7th Workshop on Numerical Methods in Applied
Science and Engineering (NMASE 08)

Vall de Ntria, 9 a 11 de enero de 2008
©LaCaN, www.lacan-upc.es

MANAGEMENT, DESIGN AND DEVELOPMENT OF A
MESH GENERATION ENVIRONMENT USING OPEN
SOURCE SOFTWARE

X. Roca, E.Ruiz-Gironés and J. Sarrate

Laboratori de Calcul Numeric (LaCaN)
Departament de Matematica Aplicada III
Universitat Politecnica de Catalunya
Jordi Girona 1-3, E-08034 Barcelona, Spain
e-mail: {xevi.roca,eloi.ruiz,jose.sarrate}@Qupc.edu, web: http://www-lacan.upc.edu

Palabras clave: Mesh generation, software engineering, agile methodologies, design
patterns, data structure.

Resumen. In this paper we present an object oriented implementation of a general-
purpose mesh generation environment for geometry-based simulations. The aim of this
application is to unify available legacy code and new research algorithms in only one mesh
generation suite. We focus in two aspects that can be of the general interest for managers,
designers and developers of similar projects. On the one hand, we analyze the software
engineering practices that we have followed in the management and development process.
In addition, we detail and discuss the Open Source tools and libraries that we have used.
On the other hand, we discuss the design and the data structure of the environment. In
particular, we first summarize the topological and geometrical representation. Second, we
detail our implementation of the hierarchical mesh generation structure. Third we present
our design to mediate collaboration between classes. Finally, we present some of the mesh
generation features to show the capabilities of the environment.

1 INTRODUCTION

Over the past decades, significant advances have been made in the computational and
rendering capabilities of graphics workstations. In parallel, an outstanding progress has
been made in the development of structured and unstructured mesh generation algorithms
[1, 2]. Surprisingly, mesh generation is still the biggest bottleneck in real industrial ap-
plications. Therefore, special attention has been focused on the development of graphic
and interactive environment to fully automate the discretization process [3, 4, 5, 6, 7, §].

In this work we present an object oriented implementation of a general-purpose mesh
generation environment for geometry-based simulations. On the one hand, it is designed
to fulfill the functional requirements of a research group on geometry-based simulations:

X. Roca, E.Ruiz-Gironés and J. Sarrate

e Fase of use. The environment has to provide an intuitive interface that allows users
to generate meshes with few operations.

e Quality meshes. The environment has to generate high quality meshes for geometry-
based analysis, such as the Finite Element Method (FEM) or the Discontinous
Galerkin (DG).

o Simple and powerful geometry modeler. The geometry modeler has to allow fast and
easy modeling of middle complexity models. In addition, it has to import complex

CAD designs.

On the other hand, it has to provide a convenient developing framework that verifies
the following non-functional requirements:

e Unify mesh generation code. All mesh generation code, legacy and research, has to
be integrated in the mesh generation environment.

e Software re-use. In order to improve productivity we have to use available libraries,
adapt legacy code, and implement new classes and methods for later code re-use.

e Scalability. We have to promote a design and implementation that facilitates the
growing of the application.

o Maintainability. We have to apply several software engineering practices ensuring
that a small group can maintain the application.

e Fasy to code. New developers should be productive in short-term. That is, they
should able to add new features without understanding the whole of the source code.

e (ross-platform. The environment has to work, at least, in Windows and Linux
machines.

During the management, design and development of the project, we have used several
modern software engineering techniques. Therefore, in section 2 we address four aspects
of the management and development process. First, we provide a detailed list of the
development paradigms and techniques that we adopted to fulfill the requirement of the
application. Second, we present the project management methodology that has been
followed during the development of the project. Third, we summarize our selection of
Open Source tools used in the analysis, design and development of the application. Fourth,
we detail a list of Open Source libraries used in the environment.

In order to achieve several of the previous requirements it is of the major importance
to carefully design the classes and methods of the application. Taking into account de-
sign practices [9], in section 3 we also present the design and the data structure of the
mesh generation environment. Mesh data base has been widely analyzed in [10, 11, 12].

X. Roca, E.Ruiz-Gironés and J. Sarrate

Therefore, we focus on the hierarchical mesh generation structure and how to properly
manage objects collaboration. For both cases we discuss and provide class diagrams of
inheritance and collaboration.

2 MANAGEMENT AND DEVELOPMENT

The management and development process of a mesh generation environment requires
the use of good software engineering practices. In this section we provide useful informa-
tion for managers, designers and developers of similar projects. First, we discuss program-
ming paradigms and techniques that have been followed to develop the mesh generation
environment. Second, we resume the project management process. Third, we summarize
the Open Source tools that we have used to develop the environment. Finally, we detail
our selection of Open Source Libraries that provide high-level features for modeling and
Graphical User Interface (GUI) creation.

2.1 Development paradigms and techniques

In order to deal with software development complexity we have used several modern
programming paradigms and techniques. On the one hand, they improve scalability and
maintainability of the software project. On the other hand they are oriented to ensure
that the development process is oriented to a clear and affordable goal.

Object oriented. We adopted the Object Oriented programming (OOP) paradigm
to promote flexibility and scalability of the program. That is, we design and implement
our application by means of objects that collaborate together. Each object is capable of
receiving messages, processing data and sending messages to other objects. Several OOP
languages are available. However, we use C++ [13, 14] because it is faster than other
OQOP languages, mature, libraries are available, and widely used in software industry.

Agile methodology. Several agile software development methodologies have ap-
peared during last decade. They focus on development processes that are more responsive
to customer needs, ”agile”, than traditional methods. In particular, eXtreme Program-
ming [15, 16] provides traditional engineering practices and takes them to ”extreme”
levels. In our project we have adopted part of the eXtreme Programming practices. In
particular:

e Pair programming. We frequently program in couples. Two programmers developing
on the same machine create better quality code. The code is reviewed at the same
time it is typed. Hence, the source code knowledge is shared.

e Small steps. Each developer is responsible of coding a particular and small feature.
Developers try to implement only the required feature and not future features. We
use the tickets concept of Trac [17] for assigning small tasks to developers.

e Unit testing. For each new implemented feature, a test case is added to the unit
tests. Once a new feature is added all the tests in the unit are run. Unit testing

X. Roca, E.Ruiz-Gironés and J. Sarrate

ensures that after a modification is performed, the program still works and is able
to run the previously developed features. We have selected CppUnit [18] as unit
testing library.

e Refactoring. Developers use refactoring [19] in order to simplify and make clear the
source code. Code duplication is not allowed, and each time it is found developers
create adequate abstractions [9, 20]. Unit testing ensures that the program has the
same functionality after refactoring.

e Sharing the source code. Source code is shared by all the developers in a centralized
repository. The developers can verify and change any part of the source code. To
properly manage code sharing we use Subversion [21] as a version control system.

e Continuous integration. After a new feature is correctly implemented, it is commit-
ted to the source code repository. That is, new features are continuously integrated
in the shared source code. Subversion and distributed compilation with distcc [22]
facilitates new features integration.

Design patterns. The development of a mesh generation environment requires the
design of a complex system, with a high number of classes collaborating together. These
classes collaborate through inheritance and aggregation in order to represent complex
data structures such as meshes and solid models. Several issues that appear during the
design process of the environment are software engineering common problems. For this
reason when a design problem is identified the adequate pattern [9, 23, 24] is used to solve
the problem. In addition, we take into account design patterns during code refactoring
20].

Source code guidelines and checking. Code guidelines [25, 26] help developers
to write cleaner code, simplify maintenance, improve code communication, reduce coding
times, and improve quality. Moreover, code guidelines are a good resource for design and
programming tips [25, 27, 28, 29, 30]. In code guidelines developers find some rules on:

e Organizational and policy issues. Tools and techniques for writing solid code, such
as: version control systems, compiler flags, code reviewing, and automatic building
tools.

o Design style. Software engineering good design practices, such as: write simple
classes, avoid premature optimization, reduce class dependencies and encapsulate
data.

o (Coding style. Coding issues, such as: how to use #include guards, avoid cyclic
dependencies, always initialize variables, and prefer compiler and linker errors to
run-time errors.

X. Roca, E.Ruiz-Gironés and J. Sarrate

e Implementation. Tips and rules related to the implementation of the design con-
cepts, such as: prefer composition to inheritance, when we have to use inheritance
or templates, object construction and destruction, automatic memory management
or error handling.

To verify that code guidelines are followed we use pair programming and code reviews
of the new code. In addition, we automatically check part of the rules with the Krazy [31]
tool, which is part of English Breakfast Network [32]. Krazy looks for some issues that
should be fixed for reasons of policy, design, coding or implementation.

2.2 Project management

We adopt part of eXtreme Programming agile methodology using Trac [17]. Trac is
an Open Source tool for web-based software project management. Moreover, it provides
wiki implementation, issue tracking system and an interface to Subversion.

The flow of the development can be driven with Trac using the Milestone concept.
Each Milestone represents a group of common Tickets (enhancements, tasks and defects)
that define a new version (or an iteration in the eXtreme Programming context) of the
program. Users of the environment can report bugs and wish lists creating new tickets.
In this sense, tickets provide issue tracking functionality to Trac. The Roadmap shows a
view of the current state of the project by means of the number of open and closed tickets
per milestone. Trac allows to link tickets from: the wiki, other tickets, and commit
messages of Subversion. Developers can access to the Subversion repository from a web
interface. Finally, the wiki facilitates communication between developers. We use the
wiki to dynamically add or change: guidelines, programming tips, comments on common
programming errors, documentation and useful information for developers.

2.3 Tools

Several Open Source tools are used in order to: analyze, design, implement, man-
age, compile and document the source code of the environment. Below we provide our
particular selection of Open Source tools.

Kubuntu [33] is a GNU/Linux distribution based on KDF, the K Desktop Environment
[34]. KDE is build on the @t library [35]. Therefore, development with Qt library is
natural in this platform.

KDevelop [36] is an easy to use Integrated Development Environment (IDE) for devel-
oping KDE applications. Since KDE is based on Qt, KDevelop it is also a suitable IDE
to develop with Qt. Among its features we highlight: C4++ and Qt project management,
debugger, profiler, and visual GUI designer.

GCC [37] is the GNU Compiler Collection. It provides compilers for several languages,
in particular for C++. It is the standard compiler for development under GNU /Linux,
provides a good C++ standard implementation.

distcc[22] accelerates source code builds by means of distributed compilation on several

X. Roca, E.Ruiz-Gironés and J. Sarrate

machines. Thus, it improves productivity since code, compile, test, and debug cycle time
is reduced.

Subversion [21] is a version control system with similar interface and features to CVS
[38]. However, it also provides:

e version control of directories, copies, and renames.
e revision numbers are assigned in terms of per-commit and not per-file.

e efficient operations in terms of memory and CPU time.

Moreover, several mature GUI front-ends are available for Subversion. These front-ends
facilitate usual operations such as: commit, merge, blame, diff or patch. In particular, we
have selected TortoiseSVN [39] for Windows, and KDESvn [40] for Kubuntu.

CMake [41], the cross-platform make, is used to automate the build process. It creates
the makefiles and workspaces for a particular platform and compiler.

GDB [42], the GNU project debugger, provides standard debugging features and can
be called from KDevelop.

Valgrind [43] is a complete tool for debugging and profiling Linux programs. KDevelop
integrates Valgrind in the IDE. Current version provides four tools:

e Memory error detector. This tool allows to automatically checking for memory
errors such as: uninitialized memory, bad memory access, read and write out of
limits of allocated memory, and memory leaks.

e cache (time) profiler. It provides time cost analysis in order to improve the compu-
tational efficiency of the program.

e Call-graph profiler. 1t analyzes the call relationships between functions of an appli-
cation.

e Heap profiler. It analyzes where, when and how much memory is allocated during
the program execution.

Dozygen [44] generates, from the source code, documentation for several languages,
in particular for C+-+. The user can configure the output and obtain documentation in:
HTML, BTEX, RTF, MS-Word, PostScript, and Unix man pages. Moreover, it can extract
the source code structure and create UML inheritance and collaboration class diagrams.

2.4 Libraries

In the development process we have used the following three Open Source libraries:

e Open CASCADE [45] is a powerful Open Source geometry and topology kernel
that provides essential features for solid modeling, CAD data exchange, and rapid
application development. It is used by several Open Source mesh generation envi-
ronments such as: GMSH [46], SALOME [47], and NetGen [48].

6

X. Roca, E.Ruiz-Gironés and J. Sarrate

e ()t [35] is a standard cross-platform library for rapid GUI development with C++.
The GUI of our environment is fully implemented with Qt. It is composed by several
tool bars, dock windows and a central widget with the current 3D view.

e GLPK [49], the GNU Linear Programming Kit, is a C library for the resolution of
large scale Linear Programming (LP) and Mixed Integer Programming (MIP) prob-
lems. This library is used to ensure edge division compatibility between adjacent
faces in unstructured quadrilateral and submapping mesh generation algorithms.

3 DESIGN AND DATA STRUCTURE

Mesh generation environments require the specification, definition and implementation
of a large amount of data types. Moreover, these data types have to collaborate in order
to represent complex data structures as meshes, solid CAD models or mesh generation
algorithms. To this end, we have adopted the programming paradigms and software
engineering techniques presented in section 2. They allow us to define useful and scalable
classes of objects. These objects store data and collaborate between them by means of
data aggregation and inheritance. In this section we present the concepts related to these
classes and an overview of their implementation.

3.1 Geometrical and topological representation

Open CASCADE library [45] provides topological and geometrical features required
by the mesh generation environment:

o Geometrical entities. They are the geometric realizations that are used to define a
domain. They are classified in four types: points, curves, surfaces, and volumes.
Note that each realization may have several representations. For instance, a curve
can be represented by a straight line, a B-spline or a NURB.

e Topological entities. They are the objects that are used to define the adjacency rela-
tionships between geometrical entities. They define the manner in which geometrical
entities are composed and connected. Only one geometrical entity corresponds to
each topological entity.

The data structures used to describe the geometrical and topological structure of the
model follow the STEP representation [50]. Hence, one basic entity is defined for each
dimension. The basic topological entities are:

o Vertex. Topological entity of dimension 0, whose geometrical representation is a
point.

e Fdge. Topological entity of dimension 1, whose geometrical representation is a curve.
Two adjacent edges share at least one vertex.

X. Roca, E.Ruiz-Gironés and J. Sarrate

Shape

Vertex Edge Wire Face Shell Solid CompoundSolid

Figure 1: Shape class hierarchy diagram.

e Fuace. Topological entity of dimension 2, whose geometrical representation is a sur-
face. Its boundary is defined by one or more loops of edges. The first loop defines
the outer boundary, and the other loops define the inner holes. Two adjacent faces
share at least one edge.

e Solid. Topological entity of dimension 3, whose geometrical representation is a
volume with or without holes. It is defined by one or more loops of faces joined by
edges. Two adjacent solids share at least one face.

Two additional topological entities are defined:

o Wires. Topological entity of dimension 1, determined by a closed loop of edges.
e Shells. Topological entity of dimension 2, determined by a closed loop of faces.

e Compound solids. Topological entity of dimension 3, whose determines a composi-
tion of several adjacent solids.

Object-oriented programming paradigm is used to build the interface between the
topological and geometrical entities. That is, the realization of the geometrical entities
is hidden (a straight line, a B-spline or a NURB for curves) of its associated topological
object (an edge). Specifically, in the implementation, the Shape class is abstract and
the rest of topological entities are specializations of this one, see figure 1. That is, all
topological entities are used by means of the same function interface, determined by the
abstract class Shape, and each particular class provides the required specialized behavior.

In order to illustrate these definitions, figure 2 shows the hierarchical representation
of a surface defined by two faces, f; and f,. These faces are defined by four edges, and
share edge e4. The face f; is defined by the set of edges {ej, €2, €3, €4}, while face fy is
defined by the set {ey4, 5, €6, e7}. Similarly, all the edges are defined by the set of vertices
{v1,v9,v3,v4,v5,06}. The solid lines in figure 2(b) reveal the hierarchical relationships
and the shared entities. For instance, the solid lines shows that edge e, is shared by faces
f1 and fs, or that vertices vs and vg are shared by three edges since three solid lines are
attached to them.

X. Roca, E.Ruiz-Gironés and J. Sarrate

(a)

Figure 2: Topological representation of two surfaces: (a) A domain composed by two surfaces that share
an edge; (b) hierarchical organization of the entities.

3.2 Mesh database

In mesh generation procedures it is required to add, remove and find mesh entities.
Moreover, mesh data structure has to allow querying for adjacencies between the different
mesh entities, i.e. query for the elements that surround a given node, or for the faces that
share and edge. In figure 3 we present the inheritance and collaboration diagram for
the Element and Mesh database classes. Thus, a mesh is composed by different types
of entities together with their adjacencies. The abstract class Element represents the
common interface for the mesh entities. Each type of mesh entity is a specialization of
this abstract class. Specifically, Node, Edge, Face and Cell represent the 0D, 1D, 2D and
3D entities of a mesh, respectively. Class Mesh has four dynamical containers to store
nodes, edges, faces and cells.

Element Mesh

11

Node 0.* Edge "’ Face Cell

Figure 3: Element and Mesh class hierarchy and collaboration diagram.

X. Roca, E.Ruiz-Gironés and J. Sarrate

3.3 Attributes

Mesh generation environments have to deal with some properties applied to the geomet-
rical entities that characterize the model to simulate. These properties usually correspond
to boundary conditions and material properties of the model. We denote these properties
as model attributes and we provide an abstract and generic procedure to deal with them.
The user can mark with labels the geometrical entities that compose the model in order
to properly assign boundary or material conditions. Each label can be applied to several
entities of the same dimension. In addition, we can apply different labels to the same
entity. Moreover, the user can choose if the labels are applied over the nodes or over the
elements of the entities. In the first case, we can mark with the same label the nodes of
a group of vertices, edges, faces or solids. In the second case, we can mark with the same
label: the edges over a group of curves; the faces over a group of surfaces; or the cells over
a group of solids.

In several mesh generation environments user needs to remesh the model each time that
changes or assigns new conditions. We have developed a data structure that overcomes
this drawback. Specifically, mesh entities lie inside Mesh objects which are associated to
geometrical entities. When a mesh entity asks for its attributes, this query is delegated to
the container mesh that asks to corresponding geometrical entity. Not storing the value
of the attributes in the mesh entities, and querying to the corresponding entity instead,
allow avoiding the time consuming task of remeshing the model when a given attribute is
changed.

3.4 Hierarchical mesh generation

Similar to the topological and geometrical description, the meshing algorithms are also
implemented according to a hierarchical structure [51]. Therefore, the meshing algorithms
are adapted to the topological and geometrical representation in a natural manner. In this
sense, current implementation allows to add a new mesh generation algorithm overloading
only a particular set of functions. It is important to point out that this structure is
essential to ensure consistency (conformity) between meshes corresponding to adjacent
entities.

The basic idea is to start by meshing entities of dimension 0 (vertices), and then pro-
ceed by meshing entities of dimension 1 (edges), dimension 2 (faces), and finally entities of
dimension 3 (volumes). That is, a mesh generation algorithm is assigned to each entity of
dimension d. These algorithms use as boundary mesh one or several meshes corresponding
to the discretization of the boundaries entities of dimension d—1. These boundary meshes
have been previously obtained and may be shared by other entities of dimension d. There-
fore, the process always begins by meshing all the entities of lower dimension. Taking into
account this property, we define four mesh generation algorithms classes: VertexMesher,
EdgeMesher, FaceMesher, and SolidMesher (one for each type of topological entities).
And three additional ones, WireMesher, ShellMesher and CompoundSolidMesher that

10

X. Roca, E.Ruiz-Gironés and J. Sarrate

VertexMesher
N)) } [AN
EdgeMesher EdgeMesherUniform void doMeshinside(){
~ = 7 /I Generates an uniform
/1 distribuition of nodes
doMeshinside() : void doMeshinside() : void Il over the edge.
}
WireMesher EdgeMesherLinear | | D
void doMeshinside(){
— — o /l Linear interpolation of the
doMeshinside() - void 1/ prescribed sizes at the start
oMeshinside() - voi /I and end vertices of the edge.
Mesher q }
FaceMesher - R R D
FaceMesherUnstructuredTri void doMeshinside(){

/I Generates an unstructured
doMeshBoundary() : void doMeshinside(: void — — o /l triangular mesh by means
doSetBoundary() : void oMeshinside() - vo doMeshinside() : void /I of a dealaunay algorithm.
doMeshinside() : void q }
run() : void ShellMesher]] D

T FaceMesherUnstructuredQua void doMeshinside(){
! /I Generates and unstructured
: = — 1 // quadrilateral mesh using
void run() AN doMeshinside() : void }// a divide and conquer algorithm.
{]
doMeshBoundary(); SolidMesher
doSetBoundary();
doMeshinside();
1 doMeshinside() : void
CompoundSolidMesher

Figure 4: Mesher class hierarchy diagram.

allow to sew meshes over groups of edges (wires), faces (shells) and solids (compound
solids).

Object oriented paradigm allows to define a natural class hierarchy for the meshers
and their specializations, see figure 4. The root class is Mesher that provides the common
interface to all meshers. A mesher is executed by means of the run function, that calls
sequentially the not already implemented functions: doMeshBoundary, doSetBoundary
and doMeshInside. First function, doMeshBoundary, calls all the meshers associated to
the boundary entities of the entity to be meshed. Second function, doSetBoundary, adds
to the mesh of the current mesher the boundary nodes obtained with doMeshBoundary.
Third function, doMeshInside, calls the code of the algorithm used to mesh the inner part
of the selected entity. These three functions are pure virtual, i.e. they are not implemented
in the Mesher class and have to be defined by the particular specializations of the Mesher

11

X. Roca, E.Ruiz-Gironés and J. Sarrate

(a) (b) (c)

Figure 5: Hierarchical mesh generation process corresponding to the discretization of the domain pre-
sented in figure 2. (a) 0D mesh; (b) 1D mesh; and (¢) 2D mesh.

class. The second level of classes in the hierarchy override the doMeshBoundary and
doSetBoundary functions, but not doMeshInside. The latter is implemented by the spe-
cializations of Mesher that are on the third level. For instance, EdgeMesherUniform and
EdgeMesherLinear override the doMeshInside function in order to specify a particular
EdgeMesher. Similarly FaceMesherUnstructuredTri and FaceMesherUnstructuredQua
are specializations of FaceMesher that allow to mesh the surface of a face with triangular
or quadrilateral elements, respectively.

Figure 5 shows the hierarchical mesh generation process corresponding to the discretiza-
tion of the domain presented in figure 2. In the first step, all the entities of dimension
0 (vertices) are meshed, see figure 5(a). Taking into account this discretization, in the
second step the seven entities of dimension 1 (edges) are meshed, see figure 5(b). Finally,
the mesh corresponding to the two entities of dimension 2 (faces) are obtained from the
discretization of the edges, see figure 5(c).

3.5 Objects collaboration

In order to provide functionality to the mesh environment, the different classes have
to collaborate together. This collaboration is represented by many connections between
objects, which may reduce the reusability of the code. Adding more connections can lead
to objects that can not work without the support of the others. Moreover, little changes
in one part of the source code are propagated far away. To solve these drawbacks we
introduce Key and KeyManager classes, see figure 6. The first one is devoted to mediate
collaborations between the geometry and topology, attributes and meshing functions. For
instance, meshers are related to one shape, and can query for their geometrical properties,
such as: point coordinates, distances, curvatures or tangent vectors. Thus, assigned
attributes over shapes can be obtained for a particular mesh entity. Each key has one
mesher and one mesh corresponding to a particular shape. Each key has at most one
background mesh, and as many attributes as it is required. The second class, KeyManager,
is used to manage the instances of objects. Basically, it allows to add, remove and find

12

X. Roca, E.Ruiz-Gironés and J. Sarrate

Mediation between geometry

and topology; attributes; and
meshing functions.

KeyManager Key
add(aKey : Key) : void getShape() : Shape
remove(aKey : Key) : void 1 0.* |getMesh() : Mesh
getBackgroundMesh() : BackgroundMesh
getAttribute() : void
getMesher() : Mesher

setShape(aShape : Shape) : void

setMesh(aMesh : Mesh) : Mesh
setBackgroundMesh(aBackgroundMesh : BackgroundMesh) : void
setAttribute(anAttribute : Attribute) : void

setMesher(aMesher : Mesher) : void

1 ’1 ’1

Geometry and
topology functions

Shape

¢

¢

Geoometry

Meshing functions

1 .1

Mesher

Mesh BackgroundMesh

run() : void

doMeshBoundary() : void
doSetBoundary() : void
doMeshinside() : void

Attributes functions ﬁ

Attribute

Figure 6: KeyManager and Key classes mediate collaboration between geometry/topology, attributes, and

meshing functions.

Key class instances that collaborate to provide the geometry, topology, attributes and

meshing features.

4 MESH GENERATION FEATURES

In this section we present some of the mesh generation features that are available at
the current state of the meshing environment.

e High-order meshes. Several numerical formulations, such as Discontinous Galerkin
(DG) and NEFEM [52], need high order discretizations. Presented environment has
a high order export feature, for p > 1, that generates middle edge nodes over curves
of the domain, and inner face nodes that follow curved edges of the element, see
figure 7. In addition, a renumbering procedure based on the the reverse Cuthill-
McKee algorithm [53] is implemented in order to renumber properly high-order

meshes.

o Quadrilateral unstructured mesh generation. Our mesh generation environment in-
corporates the Gen4U algorithm [54, 55]. In addition, our implementation auto-
matically assigns the parity condition prior to mesh groups of adjacent faces with
quadrilateral elements. Figure 8 shows an unstructured quadrilateral mesh for a

13

X. Roca, E.Ruiz-Gironés and J. Sarrate

(a) (b)

Figure 7: High order mesh, p = 8, for the NACA 0012: (a)11376 nodes and 175 elements, (b) detail of
the mesh.

snap harness composed by 2595 nodes and 2286 quadrilaterals.

e Sweeping. Fully automatic unstructured hexahedral mesh generation algorithms
are still not available. Therefore, special attention has been focused on existing
algorithms that decompose the entire geometry into several one to one extrusion
volumes. The presented mesh generation environment provides an implementation
of an automatic sweep algorithm [56, 57]. Figure 9(a) shows a detail of the obtained
mesh for a power chain geometry model, decomposed into several sweep volumes.

e Submapping. Structured meshes are preferred by several applications. Our mesh
generation environment provides an implementation of the submapping algorithm
[58, 59]. Figure 9(b) shows the structured hexahedral mesh automatically generated
for a half part of a gear.

5 CONCLUDING REMARKS

In this paper we have presented details of the management, design and development
processes of a new mesh generation tool. These processes have been guided by several
modern software engineering practices. Moreover, we have used Open Source tools and
libraries in order to manage and develop the application. We conclude that our selection
of software engineering practices and Open Source software have allowed obtaining a first
version of the environment that fulfills our initial requirements.

The presented environment is under continuous development to improve its efficiency
and functionality. However, we have planned to add several new features. Currently, the
CAD capabilities of our environment are based on those provided by Open CASCADE.

14

X. Roca, E.Ruiz-Gironés and J. Sarrate

Figure 8: Unstructured quadrilateral mesh over the surface of a snap harness.

Thus, we have to supply tools for virtual geometry, feature recognition and automatic
block decomposition. As a mesh generation environment, some new mesh algorithms are
expected to be implemented. For instance we are implementing refinement-coarsening
procedures and multi-block mesh generation algorithms. Finally, it is important to provide
to developers a framework to add their own mesh generation algorithms. To this end we
have decided to develop a Plug-in architecture.

REFERENCES
[1] J.F. Thompson. Handbook of Grid Generation. CRC Press, 1999.

[2] P.J. Frey and P.L. George. Mesh Generation: Application to Finite Elements. Kogan
Page, 2000.

[3] M.W. Beall and M.S. Shephard. An object-oriented framework for reliable numerical
simulations. Engineering with Computers, 15(1):61-72, 1999.

[4] M. S. Shephard. Meshing environment for geometry-based analysis. International
Journal For Numerical Methods In Engineering, 47(1-3):169-190, January 2000.

[5] Y. Zheng, N.P. Weatherill, and E.A. Turner-Smith. An interactive geometry utility
environment for multi-disciplinary computational engineering. International Journal
for Numerical Methods in Engineering, 53:1277-1299, 2002.

[6] B. Ozell, R. Camarero, A. Garon, and F. Guibault. Analysis and visualization tools in
cfd, part i: a configurable data extraction environment. Finite Elements in Analysis
and Design, 19(4):295-307, 1995.

15

X. Roca, E.Ruiz-Gironés and J. Sarrate

SX

S
G558
RN
Y ."ll.’l'

IR
I8 %0 20000 %0,
R

5L
QX5
SIRAE0%S
SRPRFA5S
SRR K 55555
i
H

55555
2 o2s0s25:
V0000

77~
0! LA/
S

Figure 9: (a) Sweeping hexahedral mesh for a power chain. (b) Submapping hexahedral mesh for the
half part of a gear.

[7] S.E. Benzley, K. Merkley, T.D. Blacker, and L. Schoof. Pre-and post-processing for
the finite element method. Finite Elements in Analysis and Design, 19(4):243-260,
1995.

[8] Cubit - geometry and mesh generation toolkit. In http://cubit.sandia.gov, 2007.

9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
1995.

[10] R. V. Garimella. Mesh data structure selection for mesh generation and fea applica-
tions. International Journal For Numerical Methods In Engineering, 55(4):451-478,
October 2002.

[11] J.F. Remacle and M.S. Shephard. An algorithm oriented mesh database. Interna-
tional Journal for Numerical Methods in Engineering, 58:349-374, 2003.

[12] T.J. Tautges. Moab-sd: integrated structured and unstructured mesh representation.
Engineering with Computers, 20(3):286-293, 2004.

[13] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Pub-
lishing Co., Inc., 2000.

[14] A. Koenig and B.E. Moo. Accelerated C++: practical programming by example.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[15] K. Beck. Eztreme programming explained: embrace change. Addison-Wesley Long-
man Publishing Co., Inc., 2000.

16

X. Roca, E.Ruiz-Gironés and J. Sarrate

[16]

[17]
[18]
[19]

[20]
[21]
[22]

23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]
[32]
[33]
[34]

J. Newkirk and R.C. Martin. FExtreme Programming in Practice. Addison-Wesley
Longman Publishing Co., Inc., 2001.

The trac project - trac. In http://trac.edgewall.org, 2007.
Cppunit - ¢c++ port of junit. In http://sourceforge.net/projects/cppunit, 2007.

M. Fowler. Refactoring: improving the design of ewisting code. Addison-Wesley
Longman Publishing Co., Inc., 1999.

J. Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.
Subversion. In http://subversion.tigris.org, 2007.
distce: a fast, free distributed ¢/c++ compiler. In http://distcc.samba.org, 2007.

E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head First Design Patterns. O’
Reilly & Associates, Inc., 2004.

A. Shalloway and J. Trott. Design Patterns Explained: A New Perspective on Object-
Oriented Design. Addison-Wesley Professional, 2004.

H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices. Addison-Wesley Professional, 2004.

Kde developer’s corner - howtos and fags.

S. Meyers. Effective C++: 50 specific ways to improve your programs and designs.
Addison-Wesley Longman Publishing Co., Inc., 1997.

S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Addison-Wesley Longman Publishing Co., Inc., 1995.

H. Sutter. Ezceptional C++ Style: /0 New Engineering Puzzles, Programming Prob-
lems, and Solutions. Pearson Higher Education, 2004.

H. Sutter. More exceptional C++: 40 new engineering puzzles, programming prob-
lems, and solutions. Addison-Wesley Longman Publishing Co., Inc., 2002.

Krazy. In http://techbase.kde.orq/Development/ Tutorials/Code_Checking, 2007.
English breakfast network. In http://www.englishbreakfastnetwork.org, 2007.
Kubuntu - the kde desktop. In http://www.kubuntu.org, 2007.

The k desktop environment. In http://www.kde.org, 2007.

17

X. Roca, E.Ruiz-Gironés and J. Sarrate

[35]
[36]

[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

Qt - code less. create more. In http://trolltech.com /products/qt, 2007.

Kdevelop - an integrated development environment. In hittp://www.kdevelop.org,
2007.

Gee, the gnu compiler collection. In http://gce.gnu.org, 2007.

Cvs - concurrent versions system. In http://www.nongnu.org/cvs, 2007.
Tortoisesvn. In http://tortoisesvn.tigris.org, 2007.

Kdesvn. In http://www. alwins-world. de /wiki/programs /kdesvn/, 2007.
Cmake - cross platform make. In http://www.cmake.org, 2007.

Gdb - the gnu project debugger. In http://sourceware.org/qdb/, 2007.
Valgrind. In http://valgrind.org, 2007.

Doxygen. In http://www.stack.nl/ dimitri/dozygen/, 2007.

Open cascade technology, 3d modeling & numerical simulation. In
http: //www. opencascade.org, 2007.

Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-
processing facilities. In http://www.geuz.org/gmsh/, 2007.

Salome: The open source integration platform for numerical simulation. In
http: //www.salome-platform.org, 2007.

Netgen - automatic mesh generator. In http://www.hpfem.jku.at/netgen/, 2007.
Glpk (gnu linear programming kit). In http://www.gnu.orq/software/glpk/, 2007.

Step: International standard iso 10303-42. industrial automation systems and inte-
gration - product data representation and exchange - part 42: Integrated generic
resource: Geometric and topological representation. Technical report, 2000.

A.N. Athanasiadis and H. Deconinck. Object-oriented three-dimensional hybrid grid
generation. International Journal for Numerical Methods in Engineering, 58:301-318,
2003.

R. Sevilla, S. Fernandez-Méndez, and A. Huerta. Nurbs-enhanced finite element
method. In XIX Congreso de Ecuaciones Diferenciales y Aplicaciones, IX Congreso
de la Sociedad Espanola de Matemdtica Aplicada, 2005.

18

X. Roca, E.Ruiz-Gironés and J. Sarrate

[53] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pages 157-172. ACM Press New
York, NY, USA, 1969.

[54] J. Sarrate and A. Huerta. Efficient unstructured quadrilateral mesh generation.
International Journal for Numerical Methods in Engineering, 49:1327-1350, 2000.

[55] X. Roca, J. Sarrate, and A. Huerta. Generacién de mallas de cuadrildteros sobre
superficies paramétricas. In Congreso de Métodos Numéricos en Ingenieria, Granada,
Spain, 2005.

[56] X. Roca, J. Sarrate, and A. Huerta. A new least squares approximation of affine
mappings for sweep algorithms. In Proccedings of the 14th International Meshing
Roundtable, 2005.

[57] X. Roca and J. Sarrate. An automatic and general least-squares projection procedure
for sweep meshing. In Proceedings of the 15th International Meshing Roundtable,
2005.

[58] D.R. White. Automatic, quadrilateral and hexahedral meshing of pseudo-cartesian
geometries using virtual subdivision. Master’s thesis, Brigham Young University,
1996.

[59] E. Ruiz and J. Sarrate. Generacién automética de mallas de cuadrildteros medi-
ante programacién lineal entera e interpolacién transfinita. In Congreso de Métodos
Numéricos en Ingenieria, Oporto, Portugal, 2007.

This work was partially sponsored by the Ministerio de Ciencia y Tecnologia under grants DP12004-03000
and CGL2004-06171-C03-01/CLI. The authors wish also to thank Universitat Politécnica de Catalunya
and E.T.S. d’Enginyers de Camins, Canals i Ports de Barcelona for their support.

19

