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Abstract. This paper compares two methods to solve incompressible problems, in partic-
ular the Navier-Stokes equations, using a discontinuous polynomial interpolation that is
exactly divergence-free in each element. The first method is an Interior Penalty Method,
whereas the second method follows the Compact Discontinuous Galerkin [1] approach for
the diffusive part of the problem. In both cases the Navier-Stokes equations are then solved
using a fractional-step method, using an implicit method for the diffusion part and a semi-
implicit method for the convection. Numerical examples compare the efficiency and the
accuracy of the two proposed methods.

1 INTRODUCTION

Since its introduction the Discontinuous Galerkin (DG) method has become popular
for its high-order accuracy. DG methods are actually particulary well suited for the con-
struction of high-order accurate space discretization of problems on general unstructured
grids, by the mean of high-order polynomial approximations within elements. Another ad-
vantage of the DG discretization is its compactness since the coupling is strictly restricted
to the elements sharing a face.

Recently, the DG method has been successfully used to treat convection-diffusion prob-
lems such as the solution of the Navier-Stokes equations. For example Cockburn et al. de-
veloped an accurate and stable scheme, the Local Discontinuous Galerkin (LDG) method
for the Stokes, Oseen and Navier-Stokes equations [2, 3]. One drawback of this scheme is
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the loss of the compactness of the discretization form, due to the fact that the degrees of
freedom in one element are connected not only to those in the neighboring elements but
also to those in the elements neighboring the immediate neighbors. In [1] a Compact Dis-
continuous Galerkin (CDG) method is applied to elliptic problems. The CDG method is
very similar to the LDG method but it eliminates the coupled degrees of freedom between
the non-neighboring elements.

Bassi and Rebay also proposed methods to solve the Navier-Stokes equations using high
order DG methods [4] but especially apply it to compressible problems. To solve incom-
pressible problems, an interesting possibility is to use explicit divergence-free bases. In
[5] a DG method with solenoidal approximation has been applied to the Stokes equations
and an Interior Penalty Method (IPM) employed to construct the weak form.

The aim of this paper is to formulate the Compact Discontinuous Galerkin method
and the Interior Penalty Method for the incompressible Navier-Stokes equations using
solenoidal approximations as seen in [5] and then to present a critical comparison between
them.

2 TWO FORMULATIONS OF THE NAVIER-STOKES PROBLEM

Let Ω ⊂ R
nsd be an open, bounded domain with piecewise linear boundary ∂Ω and nsd

the number of spatial dimensions. Suppose that Ω is partitioned in nel disjoint subdo-
mains K, which for example correspond to different materials, with also piecewise linear
boundaries ∂K that define an internal interphase Γ. The strong form for the homogeneous
steady Navier-Stokes problem can be written as:

−2ν∇ · ∇su + ∇p + ∇· (u ⊗ u) = f in Ω (1a)

∇· u = 0 in Ω (1b)

u = uD on ΓD (1c)

−pn + 2ν(n ·∇s)u = t on ΓN (1d)

where f ∈ L2(Ω) is a source term, u the flux velocity, p its pressure, ν the kinematic
viscosity and ∇s = 1

2
(∇ + ∇T ).

2.1 The Compact Discontinuous Galerkin method

In the CDG approach [1], the problem is first transformed into a first order in derivative
problem, introducing the gradient of the velocity as an additional variable. This additional
variable is then eliminated at an elemental level, using the so-called lifting operators.

Introducing the velocity gradient σ = 2ν∇su, the Navier-Stokes equations can be
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rewritten as the following system of first order in derivative equations

σ = 2ν∇su in Ω, (2a)

−∇ · σ + ∇p + ∇· (u ⊗ u) = f in Ω, (2b)

∇· u = 0 in Ω, (2c)

u = uD on ΓD, (2d)

n · σ − pn = t on ΓN . (2e)

2.1.1 DG formulation of the Navier-Stokes equations

Multiplying the equations (2) by smooth test functions τ , v and q respectively and
integrating by parts over an arbitrary subset K ⊂ Ω with outward normal unit vector n
the weak problem is

∫

K

σ : τdx = −2ν

∫

K

u · ∇ · τdx + 2ν

∫

∂K

u · nds, (3a)
∫

K

[

σ :∇sv − p∇· v]

dx −
∫

∂K

[σ : (v ⊗ n) − pv · n] ds

−
∫

K

(u ⊗ u) ·∇vdx +

∫

∂K

u · n · u · vds =

∫

K

f · vdx (3b)

−
∫

K

u · ∇q +

∫

∂K

u · nqds = 0 (3c)

Note that the above equations are well defined for functions (σ,u, p) and (τ ,v, q) in
Σ × V × Q where the spaces

Σ = {τ ∈ [L2(Ω)]n
2
sd|τ |K ∈ [H1(K)]n

2
sd ∀K ∈ Th}, (4a)

V = {v ∈ [L2(Ω)]nsd|v|K ∈ [H1(K)]nsd ∀K ∈ Th}, (4b)

Q = {q ∈ L2(Ω)|
∫

Ω

qdx = 0, q|K ∈ H1(K) ∀K ∈ Th}, (4c)

are associated with the triangulation Th = {K} of Ω. In addition the finite element
subspaces Σh ⊂ Σ, V h ⊂ V and Qh ⊂ Q are introduced as

Σh = {τ ∈ [L2(Ω)]n
2
sd |τ |K ∈ [Pk(K)]n

2
sd ∀K ∈ Th}, (5a)

V h = {v ∈ [L2(Ω)]nsd |v|K ∈ [Pk(K)]nsd ∀K ∈ Th}, (5b)

Qh = {q ∈ L2(Ω)|
∫

Ω

qdx = 0, q|K ∈ Pk(K) ∀K ∈ Th}, (5c)

where Pk(K) is the space of polynomial functions of degree at most k ≥ 1 on K.
To write expressions applicable over the whole domain, the jump and average operators

need to be defined. Two adjacent elements K+ and K− of the triangulation Th are
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considered and e = ∂K+ ∩ ∂K− is their common edge. Assume that n± denote the unit
vectors normal to ∂K± at any point on the edge e. The average operator is defined as

{�} =

{

κ+ �+ +κ−�− on Γ,

� on ∂Ω.

and the jump operator as

�p n� =

{

p+ n+ + p− n− on Γ

p n on ∂Ω
for scalars,

�n ⊗ v� =

{

n+ ⊗ v+ + n− ⊗ v− on Γ

n ⊗ v on ∂Ω
or

�n · v� =

{

n+ · v+ + n− · v− on Γ

n · v on ∂Ω
for vectors,

�n · σ� =

{

n+ · σ+ + n− · σ− on Γ

n · σ on ∂Ω
for second order tensors.

Using these definitions, the DG formulation of the weak form (3) is: find σh ∈ Σh,
uh ∈ V h, ph ∈ Qh such that for all K ∈ Th

∫

Ω

σh : τ = −2ν

∫

Ω

uh · ∇h · τ + 2ν

∫

Γ∪∂Ω

ûσ
h ·�τ · n�ds, (6a)

∫

Ω

[σh :∇s
hv − ph∇h · v]dx −

∫

Γ∪∂Ω

[σ̂h :�v ⊗ n� − p̂h�v · n�]ds

−
∫

Ω

(uh ⊗ uh) · ∇hvdx +

∫

Γ∪∂Ω

f̂(uh,uh) · n · vds =

∫

Ω

f · vdx (6b)

−
∫

Ω

uh ·∇hq +

∫

Γ∪∂Ω

ûp
h ·�nq�ds = 0 (6c)

where ûσ
h, σ̂h, p̂h, f̂(uh,uh) and ûp

h are numerical fluxes to be defined.
Note that if we use the integration by parts formula

−
∫

Ω

v · ∇ · τdx =

∫

Ω

τ · ∇svdx−
∫

Γ

(�n⊗v� :{τ}+{v}·�n ·τ �)ds−
∫

∂Ω

v · τ · nds (7)

valid for all τ ∈ [H1(Th)]
n2
sd and u ∈ [H1(Th)]

nsd , equation (6a) can be written as

∫

Ω

σh : τdx = 2ν

∫

Ω

τ ·∇s
huhdx − 2ν

∫

Γ

(�n ⊗ uh� :{τ} − {ûσ
h − uh} ·�n · τ �)ds

+ 2ν

∫

∂Ω

(ûσ
h − uh) · τ · nds (8)
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Let us now describe the different numerical fluxes of equation (6).
The convective numerical flux. The convective flux f̂(uh,uh) is defined in a similar

way as Lomtev and Karniadakis do in [6]. A standard Roe-splitting flux is used

f̂(u,u) · n =
1

2

[

(F x(u
e),F y(u

e)) +
(

F x(u
i),F y(u

i)
)] · n − 1

2
R |Λ|L(ue − ui)

where ui and ue are respectively the velocities in the interior and in the exterior of the
element under consideration,

where F x(u) =

(

u2

uv

)

and F y(u) =

(

uv

v2

)

,

and A, jacobian matrix of F , is written in terms of the left and right eigenvectors: A =
RΛL, where Λ contains the corresponding eigenvalues in the diagonal.

The diffusive numerical fluxes. Following the definition of the diffusive fluxes by Cock-
burn et al. for their LDG method [2], if a face e lies inside the domain Ω

σ̂h = {σh} − C11�n ⊗ uh� + C12 ⊗ �n · σh�, ûσ
h = {uh} − C12 · �n ⊗ uh� on Γ,

and if e lies on the boundary,

σ̂h = σh − C11(uh − uD) ⊗ n, ûσ
h = uD on ΓD.

C11 is a positive constant and C12 is a vector that has to be determined for each interior
edge of the domain according to

C12 =
1

2
(SK−

K+ n+ + SK+

K−n−)

where SK−
K+ ∈ {0, 1} is a switch defined for each element edge. The switches always satisfy

that
SK−

K+ + SK+

K− = 1.

There is several possible choices of the switches, see for example [2]. One possibility is
the natural switch, which takes into account the element numbering to set SK±

K∓ . Another
alternative is to use a consistent switch that satisfies

0 <
∑

e∈∂K

SK±
K∓ < nsd + 1. (9)

Calculating C12 depending on the numbering of the nodes for each element K is the
option chosen here and is a consistent switch.

The numerical fluxes related to the incompressibility constraint. If a face e lies inside
the domain Ω

ûp
h = {uh}, p̂h = {ph} on Γ,
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whereas on the boundary
ûp

h = uD, p̂h = ph on ΓD.

Finally in order to account for the natural condition on ΓN , we must choose σ̂h and p̂h

such that
n · σ̂h − p̂hn = t on ΓN

and set
ûp

h = u and ûσ
h = u on ΓN

2.1.2 CDG formulation of the steady Navier-Stokes equations

Using the expression of the fluxes previously defined, equation (8) can now be written

∫

Ω

σh : τdx = 2ν

∫

Ω

τ ·∇s
huhdx − 2ν

∫

Γ

(�n ⊗ uh� :{τ} + C12 ·�n ⊗ u� ·�n · τ �)ds

+ 2ν

∫

ΓD

(uD − uh) · τ · nds (10)

To obtain an expression for σh as a function of uh, lifting operators are introduced
following the method introduced by Arnold et al. [7]. For all e ∈ Γ, re : [L2(e)]

n2
sd →

Σh, l
e : [L2(e)]

nsd → Σh and for each e ∈ ΓD, re
D : [L2(e)]

nsd → Σh, are defined as

∫

Ω

re(v) : τdx =

∫

e

v :{τ}ds, ∀τ ∈ Σh,
∫

Ω

le(v) : τdx =

∫

e

v · �n · τ �ds, ∀τ ∈ Σh, (11)
∫

Ω

re
D(v) : τdx =

∫

e

v · n · τds, ∀τ ∈ Σh.

Note that here the lifting operators are defined edgewise, which is where CDG differs
from LDG, see [1]. The lifting operators using by the LDG methods are defined as:
r : [L2(Γ)]n

2
sd → Σh, l : [L2(Γ)]nsd → Σh and for each e ∈ ΓD, rD : [L2(ΓD)]nsd → Σh, are

defined as
∫

Ω

r(v) : τdx =

∫

Γ

v :{τ}ds, ∀τ ∈ Σh,
∫

Ω

l(v) : τdx =

∫

Γ

v · �n · τ �ds, ∀τ ∈ Σh, (12)
∫

Ω

rD(v) : τdx =

∫

ΓD

v · n · τds, ∀τ ∈ Σh.
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From these definitions the correspondence between the CDG and LDG lifting operators
is clear: for all v ∈ [L2(Γ)]n

2
sd

r(v) =
∑

e∈Γ

re(v), l(v) =
∑

e∈Γ

le(v), rD(v) =
∑

e∈Γ

re
D(v). (13)

Using this notation, the equation (6a) defining σh in terms of uh can be rewritten as

σh = 2ν∇s
huh − σe (14)

where
σe = 2ν(re(�n ⊗ uh�) + le(C12 · �n ⊗ uh�) − re

D(uD) + re
D(uh)). (15)

Following the rationale detailed in [1] for an elliptic problem, eliminating the additional
variable σh, the CDG scheme for the steady Navier-Stokes equations is: find uh ∈ V h

and ph ∈ Vh such that

ACDG
h (uh,v) + Oh(uh,uh,v) + Bh(v, ph) = FCDG

h (v),∀v ∈ V h (16)

where

ACDG
h (u,v) =

∫

Ω

2ν∇su :∇svdx −
∫

Γ∪ΓD

2ν(�n ⊗ u� :{∇sv} + {∇su} :�n ⊗ v�)ds

−
∫

Γ

2ν(C12 ⊗ �n ⊗ u� :�n · ∇sv� + C12 ⊗ �n ·∇su� :�n ⊗ v�)ds

+
∑

e∈Γ

∫

Ω

2ν(re(�n ⊗ u�) + le(C12 ⊗ �n ⊗ u�) + re
D(u)) :(re(�n ⊗ v�) + le(C12 ⊗ �n ⊗ v�) + re

D(v))dx

+

∫

Γ∪ΓD

C11�n ⊗ u� · �n ⊗ v�ds

Oh(u,u; v) = −
∫

Ω

(u ⊗ u) · ∇hvdx +

∫

Γ∪ΓD

f̂(u,u) · n · vds

Bh(v, p) = −
∫

Ω

p∇h · vdx +

∫

Γ∪ΓD

{p}�v · n�ds

FCDG
h (v) =

∫

Ω

f · vdx −
∫

ΓD

2νn ⊗ uD :∇svds

−
∑

e∈Γ

∫

Ω

2ν(n ⊗ uD) :(re(�n ⊗ v�) + le(C12 ⊗ �n · v�))dx

−
∑

e∈Γ

∫

Ω

2νn ⊗ v : re
D(uD)dx +

∫

ΓD

C11(n ⊗ uD) · (n ⊗ v)ds +

∫

ΓN

v · tds

Using the following identity for any v ∈ [H1(̂Ω)]nsd and any q ∈ L2(Ω)

−
∫

Ω

q∇· vdx +

∫

Γ∪∂Ω

{q}�n · v�ds =

∫

Ω

v · ∇qdx −
∫

Γ∪∂Ω

�qn�{v},
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the incompressibility equation (6c) can be rewritten as

Bh(u, q) = Gh(q), (17)

where

Gh(q) =

∫

ΓD

quD · nds. (18)

Note that the compactness of the CDG scheme compared to the LDG comes from the
product of the lifting operators (in ACDG

h (u,v)). Indeed in the CDG scheme the lifting
operators are associated to individual edges and there are no connectivities between non-
neighbor elements, whereas in the LDG scheme, the product of the lifting operator implies
connectivities between non-neighbor elements.

2.2 The Interior Penalty Method

Following the approach presented in [5] for the Stokes equations, an Interior Penalty
Method formulation is proposed for the Navier-Stokes equations. The convective numeri-
cal flux and the numerical flux related to the incompressibility constraint are the same as
the ones used in the CDG approach. Concerning the diffusive numerical fluxes, a penalty
parameter C11 is introduced to ensure the coercivity of the bilinear form

AIPM
h (u,v) =

∫

Ω

2ν∇su :∇svdx −
∫

Γ∪ΓD

2ν(�n ⊗ u� :{∇sv} + {∇su} :�n ⊗ v�)ds

+

∫

Γ∪ΓD

C11�n ⊗ u� · �n ⊗ v�ds

Using the same discrete spaces as the ones previously defined, the IPM scheme for the
steady Navier-Stokes equations is: find uh ∈ V h and ph ∈ Ph such that

AIPM
h (uh,v) + Oh(uh,uh,v) + Bh(v, ph) = F IPM

h (v),∀v ∈ V h (19)

where Oh(u,u,v) and Bh(v, p) are defined as for the CDG method and

F IPM
h (v) =

∫

Ω

f ·vdx−
∫

ΓD

2νn⊗uD :∇svds+

∫

ΓD

C11(n⊗uD) ·(n⊗v)ds+

∫

ΓN

v · tds

See that this formulation is compact in the sense that the degrees of freedom of one
element are only connected to those of the immediate neighbors.

3 SOLENOIDAL INTERPOLATION SPACES

Following approaches such as the ones from Crouzeix and Raviart [8] or Griffiths [9],
who were the first ones to introduce solenoidal spaces, and the approach proposed in
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[10, 11], which uses for the interpolation of the velocity piecewise polynomials (exactly)
divergence-free, a similar rationale is pursued following the one presented in [5].

Knowing that any function in [H1(K)]nsd , can be written as the sum of a solenoidal
part and an irrotational one, the functional space for the velocity can be split in the direct
sum: [H1(Ω)]nsd = S ⊕ I where

S :=
{

v ∈ [H1(Ω)]nsd | ∇ · v|K = 0 for i = 1, . . . , nel
}

,

I ⊂ {

v ∈ [H1(Ω)]nsd | ∇×v|K = 0 for i = 1, . . . , nel
}

.

Note also that the solution of the original problem (1) or (16) belongs to S.
The finite counterparts of S and I are

Sh =
{

v ∈ [H1(Ω)]nsd | v|K ∈ [Pk(K)]nsd , ∇· v|Ωi
= 0 for i = 1, . . . , nel

}

,

Ih ⊂ {

v ∈ [H1(Ω)]nsd | v|K ∈ [Pk(K)]nsd , ∇×v|Ωi
= 0 for i = 1, . . . , nel

}

,

such that Ih ⊂ I . Note that the following relations and inclusions are verified: V h =
Sh ⊕ Ih, V h ⊂ [H1(Ω)]nsd , Qh ⊂ L2(Ω) and Sh ⊂ S.

Under these circumstances, problem (16) can be split in two uncoupled problems. The
first one solves for the divergence-free velocities and hybrid pressures. Following [12] the
space of hybrid pressures (pressures along the edges in 2D or faces in 3D) is simply:

P := {p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = �n · v� for some v ∈ S} . (20)

Note that the finite dimensional subspace associated with the hybrid pressures, P h ⊂ P ,
can be defined directly from (20) restricting velocities to Sh.

The approximations obtained in this case are uh ∈ Sh and p̃h ∈ P h solution of
{

Ah(uh,v) + BS
h (v, p̃h) + Oh(uh,uh; v) = Fh(v) ∀v ∈ Sh,

BS
h (uh, q̃) = Gh(q) ∀q̃ ∈ P h,

(21a)

where

BS
h (v, p̃) =

∫

Γ∪ΓD

p̃h�v · n�ds

and Ah(uh,v) = ACDG
h (uh,v) or Ah(uh,v) = AIPM

h (uh,v), and Fh(v) = FCDG
h (v) or

Fh(v) = F IPM
h (v), depending on which method is used.

The second problem, which requires the solution of the previous one, evaluates the
“interior” pressures: find ph ∈ Qh

BI
h(v, ph) = Fh(v) −Ah(uh,v) − BS

h (v, p̃h) −Oh(uh,uh; v) ∀v ∈ Ih, (21b)

where

BI
h(v, p) = −

∫

Ω

p∇h · vdx. (22)

It is important to note that equation (21b) can be solved element by element and pressure
is the only unknown.
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4 SOLUTION OF THE NAVIER-STOKES EQUATIONS BY A FRAC-
TIONAL STEP METHOD

To solve the non-linear Navier-Stokes equations an iterative method in time is used.
Starting with the weak form obtained for the steady case (21a), the weak form associated
to the unsteady problem is now: given u0

h ∈ Sh find uh ∈ Sh and p̃h ∈ P h solution of






(∂uh

∂t
,v

)

+ Ah(uh,v) + BS
h (v, p̃h) + Oh(uh,uh; v) = Fh(v) ∀v ∈ Sh,

BS
h (uh, q̃) = Gh(q) ∀q̃ ∈ P h

(23)

Once again the expressions of Ah(uh,v) and Fh(v) depend on the choice of the method,
CDG or IPM.

Let us denote by un
h and p̃n

h the velocity and pressure at time tn, where tn = tn−1 +∆t.
Following the method developed in [13], the fields un+1

h and p̃n+1
h are calculated from un

h

but here an implicit Euler method with a pressure increment is used to derive u∗
h for the

diffusive part (Stokes problem). Indeed, it has been observed, by Goda in [14], that adding
an old value of the pressure gradient in the first sub-step and then accordingly correcting
the velocity in the second sub-step increases the accuracy of the scheme and improves the
convergence properties. The idea was then made popular by Van Kan [15] who proposed
a second-order incremental pressure-correction scheme. Using the Backward Difference
Formula of second order to approximate the time derivative, and a semi-implicit scheme
for the nonlinear convective term of the Navier-Stokes equation, the incremental pressure-
correction reads as follows. The first step is: from un

h, un−1
h and p̃n

h, find u∗
h ∈ [H1(Ω)]nsd

such that
(3u∗

h − 4un
h + un−1

h

2∆t
,v

)

+ Ah(u
∗
h,v) + Oh(2u

n
h − un−1

h ,un
h; v) = F∗

h(v) − BS
h (v, p̃n

h) ∀v ∈ Sh,

(24a)
then the second step is: from uh

∗ and p̃n
h, find un+1

h ∈ Sh and p̃n
h ∈ P h such that







(3un+1
h − 3u∗

h

2∆t
,v

)

+ BS
h (v, p̃n+1

h − p̃n
h) = 0 ∀v ∈ Sh,

BS
h (un+1

h , q̃) = Gh(q) ∀q̃ ∈ P h.

(24b)

Denoting by u and p the vectors of nodal values of the velocity u and hybrid pressure p̃,
the following matrix form is obtained: the first sub-step is

u∗ = (3M + 2∆t(A + O(2un − un−1))−1(M(4un − un−1) + 2∆t(F∗ − CTpn)) (25a)

and the second substep










pn+1 = pn +
3

2
(CM−1CT )−1Cu∗ − G

∆t
,

un+1 = u∗ − 2

3
∆tM−1CT (pn+1 − pn).

(25b)
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where M is the mass matrix, A the diffusion matrix, O the convection matrix, CT the
edge pressure matrix and F and G vectors taking into account the force term and the
boundary conditions.

After the convergence of the iterative process, the interior pressure p is retrieved by a
direct method solving equation (21b).

5 NUMERICAL EXAMPLES

5.1 Driven cavity example

A standard benchmark test for the Navier-Stokes equations is first considered. A plane
flow of an isothermal fluid in a lid-driven cavity is modelled in a 2D square domain Ω =
]0, 1[×]0, 1[, with zero body force and one moving wall. A continuous velocity (u = (1, 0)T

for 0.1 ≤ x ≤ 0.9 u = (10x, 0)T for 0 ≤ x ≤ 0.1 and 0.9 ≤ x ≤ 1) is imposed on the
exterior upper boundary {y = 1}, and a zero velocity u = (0, 0)T is enforced on the
three other sides. Calculations are made for Re = 1, 100, 400. Figure 1 shows the results,
which fit to the expected solution. As the Reynolds number is increased, the position
of the main vortex moves towards the center of the cavity, both CDG method and IPM
giving very similar results. In order to further compare them, the velocity profiles at
the vertical centerline are shown in figure 2 for different values for Re. First, it can be
noticed that as the Reynolds number increases, the boundary layers are more obvious and
the variations in the velocity are sharper. Second, results for CDG method and IPM are
almost identical. To compare more precisely the results of both methods an analytical
example is taken in the next section.

5.2 General results on a Stokes example

A Stokes example with analytical solution is now considered to compare the two pro-
posed methodologies and in particular to study the properties of the diffusion matrix
and the error of both methods. The Stokes equations are solved in a 2D square do-
main Ω =]0, 1[×]0, 1[ with Dirichlet boundary conditions on three edges, and a Neumann
boundary condition on the fourth edge {y = 0}. A body force

f =











12(1 − 2y)x4 + 24(−1 + 2y)x3 + 12(−4y + 6y2 − 4y3 + 1)x2

+(−2 + 24(y − 3y2 + 2y3))x + 1 − 4y + 12y2 − 8y3

8(1 − 6y + 6y2)x3 + 12(−1 + 6y − 6y2)x2

+(4 + 48(y2 − y3) + 24(y4 − y))x − 12y2 + 24y3 − 12y4











is imposed in order to have the polynomial exact solution

u =

(

x2(1 − x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x − 6x2 + 4x3)

)

,

p = x(1 − x).

11



A. Montlaur, J. Peraire, A. Huerta and S. Fernández-Méndez

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Re = 1
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(b) Re = 100
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(c) Re = 400

Figura 1: Velocity streamlines for the CDG method (left) and the IPM (right), for different Reynolds
numbers Re = 1, 100, 400, k = 2, 450 elements, C11 = 1 (CDG), C11 = 10 (IPM).12
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Figura 2: Velocity profiles at the vertical centerline for the CDG and IPM methods, for different values
of Re
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Figura 3: Condition number of the diffusion matrix function of the stabilization parameter C11 for
the CDG and IPM methods, for a quadratic approximation of the velocity (left) and a fourth order of
approximation of the velocity (right)

First the influence of the stabilization parameter C11 on the conditioning of the diffusion
matrix is studied. Figure 3 shows the values of the condition number of the diffusion
matrix for two different orders of interpolation and for the CDG and IPM methods. Note
that unlike the Interior Penalty Method, the CDG methods (and it would also be the case
for the LDG method) allow to choose a value of C11 as small as wanted for the interior
edges, see [1]. It gives thus more freedom to chose this parameter and the value of the
condition number is rather constant for values of C11 less or equal than 10. On the other
hand, the value of C11 for the IPM has to be big enough to ensure the coercivity of the
bilinear form, for example C11 ≥ 10 for a quadratic velocity and C11 ≥ 40 for a fourth
order interpolation of the velocity. Then the IPM gives slightly better results than the
CDG method. Then, increasing the value of C11 increases dramatically the condition
number, equally for both methods.

Since there is a larger range of valid values for the stabilization parameter C11 for the
CDG method let us study how its choice affects the accuracy of the solution of the Stokes
equation. Figure 4 shows the results for the velocity and pressure errors for three different
values of C11 = 0, 1, 10. It can be seen that though a value of 0 or 1 for C11 gives very
similar results, the value of C11 = 10 give worse results, especially for a coarse mesh in
the velocity case and for any size of the mesh in the pressure case. Note that the accuracy
is only weakly dependent on the value of C11 since optimal convergence rate are obtained
in any case.

These results lead us to choose a small value for C11 for the CDG method C11 = 1 for
example, which will be optimal from both the condition numbers and the error estimates.
Note that if C11 = 0 is chosen, a non-zero C11 has to be taken on the boundaries in order
to treat properly the boundary conditions. Concerning the IPM, given that any value
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Figura 4: Comparison of the errors obtained with the CDG method for different values of C11, for a
quadratic approximation of the velocity (left) and a linear interpolation of the pressure (right).
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Figura 5: Comparison of the errors obtained with the CDG and the IPM methods, for a quadratic
approximation of the velocity (left) and a linear interpolation of the pressure (right).

of C11 bigger than the minimum value necessary to ensure the coercivity of the bilinear
form will deteriorate the conditioning of the diffusion matrix, it is preferable to chose the
smallest value possible of C11.

Both CDG and IPM are now compared from the accuracy point of view, for a quadratic
approximation of the velocity and a linear interpolation of the pressure and choosing
C11 = 1 for CDG and C11 = 10 for IPM. As it can be seen in figure 5 the results are very
similar. Depending on the mesh size, one or the other method gives a better result but in
any case both methods reach optimal convergence rates for velocity and pressure errors.

6 CONCLUSIONS

A critical comparison of the Compact Discontinuous Galerkin method and the Interior
Penalty Method is presented here. The two methods are derived using different ratio-
nales. The CDG method first transforms the Navier-Stokes problem into a first order in
derivative problem and then eliminate the additional variable using the so-called lifting
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operators. The IPM rationale is more straight-forward and deals directly with the second
order in derivative problem. But both problems present the major advantage -relative
to the LDG method for example- that they are compact formulations: the degrees of
freedom of one element are only connected to those of the immediate neighbors.

The CDG presents the other advantage that the stabilization parameter can take any
value, whereas the penalty parameter in the IPM has to be taken big enough to ensure the
coercivity of the bilinear form. Apart from this difference in the choice of the characteristic
parameters both methods present very similar results, from the conditioning and the
accuracy points of view, both methods reach optimal convergence rates for velocity and
pressure errors.
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