 and, thereby, understanding
the functionality of EEG/MC-tES in section 2.2.

2.1 The brain and it functionality

The human brain is a sophisticated array of sensory receptors responsible for the
control and coordination of all actions and reactions over the human behaviour and
all their physiological functionalities (Kandel et al. 2012). It consists of a large
number of specialized parts serving a variety of cognitive processes that allows us to
enact any kind of activity, including information processing, reflexes, management
of biostasis, and emotion based on hormonal and neurotransmitters reactions such
as dopamine, serotonin, adrenaline. The brain is protected by the skull, meninges
layers, and suspended in cerebrospinal fluid (CSF) (Fig. 2.1). Further information
on central nervous system (CNS), which includes the brain, is provided in 2.1.1, their
conductive components on section 2.1.2, and the biochemical signaling processing is
explained on section 2.1.3.

Figure 2.1 The brain and nearby structures (including the skull, meninges, ventricles
and spinal cord). An enlarged inset shows the skull, fluid, and brain.1
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2.1.1 Central Nervous System (CNS)

The central nervous system (CNS) consists of seven main parts: the spinal cord,
medulla oblongata, pons, cerebellum, midbrain, diencephalon and cerebrum. With
the exception of the spinal cord, the remaining six parts together form the brain. The
brain is commonly divided into three regions: the forebrain, which constitutes the
cerebrum and diencephalon; the midbrain, which involves medulla oblongata, pons,
and cerebellum; and the hindbrain, which refer to the same structures previously
mentioned in the midbrain with exception of the cerebellum. Brief explanation of
the parts of the CNS is presented as following (Fig. 2.2):

1. The spinal cord is the most caudal part of the CNS and is responsible for
receiving, processing and controlling information from the skin, muscles and
joints of the limbs and trunk. The brain stem, which consists of medulla
oblongata, pons and midbrain, is responsible for information detection from
the skin and muscles in the head, controlling musculature of the face, neck and
eyes and processing information such as hearing, balance and taste. It serves
as the intermediary between the brain and the spinal cord and it regulates
arousal and awareness levels based on the stimulus perceived by the reticular
formation.

2. The medulla oblongata is rostral to the spinal cord and is responsible for vital
autonomic basic functions such as controlling respiration, heart rate, regula-
tion of blood pressure, and reflexes as in coughing, swallowing and vomiting.

3. The pons is rostral to the medulla oblongata and is in charge of conveying
movement information to the cerebrum from the cerebral hemispheres.

4. The cerebellum is located directly behind the medulla oblongata and the pons
and is responsible for modulating the necessary amount of force and distance
of motor movements. It is also involved in the learning of new motor skills.

5. The midbrain is rostral to the pons and controls sensor and motor of the eyes
and the coordination of audio-visual reflexes.

6. The diencephalon is rostral to the midbrain and is divided into two structures:
thalamus and hypothalamus. The former acts as an information processor while
the latter performs regulation of autonomic, endocrine, and visceral functions
such like thermal regulation, body water, sleep cycle.

7. The cerebrum is the main structure of the CNS and is compromised of two
hemispheres. Together they forms the largest part of the brain. Each of the

1(https://www.flickr.com/photos/132318516@N08/26276988755) by Alan Hoofring (Illus-
trator), National Cancer Institute, National Institutes of Health, 6 April 2016, Public Domain.
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hemispheres consist of two structures: an outer layer of folded neuronal tissue,
known as cerebral cortex surrounded by grey matter, and a three deep-lying
structure: the basal ganglia, which regulates motor performance, the hippocam-
pus, involved in memory management, and amygdaloid nuclei, responsible for
autonomic and endocrine responses of emotional states. Each one of the hemi-
spheres are divided into four lobes: frontal lobe, parietal lobe, temporal lobe,
and occipital lobe.

Figure 2.2 The central nervous system divided into seven main parts: (1) Spinal cord
and the four major parts: Cervical, Thoracic, Lumbar and Sacral. (2) Medulla oblongata.
(3) Pons. (4) Cerebellum (5) Midbrain (6) Diencephalon, and (7) Cerebrum. The Basal
ganglia displayed at the center (Kandel et al. 2012).

2.1.2 Neural Circuitry in the Brain

The entire CNS requires a method to communicate with every part of the system.
This is performed via a complex network of neurons within the nervous tissue which
is dedicated to carry information through an electro-chemical procedure. This sec-
tion concisely describes how this process is done.



6

The structure of a typical neuron consists of four specific regions: cell body,
axons, dendrites and pre-synaptic terminals (Fig. 2.3). The cell body, or soma, is
the powerhouse of the nerve cell. It contains the nucleus, where genetic information
is located, and the endoplasmic reticulum, a nucleus-extension where the protein
of the cell is synthesized. The morphology of the cell body gives rise to axon and
dendrites. The axon is a long, singular tube, of range varying between 0.1mm to
2m (Kandel et al. 2012), encased by multiple tubings knowns as Myelin sheaths and
separated by nodes of Ranvier. Axons are responsible for delivering information to
the other nerve cells through electrical signals known as action potentials (described
on 2.1.3). The dendrites, which are tree branch-shape terminals of approximately
2mm (Sörnmo and Laguna 2005), are responsible for receiving any incoming signal
from the axons through the neuronal junction that connects these two neurons. This
junction is called synapse.

Figure 2.3 Illustration of a typical nerve cell.2

Aside from neurons being the most influencing type of cell among the neural
tissue, there are other non-neuronal cells that can be found within the CNS that do
not produce their own electrical impulses: glial cells (also glia or neuroglia). The
glial cells behave as a type of supportive cell for the neurons. Originally, they were
believed to just provide structural support, hence the name, “glía” derived from the
ancient Greek word which literally means “glue” in English (Jäkel and Dimou 2017).
This type of cell are what makes up the white matter within the brain. The popu-
lation of this cell can be further subdivided into four groups: astrocytes, microglia,
NG2-glia, and oligodendrocytes. The latter type of cell is the one responsible for
laying the myelin sheaths wrapping around the axons, facilitating the current flow
across the axon.

2https://commons.wikimedia.org/wiki/File:Neurone.png, by Looxix, 19 October 2003,
CC BY-SA 3.0.
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The entire neuronal tissue in the brain is spread among other structures, includ-
ing blood vessels and, most importantly, the ventricle system which consists of a
system of compartments within the CNS. Broadly speaking, the ventricle system
provides an aqueduct system for the distribution of CSF providing basic immuno-
logical protection and mechanical fluid-based suspension between brain and skull.
Additionally, the fluid provides the autoregulation of cerebral blood flow maintain-
ing constant blood flow.

2.1.3 Action Potential and Post-Synaptic Potentials

An action potential (AP) is the change in membrane potential that propagate along
the surface of excitable cells, characterized by being ”all-or-nothing”, i.e. they have
a threshold for arousal and a stereotyped duration; immediately after one AP, the
excitable cell has a refractory period during which makes it difficult to trigger a
secondary trigger right after the initial one. They are the result of changes in
membrane permeability due to the activity of channels, or proteins embedded in the
lipid bi-layer membrane that facilitate the passive movement of specific ions in favor
of their electro-chemical gradients.

Figure 2.4 Representation of an single action potential and all their electrical properties.

Synapses are known as the communication between a neuron cell and a target
cell, whether can be a muscle, a gland or another neuron. In this case, the sending
cell is known as pre-synaptic while the receiving cell as post-synaptic. Because of its
structure, an axon is capable of communicating with multiple post-synaptic cells.
Refer to Fig. 2.5. Inside each axon terminal are multiple synaptic vesicles, and
membranes which are filled with neurotransmitter molecules.
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Figure 2.5 Formation of post-synaptic potentials.3

Whenever an AP triggers and arrives at the axon terminals, it activates the
voltage-gated calcium channels in the membrane allowing an income of Ca2+ inside
the cell. This increasing level of Ca2+ allows the synaptic vesicle to temporally fuse
with the axon membrane, creating an opening and releasing their neurotransmitters
to the synaptic cleft, the gap that separates the connection between two cells. While
the inside of the target cell is dominated by potassium-ions (K+), the synaptic cleft
containing more sodium (Na+) and chloride (Cl−) leads to a negative concentra-
tion gradient causing a difference in electric potential between the interior of the cell
and the outside. The released neurotransmitters, which are propagating across the
synaptic cleft, binds to the target cell, causing the ionic channels of the membrane
to open or close, causing a dramatic change of electric potential inside of the cell: If
the membrane opens and Na+ flows in, the potential inside of the neuron increases.
If enough neurotransmitters binds, neuron’s potential can reach firing threshold lev-
els. This is known as depolarizing potential, or excitatory post-synaptic potential
(EPSP). In contrast, if Cl− instead flows into the cell, then the potential decreases
reducing the neuron’s ability to trigger an action potential. This is known as hy-
perpolarizating potential, or inhibitory post-synaptic potential (IPSP). Both EPSP
and IPSP (also known as graded potentials) are transient changes in the membrane
potential. It is important to mention that a singular PSP on it own cannot pro-
vide sufficient potential to trigger the next action potential unless the summation
of voltage from multiple PSP instances can reach the threshold level (Fig. 2.6)

3https://commons.wikimedia.org/wiki/File:Sinapsis.png (Translated), by DaDez, 13
February 2006, CC BY-SA 3.0.

4https://med.libretexts.org/@go/page/7596?pdf, by LibreTexts, 18 December 2020, CC
BY-SA 3.0.
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Figure 2.6 Comparison between graded potential (blue) and action potential (red).
Graded potentials are temporary changes in the membrane potential that do not yield
enough strength to depolarize above the threshold level. This condition can be met if the
summation of postsynaptic potentials across the axon passes the threshold level.4

2.2 Understanding Electroencephalogram (EEG)

Electroencephalography (EEG) is defined as the recording of brain electrical activ-
ity, obtained from the scalp by placing surface electrodes (Schomer and Silva 2012).
EEG is useful for studying neuronal activity, understating cognitive behaviour and
discover network communication with neurons via electrical impulses. During inter-
pretation of EEG results its necessary to have knowledge of the normal activity in
the different ages and clinical states of the patient, as well as the identification of
artifacts, technical problems and marginal patterns, in order to avoid interpretation
errors or overlooking findings that could be abnormal.

The described processes in section 2.1.3 offer electric potentials in two distinc-
tive forms which can be detected in the brain. While AP are short bursts of current
change in the axons followed by a repolarization phase, PSP have the opposite prop-
erties, having a weaker burst instead but taking longer time to diminish (Hämäläinen
et al. 1993). Although AP are much stronger than PSPs in terms of voltage, it is
assumed that the measured current activity by the EEG arises mainly from the
PSPs.
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3 Transcranial Electrical Stimulation (tES)
Transcranial Electrical Stimulation (tES) is a form of NIBS method for stimulating
the neuronal activity and treating psychiatric disorders and studying neuronal be-
havior under the influence of continuous, low-intensity current applied to a specific
region of interest (ROI) of the brain. The current dose applied is defined, but not
limited, by the electrode parameters (total number of electrodes, positioning, shape,
and composition), stimulation waveform (amplitude, pulse shape, amplitude, width,
polarity) and number of stimulation sessions including the time interval between
each sessions (Peterchev et al. 2012); generally traveling through the soft tissue and
skull (Vöröslakos et al. 2018), should be high enough to penetrate the scalp, able
to increase or decrease intrinsic neuronal excitability (Miniussi et al. 2013), while
low enough to prevent severe significant adverse effects during and after stimulation
session.

Numerous experiments had resorted these electrostimulating methods to study
various neuropsychiatric disorders and brain illnesses including stroke conditions
(Fregni et al. 2005b; Lindenberg et al. 2010), epilepsy syndromes (Fregni et al.
2006a), Parkinson’s disease (Boggio et al. 2006; Benninger et al. 2010; Fregni et al.
2005a; Fregni et al. 2006c), major depression disorder (Boggio et al. 2007; Fregni
et al. 2006d; Nitsche et al. 2009), tinnitus (ringing in ear) (Fregni et al. 2006b),
migraine (Antal et al. 2003), and alcoholism (Boggio et al. 2008).

3.1 Application

To apply tES, a set of at least two or more metal or conductive-rubber electrodes
with saline-soaked sponges must be attached to the scalp of the head model (DaSilva
et al. 2011; Ukueberuwa and Wassermann 2010) where the underneath lobes of the
brain to be stimulated area can be identified. The shape and size of the saline-
soaked sponges attached to the terminals must be designed to uniformly distribute
the current over the stimulation area for preventing an eletrical concentration on
the skin-sponge interface, reducing skin irritability generated by these methods (Fu-
rubayashi et al. 2008). Deployment of these electrodes can follow directly from
International EEG 10-10 or 10-20 system (see Fig. 3.1); the ROI of the subject
is determined by measuring distances between inion to the nasion, and from left
pre-auricular to the right pre-auricular (Klem 1999).

The distance between the electrodes applied across the scalp and the electric
generator (or an voltage-fixed battery) will function as a closed-circuitry where the
stimulation current (in mA) travels for a fixed amount of time (measured in minutes)
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from the positive lead (also known as anode or target) adhered over the cortical ROI
to the negative lead (also known as cathode or reference) adhered to an unrelated area
to be examined. If cathodal interaction is not required, the latter electrode can be
adhered either as in a bicephalic montage (e.g. vertex or forehead) or extracephalic
montage (e.g. shoulder or upper arm) (Datta et al. 2011).

Figure 3.1 EEG electrode positions in the 10-10 system using modified combinatorial
nomenclature as presented by Klem 1999. The electrode sites are colour-coded according to
the lobes of the brain which their labels (F, C, P, O, and T) represent. The head indicates
the location of the fiducials: the nasion, the (left) pre-auricular point, and the inion.1

3.2 Methods and Dosage

tES incorporates different methodologies which are defined by their dosage, how-
ever the definition of ’dose’ on this application has been changing for over the past
century. Guleyupoglu et al. (2013) present an article with a comprehensive and
technical review about historical evolution of tES based on their findings by back-
tracking research and medical paperwork to the earliest period when documentation
refereed to the first studies of electrical stimulation applied on electrosleep and elec-
troanesthesia therapies pairwise (Robinovitch 1914).

For over a century, different electrical stimulation methods and their devia-
tions had been proposed, neglected, resurged and then reshaped into contemporary
methods. Herein, four core tES approaches have been intensely explored over the
last decade: Direct Current Stimulation (tDCS), Alternating Current Stimulation
(tACS), Pulsed Current Stimulation (tPCS), and Random Noise Stimulation (tRNS)

1https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_
information.svg, by Laurens R. Krol, 20 November 2020, Public Domain.
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(Fig. 3.2). These techniques share configuration similarities but the injected current
pattern applied and their resulting neuronal behaviour effects differs drastically.

Figure 3.2 Common transcranial electrical stimulation (tES) waveforms (Current am-
plitude portrayed is set from -1 to 1 mA).

3.2.1 Transcranial Direct Current Stimulation (tDCS)

Most predominant and studied method over the last decade, Transcranial Direct
Current Stimulation (tDCS) is used for modulating cognitive and motor skills in
a polarity-dependent manner (Nitsche and Paulus 2000). This method relies upon
delivering constant low-intensity currents (0.5-2 mA; Zaghi et al. 2010) throughout
the ROI using at least two large patch electrodes (20-35 cm2 patch size; Moreno-
Duarte et al. 2014), which is applied directly to the head, partially penetrates the
skull, and enters the brain. tDCS has been successfully employed on healthy subjects
to increase cognitive brain function (Nitsche et al. 2003; Kincses et al. 2004; Fregni
et al. 2005c) as well as a reliable method for modulating cortical excitability (Nitsche
and Paulus 2000) without triggering an action potential (Bikson et al. 2004).

In contrast to the transcranial magnetic stimulation (TMS) methodology, which
is able to activate axons via short-pulsed stimulations and establish action potentials,
tDCS is incapable to deliver sufficient potential to discharge resting neurons or axons
(Nitsche and Paulus 2000). In comparison, the distinguishing electric fields produced
by magnetic stimulation are of approximately 100 volts per meter (V/m) while the
Direct-Current stimulation offers peaks of 0.3V/m per 1 mA applied. This sustained
low-intensity electrical field is capable enough to modulate transmembrane neuronal
potentials to bring the underlying neurons close to their firing threshold without
bringing up depolarisation (Paulus 2011).
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tDCS presents limitations on their own, including the unavailability to target
specific frequencies and the lack of focalization using conventional electrodes patches.
An increase of applied current pattern higher than 1 mA demands a larger electrode
patch (Furubayashi et al. 2008) to mitigate induced skin irritability. In order to
compensate the lack of focality, refined methods has been proposed and evaluated.
One recently developed method is the ”high definition” tDCS (HD-tDCS) approach
(Caparelli-Daquer et al. 2012; Borckardt et al. 2012) which replaces the bipolar
large electrodes with an array of the smaller electrodes patches (1 cm2; Moreno-
Duarte et al. 2014) narrowing the stimulation area into a specific cortical ROI. As
an example, the ”4x1 ring” HD-tDCS montage consist of a configuration wherein
four electrodes with the same polarity are attached over the target area in the shape
of a square and the remaining electrode with opposite polarity is adhered at the
center. This HD-tDCS method has delivered more focally-based results compared
to the conventional tDCS (Datta et al. 2009) although few HD-tDCS studies have
been published.

Figure 3.3 tDCS electrode montage. Positive lead in red and negative lead in blue. Left:
bicephalic reference. Middle: extracephalic montage. Right: 4x1 HD-tDCS montage.

3.2.2 Transcranial Alternating Current Stimulation (tACS)

Transcranial Alternating Current Stimulation (tACS) consists on delivering non-
constant currents (0.25-0.40 mA; frequencies ranging 1, 10, 15, 30 and 45Hz Antal
et al. 2008; electrode patches of size 16cm2 Moreno-Duarte et al. 2014) which reg-
ularly alternates the electrodes flow between positive and negative voltage. The
most common method to apply a non-invasive, low-intensity AC current pattern
is through biphasic waveforms either in the form of a rectangular wave (intensity
reaches a specific amplitude, held at that amplitude for a fixed amount of time,
then is interrupted by a current of value zero, start alternating the polarity of the
current, repeat the cycle) or in a sinusoidal wave (Zaghi et al. 2010).

AC stimulation alters the transmembrane potential of single neurons based on
the polarization of the injected current pattern, for instance, a sinusoidal waveform
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leads to sinusoidal fluctuations of the membrane potential. Unlike tDCS, polariza-
tion is frequency-dependant and linearly proportional to the injected current; low
frequencies induces bigger polarizations than high frequencies.

tACS is used particularly in electroconvulsive therapy as well as eliciting stimu-
lation in deep brain, motor cortex, spinal cord, transcutaneous nerve and vagal nerve
(Moreno-Duarte et al. 2014). Furthermore, AC stimulation has the advantage to
enable manipulation and physiological neuronal entrainment by alternating trans-
membrane neuronal potentials through frequency stimulation (Paulus 2011; Thut
et al. 2011). The current flow modulated by the anode supplies electrodes over
the ROI, promoting endogenous oscillations (depolarization) whereas the cathode
retracts electrodes, suppressing endogenous oscillations (hyperpolarization) (Song et
al. 2014)).

3.2.3 Transcranial Pulsed Current Stimulation (tPCS)

Transcranial Pulsed Current Stimulation (tPCS) is another brain stimulating tech-
nique within the framework of tES to induce changes over cortical and subcortical
brain structures (Datta et al. 2013). This method resembles the previously men-
tioned tES techniques: similar to tDCS on anode-cathode electrodes relationship,
their positioning as well as the possibility to configure a high-definition focality
method like HD-tDCS; similar to tACS on the usage of electrode patch size (16 cm2)
and delivering repeated short-bursts of the current rather than sinusoidal waves to
induce changes over cortical and subortical brain structures. In addition to the pre-
vious aforementioned advantages, tPCS has the opportunity to deliver the current
in different classes based on the waveform (function), associate magnitude spectrum
(frequency content), and associated clinical references. These classes are Monopha-
sic, Biphasic, Asymmetric, and Pulsed Trains pulses (Guleyupoglu et al. 2013).

3.2.4 Transcranial Random Noise Stimulation (tRNS)

Transcranial Random Noise Stimulation (tRNS) is a relatively new modality that
has delivered results yet has not been fully explored. When Terney et al. (2008)
investigated this method, they deployed an AC stimulation current in a similar
way like tACS, however, instead of delivering at a fixed frequency throughout the
session they fluctuated the current at random frequencies levels ranging from 0.1
to 640 Hertz (Hz) for 10 minutes on healthy subjects and discovered a significant
excitability increase at the motor cortex using high-frequencies for 60 minutes after-
stimulation. Chaieb et al. (2011) conducted a similar study except that they varied
the inputs. On this variation, a range of 100 to 640 Hz were used on three sessions



15

lasting 4, 5 and 6 minutes respectively. Only a minimal duration of 5 minutes ses-
sion was required to observe the excitability that Terney et al. (2008) presented.
While the latter method can be understood as an adjustment, however, comparing
the conclusions drawn from both parties are insufficient to determinate whether or
not the minimal requirement is indeed only 5 minutes. Even though the physio-
logically causalities has not been well understood so far, the motivation and results
documented are significant enough to be considered as a milestone in tRNS stud-
ies. Is suspected that the reason for excitability emanating from this method may
be attributed to the repetitive opening of sodium channels (Paulus 2011) or the
increased neuronal network sensitivity to modulation (Francis et al. 2003). One ad-
vantage worth noticing is that patients have reported to feel less sensations of pain
with tRNS compared to the tDCS method.

3.3 Need for Optimization

One pragmatic problem on MC-tES is the amount of freedom researchers and clin-
icians has for adjusting (tweaking) electrode parameters and current dosage. In
most cases, full details are not provided either because focalization over the ROI is
enhanced through placement of the electrode on the scalp or the planned injected
current for stimulation cannot be delivered (or received) as intended (Guleyupoglu
et al. 2013); permitting this action consequently results in an increased number of
cases with different adjustments. Although this action can be justifiable since human
morphology as well as their electrical properties varies from one case to another, the
amount of studies with contradictory outcomes alludes the fact that conventional
MC-tES regularization are far from finding optimal standardization.

Conventional tDCS require the usage of extended size electrodes patches to inject
the current pattern to a specific area within the target brain ROI. One approach
to improve the targeting is to optimize the electrode placement. This optimization
varies depends whether the goal is to maximize focality or directionality at the
target ROI (Rampersad et al. 2013). Should the goal is to increase the focality,
the electrodes patches should be replaced with a dense array of electrodes over the
ROI instead (Datta et al. 2009). The availability of using an increased number
of electrodes patches consequently leads to an increase of degrees of freedom, thus
the importance for devising systematic techniques to determinate optimal injected
current pattern is required, specially when using dense arrays as the working area
is limited.
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4 Forward Modeling
In this chapter, forward problem approach in MC-tES is described. Beforehand,
forward problem is known as the calculation of electric and magnetic field pattern
over a given geometrical model, while an inverse problem is the calculation of the
time-dependent and position values over the already-measured field pattern (Tanzer
2006). A forward problem is calculated based on a fixed current source, the geometry
of the head model and it internal conductivity distribution.

Figure 4.1 Definitions of forward and inverse problems.

Modeling the head model is a crucial step in the studies of electromagnetic source
imaging. In both EEG and MEG studies, the usage of a spherical model is the most
predominant and well-accepted geometric model because it simply reassembles the
shape of the human head and demands minimal computational-power for numerical
approach. However, relying on information based only on a spherical model is
not sufficient for determining source localization, as conductivity is known to be
inhomogeneous and anisotropic, i.e. not uniform and properties varies based on
direction. For this reason, FEM is applied for modeling both electromagnetic fields
and sources within a realistic head model (Pursiainen et al. 2016), as it provides
enough flexibility and include detailed conductivity information with great accuracy
to solve forward problem.

4.1 Maxwell’s equations and quasi-static approach

In order to obtain an appropriate model, basic understanding of electromagnetism
is required. Electromagnetism is the branch of physics that studies the properties
and behaviour of both electric and magnetic fields. Both fields strongly influence
each other, therefore, independent study of one field cannot be done without the
other.
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The electric field can be understood based on Gauss’ law contribution. The
Gauss’ law states that any electric charge is capable to produce its own electric
field E⃗ and the flux of that field passing through any surface is proportional to the
total charge contained within that surface. An electric field (or E-field), can be
understood as the electrical force F⃗ exerted on an unit point charge q0 at any given
location, i.e. an interaction experienced by other charges within the field,

E⃗ ≡ F⃗

q0
(4.1)

By writing in this form, the equation provides us a clear understanding about the
following two aspects: first, the electric field is a vector-valued quantity which mul-
tiplied by the charge of the particle gives the force of interaction; and second, the
resulting units can be re-wrote from newtons per coulomb (N/C) to volts per meter
(V/m).

Gauss’ law of charge conservation can be expressed for microscopic (differential
form) and macroscopic (integral form) fields (Nunez et al. 2006). In the former case,
the equations are used to describe every aspect on a detailed dynamic manner even
on atomic-level, while the latter field is obtained by applying integral law of Gauss
which converts volume integral of a divergence into a boundary integral of a normal
component. The differential form in a domain free of monopolar charges, e.g., in a
biological tissue, is the following:

∇ · E⃗ = 0. (4.2)

In other words, the divergence of E⃗ in the domain vanishes, indicating that there
are no sources nor sinks in the domain. The macroscopic version obtained as an
integral over a closed boundary can be written as:∫

∂Ω

E⃗ · dS⃗ =

∫
Ω

∇ · E⃗ dV = 0,

where dS⃗ is a surface differential with orientation matching that of the surface
normal and length given by the differential surface area. In addition to the Gauss’
law, Maxwell’s equations includes the Gauss’ law for magnetism, Faraday’s law and
Ampere’s circuital law, each one with a differential and an integral form. In the
following, we concentrate on the first of these two cases.

The Faraday’s law states that any magnetic field that interacts with an electri-
cal circuit produces an electromagnetic induction (Sadiku and Sadiku 2001). The
Maxwell-Faraday equation, which is a differential form of the Faraday’s Law, states
that a time-varying magnetic field induces an electromotive force. This law can be
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presented as follows:

∇× E⃗ = −∂B⃗
∂t
, (4.3)

where B⃗ is known as the magnetic flux density. Since the wavelength of the elec-
tromagnetic field is much larger than the diameter of the domain, the behaviour
of the electromagnetic field can be assumed to be nearly-static, meaning that the
partial derivatives of E⃗ and B⃗ with respect of time t are assumed to be zero, i.e.,
∂E⃗/∂t = ∂B⃗/∂t = 0. This is known as the quasi-static approximation. From
Maxwell-Faraday’s law it now follows that ∇× E⃗ = 0, which shows that the work
W0 per unit charge done by the electric field over any closed path P is zero, since

W0 =

∮
P

E⃗ · dℓ⃗ =
∫
D

∇× E⃗ · dS⃗ = 0, (4.4)

where dℓ⃗ denotes the differential tangent vector of P and D is a surface enclosed by
P . This means that E⃗ can be expressed as a gradient of a scalar electric potential
u as E⃗ = −∇u. Now, Ampere’s circuital law

∇× B⃗ = µ

(
J⃗ + ε

∂E⃗

∂t

)
, (4.5)

where µ and ε denote the magnetic permeability and the electric permittivity, re-
spectively, can be differentiated side-wise, which yields

0 = ∇× (∇ · B⃗) = ∇ · (∇× B⃗) = µ

(
∇ · J⃗ +∇ ·

(
ε
∂E⃗

∂t

))
= µ∇ · J⃗ , (4.6)

following from the Gauss law for magnetism, i.e., ∇· B⃗ = 0, the quasi-static approx-
imation, and the assumption that µ is constant (or nearly constant) in a biological
tissue. Consequently, Kirchoff’s conservation law ∇ · J⃗ = 0 holds for the total cur-
rent J⃗ in Ω. The total current can be split into the primary current J⃗p of the brain
activity and the volume current J⃗v = σE⃗. Taking into account that the electric field
can be obtained as the negative gradient of the scalar potential, it follows that

∇ · J⃗ = ∇ · (J⃗p + J⃗v) = ∇ · (J⃗p + σE⃗) = ∇ · (J⃗p − σ∇u) = 0, (4.7)

or alternatively, in a simplified form,

∇ · (σ∇u) = ∇ · J⃗p (4.8)

which is the governing partial differential equation for the electric potential in Ω.
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4.2 Complete Electrode Model (CEM)

As mentioned in the Chapter 3, electrode properties play an important role in MC-
tES. Size and positioning of electrodes influence the focality of the stimulus. For
this reason, taking into account electrode modeling is essential for reconstructions.
The point electrode model (PEM), which is the current standard for EEG, assumes
that every electrode in the head model Ω is a neutral, passive-point in the domain
Ω, i.e., electrodes do not influence. In contrast, the complete electrode model (CEM)
(Pursiainen et al. 2012) takes into account the electrode shapes, contact impedance,
and shunting effects, i.e., alterations of the underlying electric potential due to cur-
rent circulation on the contact surface (Somersalo et al. 1992; Hanke et al. 2011).
Although the differences of these two models has been confirmed to be very small in
context of normal EEG (Pursiainen et al. 2012), in this section we explore partial
differential equation for electrode modeling as well as the boundary conditions.

In EEG/MEG source analysis, the primary current density J⃗p can be recon-
structed through the field measurements on the surface of the head model ∂Ω
(Hämäläinen et al. 1993), however, in the case of MC-tES the simulated electrodes
are the only relevant current sources. This means that J⃗p is zero, thus

∇ · (σ∇u) = 0. (4.9)

In order to find an appropriate model for solving 4.9, a head model Ω is stimulated
through a montage of (eℓ)ℓ L electrodes of size |eℓ|. We denote the current applied
on the ℓ-th electrode by Iℓ as well as their potential Uℓ and impedance Zℓ. The
boundary conditions for CEM are represented as following:

0 = σ
∂u

∂n
(x⃗), in ∂Ω\ ∪L

ℓ=1 eℓ, (4.10)

Iℓ =

∫
eℓ

σ
∂u

∂n
(x⃗)dS, for ℓ = 1, 2, . . . , L, (4.11)

Uℓ = u(x⃗) + Z̃ℓσ
∂u

∂n
(x⃗), for ℓ = 1, 2, . . . , L, x⃗ ∈ eℓ. (4.12)

The first boundary condition describes that no current is flowing inside nor outside
of head. The second one states that the total current flux through the ℓ-th electrode
equals to the applied current Iℓ. The third condition describes the relationship
between the ungrounded electrode potential Uℓ and the u potential underneath the
electrode. Here, Z̃ℓσ

∂u
∂n
(x⃗) is known as the effective contact impedance. In this

condition, the impedance is a difference that is proportional to 4.11, i.e., the current
flux get stronger as the potential differential increases. Additionally, the difference
also increases if the effective contact impedance also increases. In the case were
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Zℓ = 0 or Iℓ = 0, no difference will be present, therefore both potentials Uℓ and u

will become constants, Uℓ ≡ u. By assuming that the effective contact impedance
is Z̃ℓ = Zℓ|eℓ|, we can now rewrite 4.12 as

Uℓ =

∫
ℓ
u dS

|eℓ|
+ ZℓIℓ. (4.13)

4.3 Weak Form

A general weak form for electric potential field u ∈ H1(Ω) can be obtained integrat-
ing by parts. Here H1(Ω) denotes a Sobolev space of square integrable (

∫
Ω
|u|2 dV <

∞) functions with square integrable partial derivatives. Multiplying 4.9 with a
smooth enough test function v ∈ S, where S is a subspace of H1(Ω), it follows that

0 = −
∫
Ω

∇ · (σ∇u)v dV,

=

∫
Ω

σ∇u · ∇v dV −
∫
∂Ω

σ
∂u

∂n
v dS,

=

∫
Ω

σ∇u · ∇v dV −
L∑

ℓ=1

∫
eℓ

σ
∂u

∂n
v dS. (4.14)

The weak form of 4.14 can then be obtained by substituting the second term of the
right-side and yields

−
L∑

ℓ=1

∫
eℓ

σ
∂u

∂n
v dS = −

L∑
ℓ=1

1

Zℓ|eℓ|

∫
eℓ

(Uℓ − u)v dS

= −
L∑

ℓ=1

Uℓ

Zℓ|eℓ|

∫
eℓ

v dS +
L∑

ℓ=1

1

Zℓ|eℓ|

∫
eℓ

uv dS

= −
L∑

ℓ=1

Iℓ
|eℓ|

∫
eℓ

v dS −
L∑

ℓ=1

1

Zℓ|eℓ|2

∫
eℓ

u dS

∫
eℓ

v dS

+
L∑

ℓ=1

1

Zℓ|eℓ|

∫
eℓ

uv dS, (4.15)
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thus, the final form is

0 =

∫
Ω

∇ · (σ∇u)v dV −
L∑

ℓ=1

Iℓ
|eℓ|

∫
eℓ

v dS

−
L∑

ℓ=1

1

Zℓ|eℓ|2

∫
eℓ

u dS

∫
eℓ

v dS

+
L∑

ℓ=1

1

Zℓ|eℓ|

∫
eℓ

uv dS, (4.16)

for all v ∈ S. The left-side of 4.16 defines a diffusion operator. On the right-side,
the first term corresponds to neural sources, the second term to the stimulation
sources, the third and fourth terms describe the shunting effects.

4.3.1 Point Electrode Model (PEM)

Electrodes that are point-like, for example needle electrodes, can be modelled via
PEM evaluating the limit of 4.16, where the surface area of the electrode tends to
a single point p⃗ℓ (electrode position), that is

1

|eℓ|

∫
eℓ

v dS → v(p⃗ℓ). (4.17)

In other words, the integral mean of v tends to v(p⃗ℓ). When applied to 4.16, the
third and fourth term on the right hand side vanish, since 1

|eℓ|2
∫
eℓ
u dS

∫
eℓ
v dS →

v(p⃗ℓ)u(p⃗ℓ) and 1
|eℓ|

∫
eℓ
uv dS → v(p⃗ℓ)u(p⃗ℓ). Thus, the weakform for PEM is given by

∫
Ω

σ∇u · ∇v dV = −
∫
Ω

(∇ · Jp)v dV +
L∑

ℓ=1

Iℓv(p⃗ℓ) (4.18)

4.4 Resistivity matrix

We derive the resistivity matrix R for the previously mentioned electrode models
when the right side of the equation 4.9 has a potential value of zero. Given the
scalar valued functions ψ1, ψ2, . . . , ψn ∈ S, the potential u can be approximated as
the finite sum u =

∑N
i=1 ziψi. Denoting by z = (z1, z2, . . . , zN) the coordinate vector

of the discretized potential, by U = (U1, U2, . . . , UL) the (ungrounded) electrode
voltages, and by y = (I1, I2, . . . , IL) as the injected current pattern, the weak form
4.16 is given by (

A −B

−BT C

)(
z

y

)
=

(
0

U

)
. (4.19)
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Here, A is of the form

ai,j =

∫
Ω

σ∇ψi · ∇ψj dV +
L∑

ℓ=1

1

Zℓ|eℓ|

∫
eℓ

ψiψj dS, (4.20)

and the entries of B (N -by-L) and C (L-by-L) are given by

bi,ℓ =
1

Zℓ|eℓ|

∫
eℓ

ψi dS, (4.21)

cℓ,ℓ =
1

Zℓ

. (4.22)

Consequently, the resistivity matrix satisfying z = Ry can be expressed as

R = A−1B(C−BTA−1B)−1. (4.23)

The ungrounded electrode potentials U can be obtained by referring to the bottom
row of 4.19, U = −BTz+Cy. The resistivity matrix for the PEM weak form 4.18
can be followed from 4.23 by taking the limit |eℓ| → p⃗ℓ which leads to

bi,ℓ →
1

Zℓ

ψi(p⃗ℓ) (4.24)

and

ai,j →
∫
Ω

σ∇ψi · ∇ψj dV +
L∑

ℓ=1

1

Zℓ

ψi(p⃗ℓ)ψj(p⃗ℓ) (4.25)

or
a′i,j →

∫
Ω

σ∇ψi · ∇ψj dV. (4.26)

4.5 Volume current matrix

We now define a matrix F(k) which evaluates the k-th Cartesian component of the
volume current density −σ∇u when multiplied by the coordinate vector z of the
discretized electrical potential distribution u. The entries of this matrix are given
by

f
(k)
i,j =

−σj(∇ψj)k, if j ∈ Ti

0, otherwise,
(4.27)

where subsets Ti, i = 1, 2, . . . ,M form a partitioning of Ω for a user-defined dimen-
sion M . The k-th Cartesian component of the discretized volume current given the
stimulating current pattern can be obtained as follows

F(k)Ry = F(k)A−1B(C−BTA−1B)−1y. (4.28)
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Further, we define lead field matrix of MC-tES as follows:

L =

F(1)

F(2)

F(3)

A−1B(C−BTA−1B)−1, (4.29)

which maps the current pattern linearly to the volume current as given in 4.28.
This can be considered as the forward mapping in the process of optimizing the
current pattern given a targeted discretized primary current distribution (J⃗p)k =∑M

i=1 xi
(k)(w⃗i)k associated with the coordinate vector x(k) = (x1

(k), x2
(k), . . . , xM

(k)).
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5 Optimization Procedure
As mentioned in chapter 3, subjects that had underwent to brain stimulation sessions
have reported sensations of skin irritation where electrodes had been attached to. As
a response, we investigate for a method that can help us understand how to reduce
this uncomfortable characteristic by analyzing the possibility to reduce or mitigate
the total amount of potential emanating from the electrodes and, as consequence,
reducing global maximum and minimum levels of current required. This reduction
can be approached through ℓ1 regularization, a method used for finding unique
solutions to ill-posed problems by intentionally adding information to the absolute
value of the weight in order to make a less complex model. We concentrate on the
following minimization problem

argmin
y

{ ∥Ly − x∥1 + α∥y∥1 } = argmin
y

∥Gy − s∥1 , (5.1)

where

x =

x(1)

x(2)

x(3)

 , G =

(
L

α1T

)
, s =

(
x

0

)
, and 1 =


1

1
...
1


x is a given discretized primary current distribution, y is a current pattern, L a
mapping between those, and α is a regularization parameter that suppress the com-
ponents of the injected current amplitude for setting the MC-tES current amplitude
allowed. By minimizing the right side of 5.1 we aim at calculating a current pat-
tern and a volume current distribution which yields minimal non-zero entries. This
is advantageous for localizing the stimulus in the brain and to minimize the total
amount of dosage given to the subject.

argmin
y

∑
i

|
∑
j

Gi,jyj−si| = argmin
y

∑
j

∑
i

Gi,j yj−
∑
i

si with Gy ≥ s. (5.2)

Defining g with gj =
∑

iGi,j this can be formulated as

argmin
y

gTy with Gy ≥ x, (5.3)

5.1 Linear Programming

A linear programming problem consist of a problem of maximizing or minimizing a
linear function subject to linear constraints. In this context, the problem is to find
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optimal α regularization parameter which can minimize y current distribution over
the electrodes by

argmin
y

gTy with


−Gy ≤ −x,

1Ty = 0,

ylower ≤ y ≤ yupper.

(5.4)

where g, y, ylower, yupper, x, 1T are vectors, and G as matrix. ylower and yupper are
considered as the lower bound and upper bound of y, respectively. Now, we proceed
to minimize this equation using mathematical optimization methods.

In mathematical optimization, duality refers that any optimization problem may
be evaluated from within two perspectives, the primal problem or dual problem
(Boyd and Vandenberghe 2004). The dual-simplex algorithm essentially consists
of performing a simplex algorithm on the latter problem whose obtained solution
shall provide a lower bound value to the solution of the former problem. First, the
algorithm perform a preprocessing procedure:

• Converts all lower bounds values into zeros.

• Validate the existence of upper bound (yupper) and lower bound (ylower) on
any variable. If this holds true, check for feasibility.

• Validate linear equalities and inequalities on any variable. If this holds true,
check for feasibility: remove the variable for equalities, and change the con-
straint to be a boundary for inequalities.

• Remove any empty rows in the linear constraint matrix.

• Determine the consistency of the bounds and linear constraints.

• Validate if any of the variables appear only as linear terms in the objective
function and not in any linear constraint. If this holds true, check for feasibility
and boundedness, then fix the variables at their appropriate bounds.

• If an inequality constraint is found, a slack variable is added to the inequality
constraint to transform the constraint into an equality.

• In the case that neither a possible solution or an unbounded problem can be
found, the algorithm continues until reaching a stopping criteria. Once met,
it will undo all transformations and reconstructs back the original problem.

Once the preprocessing steps are done, the problem 5.4 is reduced to

argmin
y

gTy with

−Gy = −x,

0 ≤ y ≤ yupper,
(5.5)
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where in this form G and x are the transformed constraint matrices of their original
versions with the upper bounds constrains included in the former matrix. If slack
variables are required to be added due to inequality constraints, then the equation
5.5 is written as

argmin
y

gTy with


−Gy = −x,

y + sprimal = yupper,

y ≥ 0, sprimal ≥ 0,

(5.6)

where sprimal are the primal slack variables. This is known as the primal problem of
the dual-simplex algorithm. To solve the dual problem of the dual-simplex algorithm,
the algorithm requires to solve the equation

max−xTv − yupper
Tw with

−GTv −w + sdual = gT

sdual ≥ 0,w ≥ 0.
(5.7)

where v and w are the dual variables and sdual are the dual slack variables. The
optimum conditions that can satisfy both primal equation 5.6 and dual equation
5.7 are

F(y,v, sdual, sprimal,w) =


−Gy = −x

y + sprimal − yupper

−GTv −w + sdual − gT

yisdual

sprimalwi

 = 0, (5.8)

y ≥ 0, sdual ≥ 0, sprimal ≥ 0,w ≥ 0, (5.9)

where ysdual and sprimalw are component-wise multiplications. 5.7

5.1.1 Implementation for MC-tES in Zeffiro Interface

We devised a function in Zeffiro Interface (zef_optimize_tes_current.m) designed
to formulate all variables in 5.4 in order to be used on MATLAB function ’linprog’
from the optimization toolbox. The input arguments required are the L projections,
the x discretized primary current distribution, and a third variable-length argument
(varargin) which contains the tolerances and stopping criteria for the solver, i.e.,
limits which stops the solver when are exceeded. The latter argument should contain
the following list of variables: (1) a variable that represents the total number of active
electrodes applied in ∂Ω, (2) a variable that defines the lower bound (ylower) and
upper bound (yupper), (3) a variable that sets the regularization parameter (α), (4)
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a variable that defines the termination tolerance on function value (TolFun), (5) a
variable that defines feasibility tolerance for constraints (TolCon), and (6) a variable
that sets the optimization algorithm (in this case, ’dual-simplex’).

5.2 Numerical experiments

5.2.1 Head model description

As mentioned in chapter 4, generating a FE mesh of a spherical model for study-
ing partial differential equations is generally known to be a reliable approximation
for studying the human head due to the simplicity of the geometrical properties
generated compared against the subject’s morphological topography. A distinctive
feature of using a sphere is the low-cost computational power requirement for calcu-
lating lead field as well as analyzing data simulation and mathematical modeling. A
lead field is an electric current field in the volume conductor generated by feeding a
unit current to the head (Malmivuo et al. 1997). The first test of the present imple-
mentation was conducted using a spherical model. However, since the optimization
process here is highly dependant on the local geometry of the head, the numerical
experiments concentrate on a realistic model.

In the case of a realistic head model, the volume conductor is based on openly
available1anatomical magnetic resonance imaging (MRI) data obtained for a real
subject. The lead field generation takes into account multiple different tissue layers
including, most importantly, white matter, grey matter, cerebrospinal fluid, scalp
and skull with have complex geometrical properties specific to the subject. Further-
more, each tissue’s conductivities influence on the accuracy of model for the forward
solution (Montes-Restrepo et al. 2014). As the reference conductivity values we use
the set proposed in (Dannhauer et al. 2011).

In this thesis project, the FEM mesh and lead field of the realistic head model
were calculated using ZI after segmenting the MRI data with the FreeSurfer software
and importing the resulting ASCII files. The mesh resolution of 1 mm was used in
order to obtain physiologically accurate results (Rullmann et al. 2009).

5.2.2 Synthetic sources and placement

The electric potential generated by neurons can be modeled as dipoles. In electro-
magnetism, an electric dipole represents the separation distance between two charges
of equal and opposite value within any electromagnetic system (Brau 2003). The

1https://brain-development.org/ixi-dataset/, Biomedical Image Analysis Group, Impe-
rial College London
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generated electric field lines by the dipole emanate from the positive charge, travel-
ling through a medium, and converging on the negative charge of the same dipole.
In the brain, voltage variation at the scalp resulting from current flow can be mea-
sured through EEG. The MC-tES method can simulate this variation via multiple
current injections on the scalp, the volume current distribution corresponding to
this variation is to be fitted with the dipolar source.

In Zeffiro Interface, one can simulate the dipoles as dipolar synthetic sources and
visualize them in the head model. Hence, one can analyze the effects of the current
patterns by comparing the volume current distribution to the dipole to obtain a
range of parameters that can provide the best match between synthetic dipole and
the volume current density. The present numerical experiments consider finding a
minimal current pattern corresponding to a dipolar source designated within each of
the following three brain areas on the left hemisphere: the somatosensory area in the
pariental lobe, visual area in the occipital lobe, and auditory area in the temporal
lobe. ZI presents a parcellation tool (based on 36-label Desikan killiany) which can
be used to display and distinguish these regions as in Fig. 5.1.

Figure 5.1 Zeffiro Interface parcellation tool and figure tool. Visible grey matter with
postcentral gyrus in the pariental lobe in red, lateral occipital lobe in blue, and superior
temporal gyrus in superior temporal lobe in cyan.

A gyri appears as a ridge on the surface of the brain while the sulci appears
as trench-looking depression or fissure (Fig.5.2(a)). Together they make up the
folded surface of the cerebral cortex. Based on the Brodmann’s areas (Brodmann
2007), source dipoles are defined as close as possible to the postcentral sulcus in
the pariental lobe, transverse occipital sulcus in the occipital lobe, and the superior
temporal sulcus in the temporal lobe (Fig.5.2(b)). These sources will emanate the
current pattern (nAm) across the realistic head model.
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Using ZI forward tools, the Cartesian components of the sources are indicated in
order to allocate the source geometrically next to the selected sulcus. For visualiza-
tion purposes, sources are represented in ZI figure tool as circles with a line pointing
away from the center indicating the orientation at which the elicited strength of the
source is pointing to in a coordinate system. Additionally, more than one source
can be simulated at the same time by declaring the previously mentioned values in
the same forward tools window.

(a) Gyrus and sulcus. (b) Sulcus of interest.

Figure 5.2 Representation of gyrus and sulcus; lateral surface of the left cerebral hemi-
sphere with postcentral sulcus, transverse occipital sulcus, and superior temporal sulcus
highlighted in red.2

Once a source and the parametric structure for the optimization described on
5.1.1 has been officially established the calculations can take place. In the follow-
ing experiments, a synthetic dipolar source of value 10 nAm source is placed in
three different target areas (somatosensory, visual and auditory) inside the brain.
The reference source extent is set to be 403/2 ≈ 253 mm3 which is the volumetric
correspondent of the typical value 40 mm2 suggested in Hari and Puce 2017. The
maximal strength of the stimulus current is chosen to be ±2.0 mA which is known
to be generally tolerable in tES.

5.2.3 Numerical optimization approach: general, regular-
ized and active cases

In the optimization process, the dual-simplex linear programming algorithm is exe-
cuted repeatedly for a total of m-by-n times, setting different values for the tolerance
of the residual norm and the regularization parameter 5.4: m is the length of a pos-
itive vector containing a range of termination tolerance values, and n is the length

25.2(a), (https://commons.wikimedia.org/wiki/File:Gyrus_sulcus.png) by Albert kok, 24
May 2007, Public Domain. 5.2(b), (https://commons.wikimedia.org/wiki/File:Gray726.png)
by Henry Gray (1825–1861). Anatomy of the Human Body, 1918, Public Domain.
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of another positive scalar with α values. The values within the scalars

m = (1e−4, 1e−5, . . . , 1e−10), and n = (0, 1e8, 1e9, . . . , 1e15)

are based on the optimization option structure criteria from MATLAB optimization
toolbox. These values refer to a system obtained in SI-units. Each m-th value is used
as a lower bound on the change in the value of the objective function during a linear
program step, i.e., if the termination tolerance of the function m(1 + ∥gT (ym)∥) >
∥gT (ym)− gT (ym+1)∥ the iteration ends. The n-th values represents the amount of
regularized penalty that is added toG prior each iteration. The outputs of the Zeffiro
Interface function, including the parametric structure, and the amount of elapsed
time required per iteration (in seconds), are all recorded under the surname results
general using m and n values as matrix index indicators (i.e., a struct featuring cells
matrices, each cell contains the resulting current pattern, residual, flag values, and
elapsed time per iteration, individually). Whenever a feasible solution is found, the
y(m,n) values are subject for further examination.

Another approach that supports our study is the calculation of the optimization
terms over a reduced montage version. When a feasible solution has been found,
the discretized electrode potentials values within y(m,n) that are close to zero can
be distributed among the other electrodes with the purpose for enhancing sparsity.
When an electrode potential does not meet the t percentage threshold criteria, being
t a vector containing threshold values for the algorithm (t = 12.5% and 25%) the
electrode potential at the given (m,n) instance is set to zero. This thresholded result
is registered as y(m,n,t), where t is the third cell matrix indicator representing the
amount of percentage used. Along with their residual, the new results are recorded
in an independent struct named results threshold. The generated current pattern
y(m,n,t) is used on 5.4 for evaluating a new set of optimization terms in a now-
segregated montage. The obtained results based on the previous indications are
recorded as results active using the same nomenclature of matrix index indicators
already described.

It is important to mention that when no feasible solution is found at each iter-
ation, the ZI function returns zero for all the numerical values and the flag value is
set to indicate that no solution was found under the given parameters. A zero, in
this manner, does not affect upon the determination of minimal values. The code
used in the optimization tests of this thesis is included as an appendix.
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6 Results
Once the algorithm described in section 5.1.1 is done searching for feasible solu-
tions comparison of which combination of optimization terms yields the minimal
amount of amperage (mA) distributed for a 128 active electrode montage used in
ZI. Following the recommended maximum amperage allowed for tDCS stimulation
sessions (Nitsche 2003), the maximum amperage is set to ±2.0 mA. In order to illus-
trate how much α can compliment or deteriorate the results we compare the current
pattern distribution of a non-regularized version against a regularized version. A
non-regularized version is obtained when n is set to the first scalar value, i.e., α
equals to zero. A regularized version corresponds to the results obtained using the
indicators m and n set to the matrix cell where the lowest amount of normalized
potential is located. Furthermore, we analyze the distribution differences between
the general version of the regularized version against their thresholded version, and
active montage-reduced version. Additionally, the general, threshold, and active
reconstructions and topographies for each case are also presented.

6.1 Case I - Somatosensory Cortex

For analysing the current density at the somatosensory cortex and surroundings,
the postcentral gyrus has been highlighted with red color. The synthetic source
dipole is displayed with green color, summoned at coordinates (-40,-27,67) and with
orientation (0,1,0) indicating that the current flow from this dipole shall travel in
the direction as represented in Fig. 6.1.

Figure 6.1 Parcellation of left hemisphere postcentral gyrus (red). Synthetic source
(green dot) positioned at postcentral sulcus.
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Once the dipole has been set and all the calculations are done, comparing the
results each combination of termination tolerance and penalty term provides by
plotting an scaled-color image. The levels of brightness at each cell represents the
amount of total electric potential obtained from the calculated current pattern.
Additionally, the scaled-color values of active results of both 12.5% and 25% are
also displayed in Fig. 6.2. Out of the obtained 63 cases (7-by-9), the terms that
yields the minimal potential are when the maximum absolute sum of current values
and residuals are closest to zero (green dot).

General results scale colors

Active results 12.5% scale colors

Active results 25% scale colors

Figure 6.2 scaled-color representations of the normalized results based on regularization
parameter and termination tolerance. Left: Current values (y). Middle: Residual values.
Right: Maximum absolute sum of current values and residuals. Minimal cost highlighted
as a green dot.

On the general version, minimal cost is obtained when both termination tol-
erance and regularization parameter are set on the fifth scalar value of m vector
and n vector respectively (TolFun = 1e−8, α = 1e11). Using these two terms,
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the linear programming solver yields a normalized current pattern with minimal
cost as min∥y(5,5)∥1 = 1.2016 mA. We compare the electrode potentials from a non-
regularized version (α = 0) against the calculated optimum regularized version (Fig.
6.3).

Figure 6.3 Comparison of non-regularized and optimum regularized current pattern
distribution across the 128 channels with synthetic source dipole at the postcentral sulcus.

Using the minimal feasible solution possible, we now calculate their 12.5% re-
duced montage version. Based on the linear programming results, neither termi-
nation tolerance or α parameters have changed after the re-calculations, i.e., the
m and n scalar values are the same. Consequently, as the channels were filtered
due to their low values the amount of electric potential is now distributed over the
remaining channels resulting in an increase of amperage. Normalizing the results
(Fig. 6.2) we obtain an increased value of min∥y(5,5,1)∥1 = 1.2689 mA.

Figure 6.4 Top: Thresholded regularized current pattern distribution (12.5%). Bot:
Active reduced montage current pattern distribution.
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When the threshold value is further increased to 25%, the number of available
channels is drastically reduced to the point where sparsity is barely affordable due
to the difficulties for finding feasible solutions. Under these circumstances, an in-
creased termination tolerance and penalization term is required to allow the linear
programming solver to find viable non-zero optimal solution. The minimal possible
solution that can be obtained is when TolFun = 1e−9 and α = 1e14 (Fig. 6.2). For
these terms the solution is min∥y(6,8,2)∥1 = 1.5494 mA.

Figure 6.5 Top: Thresholded regularized current pattern distribution (25%). Bot:
Active reduced montage current pattern distribution.

We now proceed to compare the regularized current distributions against the
reduced variations obtained (refer to Fig. 6.6). The 12.5% version resembles to the
original method in terms of active/inactive electrodes needed while the 25% version
demands a setup where some of the electrodes require inverted polarities (e.g. first
20th electrodes and 40th to 50th electrodes).

Reconstruction and topographies displaying the strength of the electric field are
distinguished from the intensities of color distributed across the matter (Fig. 6.7).
Unquestionably, the highest energy field concentration is where the source has been
initially declared. From this point forward, the strength gradually diminishes as it
travels through the boundaries in a bidirectional fashion: posteroanterior towards
the frontal lobe, and inferolateral of the pariental lobe on the right hemisphere.
For this reason, sparsity optimization can be harshly obtained. This effect can be
noticed when comparing the threshold 25% reconstruction.
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Figure 6.6 Comparison of active current pattern distribution. Top: General regularized
and reduced 12.5% version. Bottom: General regularized and reduced 25% version.

General Threshold 12.5% Threshold 25% Active 12.5% Active 25%

Figure 6.7 Reconstructions and topographies using optimum tolerance and regularization
with dipole simulated at the postcentral sulcus, left hemisphere.
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6.2 Case II - Visual Cortex

Following the same procedure as the 6.1 case, the occipital lobe is highlighted with
blue color. The source is displayed with green color, position coordinates are set
at (-15,-90,20) with direction coordinates are set as (0,1,0) wherein the transverse
occipital sulcus can be located as shown in Fig. 6.8.

Figure 6.8 Parcellation of left hemisphere occipital lobe (blue). Synthetic source (green
dot) positioned at the transverse occipital sulcus.

Since the source is set as distal as possible within the occipital lobe, the injected
pattern is more likely to disperse towards the contralateral region of the head model.
Due to the morphological structure of the white matter at this cortex, the model is
able to concentrate vast amounts of energy from the source throughout the whole
lobe (Fig. 6.14). This effect is clearly visible in this case compared against the other
cases.

The linear programming solver can easily locate feasible results with relatively
low termination tolerance and alpha values. Taking into account the scaled col-
ors that are presented in Fig. 6.9, the minimal cost of the general results is ob-
tained when both TolFun = 1e−7 and α = 1e10, granting a result as minimal
as min∥y(4,4)∥1 = 0.6832 mA. After setting threshold limits, the required parame-
ters to obtain minimum cost remain the same as the previously mentioned version.
In the case when the threshold limit is set at 12.5%, the minimum cost value is
min∥y(4,4,1)∥1 = 0.7151 mA. In comparison with the somatosensory case, the resid-
ual values are high whenever the linear programming solver cannot find feasible
solutions, attributed to the fact that the discretized primary current distribution is
mainly concentrated within the boundaries of the region of interest.
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General results scale colors

Active results 12.5% scale colors

Active results 25% scale colors

Figure 6.9 scaled-color representations of the normalized results based on regularization
parameter and termination tolerance. Left: Current values (y). Middle: Residual values.
Right: Maximum absolute sum of current values and residuals. Minimal cost highlighted
as a green dot.

When the threshold limit is set at 25%, the model for finding feasible results
became as strict as in the previous case. Interestingly, the solver was able to find
feasibility using the same termination tolerance levels and alpha values. The mini-
mum value obtained in these circumstances is min∥y(4,4,2)∥1 = 0.7905 mA. Should
the active results using the 4th n scalar column not be utilized, the next parameters
required are the same values as the somatosensory case did (using TolFun = 1e−8

and α = 1e14).
By comparing the results in Fig. 6.10, the normalized non-regularized and reg-

ularized current patterns with source located at the transverse occipital sulcus are
much less sporadic and yield a better sparse distribution than the case with the
source at the postcentral sulcus. Rather than inverting injected polarities, the non-



38

regularized version require some of the electrode channels to carry lower amperage
values instead compared to their regularized version.

Figure 6.10 Comparison of non-regularized and optimum regularized current pattern
distribution across the 128 channels with synthetic source dipole at the transverse occipital
sulcus.

Using the above-mentioned minimal feasible solution, the threshold and active
versions at 12.5% (Fig. 6.11) and 25% (Fig. 6.12) are presented. Straightaway,
we can recognize that the total number of active electrode channels required to
reproduce the electric field is dramatically reduced, compared to the general version.
With the former threshold percentage, only 76 channels are required to be active.
Moreover, using the latter threshold percentage, the potential distribution can be
concentrated even further by reducing the available active channels down to 58
channels instead. The comparison between the general version and the reduced
montage equivalents are displayed in Fig. 6.13.

Figure 6.11 Top: Thresholded current pattern distribution (12.5%). Bot: Active
reduced montage current pattern distribution.
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Figure 6.12 Top: Thresholded current pattern distribution (25%). Bot: Active reduced
montage current pattern distribution.

Figure 6.13 Comparison of regularized and active current pattern with source located at
transverse occipital sulcus. Top: General and reduced 12.5% version. Bottom: General
and reduced 25% version.

Based from the reconstructions and topographies (Fig. 6.14), different observa-
tions can be distinguished. First, based from the topographies, a reduced montage
version has lower electrical concentrations. Second, the electric field of the 12.5%
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version, even though uses more electrode channels than the 25% version, has a high-
concentration at low-dispersion attributed to the increased levels of residual values
obtained by the linear programming solver. Lastly, activity at the far-end of the
occipital lobe of the right hemisphere increases as the number of electrode channels
are reduced.

General Threshold 12.5% Threshold 25% Active 12.5% Active 25%

Figure 6.14 Reconstructions and topographies using optimum tolerance and regulariza-
tion with dipole simulated at the transverse occipital sulcus, left hemisphere.

6.3 Case III - Auditory Cortex

We approach the temporal lobe and their surroundings. Similar to the previously
cases we attach the source dipole (displayed with red color, to contrast against
parcellation) nearby the superior temporal sulcus as in 6.15 using the coordinates
(-60,-30,20) in ZI and with orientation (0,1,0) aiming in a rostral technique towards
the rest of the sulcus. The behaviour of the electric field is expected to resemble,
at some degree, part of the somatosensory results due to source proximities. In this
case, is set as distal to cover as much as possible the perimeters of the temporal
lobe, however, due to the proximities with the pariental lobe, there is a possibility
that generated patterns reaches the boundaries of the latter lobe.
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Figure 6.15 Parcellation of left hemisphere temporal gyrus (cyan). Synthetic source
(red dot) positioned at the superior temporal sulcus.

General results scale colors

Active results 12.5% scale colors

Active results 25% scale colors

Figure 6.16 scaled-color representations of the normalized results based on regularization
parameter and termination tolerance. Left: Current values (y). Middle: Residual values.
Right: Maximum absolute sum of current values and residuals. Minimal cost highlighted
as a green dot.
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With the dipole set at the superior temporal sulcus, the tolerance/parametric
results are plotted as in scaled-color image. Here, each cell represents the amount
of total electric potential, residual values, and ℓ1 norm from the current pattern.
Additionally, the scaled-color values of threshold and active results using 12.5% and
25% are included and displayed in Fig. 6.16. Out of the total 63 cases on each
situation and threshold value, the minimal potential is indicated (green dot) on the
cell of ℓ1 norm that yields the lowest value.

Figure 6.17 Comparison of non-regularized and regularized current pattern distribution
across the 128 channels with dipole at the superior temporal sulcus, left hemisphere.

Evaluating the obtained results as scaled colors, to calculate the minimal cost
without thresholding, the m scalar value is required to be set at the highest toler-
ance that the optimization toolbox can possible allow (TolFun = 1e−10) and the
n scalar value setting the regularization to α = 1e13. This regularization/tolerance
values yields a total cost of min∥y(7,7)∥1 = 1.3491 mA. Compared against the non-
regularized version, α = 0, the results obtained do not have much difference (Fig.
6.17). This is because the results obtained, despite considered to be mathematically
feasible, are in fact unpractical and, rather, may cause detrimental effects if said pa-
rameters are to be used because the solution for this model has done overfitting. In
statistics and machine-learning, overfitting is the term used when the task for data
analysis holds close or resembles exactly a set of data that renders the classifica-
tion unable to evaluate correctly new incoming data because of high variance levels
(Hawkins 2004). In our case, the level of parameters required to be justified for this
model are too many, this is because of high levels of α parameter that increases
the weight in the data set, up to the point where noise, in the form of evaluation
error, is now considered to take part as the correct result. To solve the issue, we
re-evaluate with lesser electrodes as in the previous cases.

With the reduction of electrode channels, we can re-calculate a more practical
model. With threshold value of 12.5%, we downsize the montage from 128 electrodes
to use only 107 channels. The optimal tolerance/penalization terms are now set to
be TolFun = 1e−5 and α = 1e9. Using these terms, the minimal cost calculated
is min∥y(2,3,1)∥1 = 1.4106 mA (Fig. 6.18). For the case of threshold value of 25%,
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the montage is further reduced to 97 channel version, the m and n scalar values
are set for parameters TolFun = 1e−9 and α = 1e14. The resulting minimal cost is
min∥y(6,8,2)∥1 = 1.5043 mA (Fig. 6.19).

Figure 6.18 Top: Thresholded regularized current pattern distribution (12.5%). Bot:
Active reduced montage current pattern distribution.

Figure 6.19 Top: Thresholded regularized current pattern distribution (25%). Bot:
Active reduced montage current pattern distribution.

Based on the results obtained, general and thresholds scenarios, share a strong
resemble as in the somatosensory case. This can be justifiable due to the configu-
ration similarities that were declared in ZI prior the calculations. The comparison
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between the general version and the reduced montage using 12.5% and 25% are
displayed in Fig. 6.20.

Figure 6.20 Comparison of active current pattern distribution. Top: General regularized
and reduced 12.5% version. Bottom: General regularized and reduced 25% version.

General Threshold 12.5% Threshold 25% Active 12.5% Active 25%

Figure 6.21 Reconstructions and topographies using optimum tolerance and regulariza-
tion with dipole simulated at the superior temporal sulcus, left hemisphere.
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7 Discussion
The present implementation covers both forward and inverse solver for MC-tES
(Moreno-Duarte et al. 2014). The former one of these was built on the Zeffiro
Interface’s (ZI’s) (He et al. 2019) existing EEG forward solver (Miinalainen et al.
2019) using the mathematical approach that couples the complete electrode model
(CEM) boundary conditions (Pursiainen et al. 2018) with the governing differen-
tial equation of the electric field which follows from the point-wise Dirichlet current
conservation condition for the total current density inside the head. The system
that follows is an accurate description of the current flow in the different parts of
the computing domain, including the complex-shaped brain and head models as
well as the electrodes and their boundaries taking into account the exact contact
surface area of the electrode. The forward model can be discretized using the fi-
nite element method (FEM) through the approach already utilized in ZI’s EEG
solver. Therefore, the implementation of the forward solver was a straightforward
task and particularly well-suited for the ZI platform. The codes for constructing the
matrices of the discretized MC-tES forward model, presented in this thesis, were
already available in ZI. That is, the forward solver was obtained by re-organizing
and re-developing the existing FEM solver components utilized by ZI. Consequently,
it is obvious that, when implemented via the CEM, the EEG and MC-tES forward
solvers are inherently connected, as they follow from a single mathematical model,
that is also why it is essential from the mathematical point of view to have both
implemented in a single computing platform. Due to their mathematical similarity,
the processing times achieved with EEG and MC-tES forward solver are similar:
a lead field matrix corresponding to a FEM discretization with a 1 mm resolution
can be obtained within about 30 minutes with a contemporary workstation com-
puter equipped with sufficiently large memory capacities and graphic processing
unit (GPU). Here, the equipment used included DELL 58201workstation with 128
Gigabytes of RAM (random access memory), Intel i9-10900X central processing unit
(CPU) and Nvidia Quadro RTX 4000 GPU with 8 GB of RAM of its own.

The optimization-based inverse solver aims at minimizing, inside the brain, the
support of the current density resulting from a MC-tES stimulus. In other words,
it tries to maximize the set in which the current density vanishes. That is why the
ℓ1-norm minimization of the residual vector between a given current density within
the brain and the volume current density due to the stimulus has been selected
as the primary approach to seek the stimulus current pattern (Uutela et al. 1999).
Namely, the ℓ1-norm, i.e., the sum of the vector entry absolute values, is known to

1https://en.wikipedia.org/wiki/Dell_Precision, Dell Inc.
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be small for vectors with only few non-zero entries. Furthermore, the ℓ1-norm based
regularization was applied to penalize the current pattern of the stimulus itself, as it
needs to be as sparse as possible in order to minimize the current dose given to the
subject, otherwise, non-regularized solutions, based on the solutions, would require
the potential levels to inject high values of current in a singular channel. Safe MC-
tES practicalities requires clinicians and researches to establish limit values both
during and after a stimulation session to prevent harmful results to the subjects,
or, if possible to avoid, adverse effects. That is why sparsity is of importance in
this manner (Krishnaswamy et al. 2017). The optimization task following from this
combined ℓ1-norm optimization and penalization approach could be formulated as
a linear programming task which, after a re-formulation presented in this thesis,
was found to be directly implementable using MATLAB’s already built-in linprog
function. Of the solver algorithms, the dual-simplex method, i.e., dual problem
solver, was found to perform well with the present optimization task. The obvious
reason being the dimensionality of the lead field matrix which has considerably
greater number of rows (degrees of freedom for the current density) than columns
(the dimension of the stimulus current pattern). Consequently, the dual problem
utilizing the transpose of the lead field matrix instead of the matrix itself, has
considerably fewer constraints to be taken into account by the solver.

The regularization/tolerance combination to yield an optimal outcome with re-
spect to the physiological parameters of the stimulation, e.g., the strength of the
stimulus and the norm of the residual, was found to depend on the target area of the
stimulus, that is why it is suggested that the optimization routine cannot rely on
a fixed regularization/tolerance parameter but rather a set of systems are required
to be calculated beforehand in order to ensure the appropriateness of the value pair
applied. The present numerical experiments sketch rough working limits for the reg-
ularization parameter and tolerance value, using somatosensory, visual and auditory
target areas as a reference. However, the present results should be verified with a
more extensive study, including multiple subjects, in order to ensure their validity.
Another research question to be investigated in the future is, whether an algorithm
of finding the right regularization/tolerance combination can be developed in order
to minimize the number of trials necessary in the optimization stage and, thereby,
to speed up the computation. Here, a regular grid was used which might be a sub-
optimal strategy regarding the computing time and effort, even though it can be
interpreted to provide the most robust result.

The optimization problem was found to be solvable with physiologically appli-
cable limits for the stimulus current: a synthetic 10 nAm source with a 403/2 ≈ 253

mm3 extent (Hari and Puce 2017) could be obtained with generally tolerable ±2

mA (Nitsche 2003) as the limit for the maximal injected current amplitude. It was
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found that, without regularization or thresholding, the current patterns obtained are
likely to include only few close-to-zero values. The current dose given to the subject
can be reduced both via increasing the threshold of minimal non-zero current or
the value of the regularization parameter. In the former case 25%, i.e., approxi-
mately 0.5 mA, was found to be a critical range after which the optimizer might
not find an appropriate solution anymore, when re-iterated (active case), and in the
latter one, the residual norm was observed to diverge after a critical limit. Thus,
it seems to be difficult to significantly reduce the current patterns obtained in this
thesis, minimally with approximately 100 non-zero currents, without significantly
compromising the focality of the volume current density in the brain.

A further reduction in the number of non-zero currents might be obtained by
introducing a fixed pattern, similar to the 4x1 HD-tDCS method used in Caparelli-
Daquer et al. 2012 and Borckardt et al. 2012. Such patterns were initially examined
in this thesis, suggesting that the implemented optimizer algorithm is applicable as
is also with those. A more extensive in examination can be conducted in the future,
concentrating on the differences between the solvability of the optimization problem
and the focality of the resulting current distribution in the brain.
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8 Conclusion
This thesis described the mathematical methodology of transcranial electrical stim-
ulation (MC-tES) and its computational implementation in the open Matlab-based
Zeffiro Interface (ZI) toolbox with the principal goal to extend the applicability of
ZI in different brain-related applications, and by using the solver implementation,
among other things, to enlighten the process of finding an optimized current pattern
and to provide codes for further development. The present implementation covers
both forward and inverse MC-tES solver. The former one of these was built on the
ZI’s existing EEG forward solver and the latter utilizes an ℓ1-regularized optimiza-
tion approach. The solvers implemented were found to result in a feasible computing
time when using a workstation with sufficient large memory and high-performance
GPU unit. if intense amount of data is required to be rendered an if CPU or a lower
performance GPU unit is used, ZI will be unable to render the data and causes the
calculations to be interrupted.
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A Optimization Script

Program A.1 Zeffiro Interface (ZI) optimization fuction code for solving linear
programming problem.
function [y_tes, residual , flag_val] = ...
zef_optimize_tes_current(L_tes_projection , x_tes, varargin)
opts = optimset('linprog');

5 if length(varargin) >= 1
param_struct = varargin{1};

else
param_struct = [];

end
10 if isfield(param_struct ,'active_electrodes')

if not(isempty(param_struct.active_electrodes))
active_electrodes = param_struct.active_electrodes;

else
active_electrodes = [1:size(L_tes_projection ,2)];

15 end
else

active_electrodes = [1:size(L_tes_projection ,2)];
end
if isfield(param_struct ,'positivity_constraint')

20 if not(isempty(param_struct.positivity_constraint))
positivity_constraint = ...
param_struct.positivity_constraint;

end
else

25 positivity_constraint = [];
end
if isfield(param_struct ,'negativity_constraint')

if not(isempty(param_struct.negativity_constraint))
negativity_constraint = ...

30 param_struct.negativity_constraint;
end
else

negativity_constraint = [];
end

35 if isfield(param_struct ,'max_amplitude')
lower_bound = -(param_struct.max_amplitude);
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upper_bound = param_struct.max_amplitude;
else

lower_bound = -Inf;
40 upper_bound = Inf;

end
if isfield(param_struct ,'reg_param')

reg_param = param_struct.reg_param;
else

45 reg_param = [];
end
if isfield(param_struct ,'tolerance')

opts.TolFun = param_struct.tolerance;
end

50 if isfield(param_struct ,'constraint_tolerance')
opts.TolCon = param_struct.constraint_tolerance;

end
if isfield(param_struct ,'variable_tolerance')

opts.TolX = param_struct.variable_tolerance;
55 end

if isfield(param_struct ,'algorithm')
opts.Algorithm = param_struct.algorithm;

end
if not(isempty(positivity_constraint))

60 p_c_ind = sub2ind([length(positivity_constraint) ...
size(L_tes_projection ,2)], ...
[1:length(positivity_constraint)]', ...
positivity_constraint(:));
p_c_aux = zeros(length(positivity_constraint), ...

65 size(L_tes_projection ,2));
p_c_aux(p_c_ind) = -1;
L_tes_projection = [L_tes_projection; p_c_aux];
x_tes = [x_tes ; zeros(length(positivity_constraint),1)];
end

70 if not(isempty(negativity_constraint))
n_c_ind = sub2ind([length(negativity_constraint) ...
size(L_tes_projection ,2)],...
[1:length(negativity_constraint)]', ...
negativity_constraint(:));

75 n_c_aux = zeros(length(negativity_constraint), ...
size(L_tes_projection ,2));
n_c_aux(n_c_ind) = 1;
L_tes_projection = [L_tes_projection; n_c_aux];
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x_tes = [x_tes ; zeros(length(negativity_constraint),1)];
80 end

L_tes_projection = L_tes_projection(:,active_electrodes);

if length(lower_bound) <= 1
85 lower_bound = ...

lower_bound*ones(size(L_tes_projection ,2),1);
end
if length(upper_bound) <= 1

upper_bound = ...
90 upper_bound*ones(size(L_tes_projection ,2),1);

end

if isempty(reg_param)
[y_tes,~,flag_val] = ...

95 linprog(sum(L_tes_projection)', ...
-L_tes_projection , ...
-x_tes, ...
ones(1,size(L_tes_projection ,2)), ...
0, lower_bound , upper_bound , opts);

100 else
L_tes_projection = [L_tes_projection ; ...
reg_param*ones(1,size(L_tes_projection ,2))];
x_tes = [x_tes; 0];

105 [y_tes,~,flag_val] = ...
linprog(sum(L_tes_projection)' ...
+reg_param ,...
-L_tes_projection , ...
-x_tes, ...

110 ones(1,size(L_tes_projection ,2)), ...
0, lower_bound , upper_bound , opts);

end
if ismember(flag_val ,[1 3])

residual = norm(L_tes_projection*y_tes-x_tes ,1);
115 else

residual = 0;
end

end
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