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Abstract. By writing the limit state analysis as an optimisation problem, and after
resorting to suitable discretisations of the stress and velocity field, we compute strict
bounds of the load factor. The optimisation problem is posedas a Second Order Conic
Program (SOCP), which can be solved very efficiently using specific algorithms for
conic programming. Eventually, the optimum stress and velocity fields of the lower and
upper bound problem are used to construct an error measure (elemental gap) employed
in an adaptive remeshing strategy. This technique is combined with an additional adap-
tive nodal remeshing that is able to reproduce fan-type meshpatterns around points
with discontinuous surface loads. We paticularise the resulting formulation for two-
dimensional problems in plane strain, with Von Mises and Mohr-Coulomb plasticity. We
demonstrate the effetiveness of the method with a set of numerical examples extracted
from the literature.

1 Introduction

Methods for the computation of loads estimates for limit state analysis have relayed
traditionally in practitioners experience and a catalogueof solutions for simple academic
cases. Although the latter are well founded in the lower and upper bound theorems of
limit analysis [Che75, Chr96], it is still desirable to develop general methods that can
be applied to a broader number of practical problems. In thisregard, numerical methods
for limit state analysis have gained increasing attention during the last decade (see for
instance references [BZCF01, Chr96, KD03, LS02a, MM06]). This is partly due to the
development of robust optimisation methods on which they strongly relay, and recent
progress in the computation of strict bounds [Cir04, LS02a,MM06].
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In the present paper, we compute strict upper and lower bounds of the load factor.
This is achieved by constructing a set of purely static and kinematic interpolation spaces
of the velocities and stresses, as described in [Cir04, D0́5, Gut05]. The resulting dis-
cretisations of the lower bound problem have been also used in [LS02a, MM06], but
differs from the upper bound discretisation given in [SK95,LS02b], where the admissi-
ble conditions are written as a function of the strains.

The solution of the constrained limit state problem is foundresorting to Second Or-
der Conic Programming (SOCP). We have used the general packages for conic pro-
gramming SeDuMi [Stu99] and SDPT3 [TTT03], which are embedded in Matlab. We
note that other specific programs for SOCP such as MOSEK [ApS05] have been re-
cently used also in the context of limit analysis [MM06]. This is in contrast to the usual
venue, where the bounds are computed resorting to Non-Linear Programming (NLP)
[SK95, LS02a, LS02b, LSKH05, BZCF01, CA99, CP01, KD03]. However, the latter
requires a two times differentiable boundary of the yield surface, i.e. no apex as in the
Mohr-Coulomb or Drucker-Prager criteria. Several modifications or the linearised form
of the usual yield surfaces are then necessary in order to solve the constraints with a non-
linear programming technique [SK95, LS02b]. In contrast, SOCP does not require any
modification of the usual admissibility plastic domains, asfar as they can be written as a
second order cone, which is the case in the usual plastic models such as Drucker-Prager,
Mohr-Coulomb, Von Mises or Tresca. We restrict our study to 2D cases in plane strain
in conjunction with Von Mises, Mohr-Coulomb or Tresca plasticity, although the for-
mulation given here can be also written for plane stress problems [Cir04] or generalised
to 3D problems.

Due to the presence of large areas that remain practically rigid, the need for adaptive
remeshing strategy is a must. Since noa priori error estimates for limit state analysis ex-
ist, the usual approach is to usea posterioritechniques, such as non-zero strain rates and
the proximity of the stresses to the yield surface [CP01], oralternatively the recovery of
a Hessian matrix in order to provide an anisotropic error estimate [BZCF01, LSKH05].
We employ here an error estimate which is constructed from the combined solution of
the lower and upper bound problem [Cir04, D0́5, Gut05], and thus benefits from the
dual structure of the limit analysis.

Additionally, in order to avoid the blocking of the lower bound when discontinuous
loads are applied (as it is often the case in strip footings orfoundation slabs), we com-
bine the previous estimate with a strategy that remeshes according to the values of the
velocities at the elemental edges. A similar criterion has been suggested in [LSKH05].
However, the strategy described here constructs radial remeshing patterns or fan-type
meshes, which insert radial subdivisions only in the necessary directions. The need for
fan-type patterns has been already pointed out in [Che75, LS02a, MM06, LSKH05].
In Appendix D we analyse the source of the blocking phenomenawhen no fans are
used in the discretised problem, which interestingly, shows that the limit load factor of
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the continuum problem is in fact governed by a local problem at the point of the load
discontinuity.

We test and compare our formulation with a set of problems extracted from the liter-
ature [KHS05, LS02a, LS02b, LSKH05, MM06, ZBS02]. We show that the remeshing
strategy described here is able to improve the bounds given so far for similar number of
elements.

2 Duality and strict bounds in limit analysis

We henceforth consider a rigid-plastic bodyΩ ⊂ R
2, where the stressesσ are con-

strained to belonging to the domain

B = {σ|f(σ) ≤ 0}. (1)

We require the following assumptions on the setB:

• ∃ǫ > 0, with
∑

i,j
|σ

ij
| < ǫ⇒ σ ∈ B (the zero stress state belongs toB).

• The setB is convex and closed.

Explicit expressions of the setB for Von Mises and Mohr-Coulmb plasticity are given
in Appendix A.

The body is subjected to the body loadλf at the interior ofΩ. In addition, the surface
loadλg and homogeneous Dirichlet boundary conditions are appliedatΓ

g
andΓ

u
, with

Γ
g
∩Γ

u
= Ø andΓ

g
∪Γ

u
= ∂Ω. The objective of the limit state analysis is to determine

the collapse load factor, denotedλ
∗.

We note that due to the rigid-plastic assumption, and thus incontrast to elastic ma-
terials, no constitutive relation exists between the strain rate tensor1 ε(u) =

1

2
(∇u +

(∇u)
T
) and the stress tensorσ. Both variables are related through the associative plas-

ticity rule ε = γ∂f(σ)/∂σ, with γ the plastic multiplier. The assumption of associative
plasticity is needed to formulate the lower and upper bound theorems, key ingredients
of limit analysis that permit to compute load factor bounds and the stress and velocity
fields at collapse. We henceforth denote byΣ ∋ σ andU ∋ u the spaces for the stress
and velocity field. The smooth requirements forΣ andU that guaranteee the existence
of solutions can be found for instance in [Chr96].

2.1 Lower bound theorem

The lower bound theorem of limit analysis can be stated as follows [Che75]:

If for a given load factor̃λ the stress field is such that (i) satisfies the stress
boundary conditions, (ii) is in static equilibrium, and (iii) does not violate

1We denote byu (or v) andε(u) velociyand strainrates, respectively.
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the yield condition, the load factor is a lower bound of the collapse load,
i.e. λ̃ ≤ λ

∗.

The boundary equilibrium condition in(i) is given byσ · n = λg at Γ
g
, with n the

unit external normal, whereas the equilibrium condition in(ii) is equivalent to equalise
the work rate of the external loads to the internal energy rate, which can expressed as
follows:

a(σ, v) = λℓ(v), ∀ v ∈ U . (2)

The bilinear and linear formsa(, ) andℓ() have the usual expressions:

a(σ, v) =

∫

Ω

σ : ε(v)dV,

ℓ(v) =

∫

Ω

f · vdV +

∫

Γg

v · gdΓ.

(3)

It follows that, according to the lower bound theorem, the collapse load factorλ∗ can
be found by solving the following optimisation problem:

λ
∗

= sup
λ,σ∈B

a(σ,v)=λℓ(v), ∀v∈U

λ. (4)

From the expressions ofa(, ) andℓ() in (3), and after integrating by partsa(, ), we
have thata(σ, v)− λℓ(v) = −

∫

(∇σ + λf ) · vdV if the boundary equilibrium condi-
tion holds. Therefore, from the linearity of this expression in v, we can write,

inf
v

a(σ, v) − λℓ(v) =

{

0 If a(σ, v) = λℓ(v), ∀v ∈ U

−∞ Otherwise.
(5)

Consequently, we can expressλ
∗ in (4) as,

λ
∗

= sup
λ,σ∈B

inf
u

(a(σ, u) + λ(1 − ℓ(u))) = sup
σ∈B

inf
ℓ(u)=1

a(σ, u), (6)

where the last identity follows from the fact thatλ is a free variable.

2.2 Upper bound theorem

Let us introduce the internal rate of dissipationD(u) as:

D(u) = sup
σ∈B

∫

Ω

σ : ε(u)dV = sup
σ∈B

a(σ, u). (7)
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From the associative plasticity rule,D(u) may be expressed via the parameters in
the yield functionf(σ), and an equivalent strain rate,ε

eq
(u), which also depends in the

plasticity criteria considered. Expressions forD(u) andε
eq

(u) in Von Mises and 2D
Mohr-Coulomb plasticity can be found in Appendix A.

With this definition at hand, the upper bound theorem of limitanalysis can be stated
as follows [Che75]:

Those loads determined by equating the external rate of workand the in-
ternal rate of dissipation in an assumed velocity field, which satisfies (i)
the Dirichlet boundary conditions, and (ii) strain and velocity compatibil-
ity conditions, (ε(u) = γ∂f(σ)/σ andu = 0 at Γ

u
), are not less than the

collapse load.

Therefore, according to the upper load theorem, the collapse load factor may be
computed as,

λ
∗

= inf
D(u)=λℓ(u)

λ = inf
u

D(u)

ℓ(u)
= inf

ℓ(u)=1
D(u) = inf

ℓ(u)=1
sup
σ∈B

a(σ, u). (8)

2.3 Duality and load factor boundsλ
LB and λ

UB

Both identities, (6) and (8), unveil the structure of limit state analysis: the optimum
values(λ

∗
, σ∗

, u∗
) are the saddle point of the bilinear forma(σ∗

, u∗
) = λ

∗ in the
domainB × C, with C = {u

∣

∣ ℓ(u) = 1}. This fact permits to compute strict bounds
of the collapse load factorλ∗. Assuming that the setB ∋ σ is convex, and since the
objective functiona(σ, u) and the constraintℓ(u) = 1 are linear on their arguments
(and therefore also convex), strong duality holds [BV04], which means the the optimum
valuesλ∗ in (6) and (8) are the same if they exist (see [Chr96] for existence conditions).
Bounds of the collapse load factor may be then computed usingthe following relations:

λ
LB

= a(σ, u∗
) ≤ λ

∗
= a(σ∗

, u∗
) ≤ a(σ∗

, u) = λ
UB

. (9)

These inequalities are satisfied for the spacesΣ andU describing the continuum
fieldsσ andu, respectively. We next introduce a set of discrete spacesΣ

h andUh that
preserve the validity of the two inequalities in (9).

3 Lower bound problem

3.1 Purely static spaces

Discrete spacesΣLB
∋ σLB andULB

∋ uLB that satisfy

max
σ

LB∈BLB
min

ℓ(uLB)=1
a(σLB

, uLB

) ≤ sup
σ∈B

inf
ℓ(u)=1

a(σ, u) (10)
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are termedpurely static spaces. The admissible set of the discrete stresses,B

LB, is
determined below. Following a similar reasoning to (5), condition (10) is equivalent to

max
λ,σ

LB∈BLB

(

λ + min
u

LB
a(σLB

, uLB

) − λℓ(uLB

)

)

≤ sup
λ,σ∈B

(

λ + inf
u

a(σ, u) − λℓ(u)

)

.

This relation is satisfied if the following two conditions hold:

a(σLB
, uLB

) = λℓ(uLB
) ∀uLB

∈ U

LB
⇒ a(σ, u) = λℓ(u) ∀u ∈ U , (11a)

B

LB
⊆ B. (11b)

A pair of spaces that satisfy these conditions can be constructed as follows. We
discretise the domain with a triangulationT

h
(Ω) usingnele elements, and interpolate

the stress and velocity fields as [Cir04],

• Σ
LB: Piecewise linear stress field interpolated from the nodal valuesσn,e, n =

1, 2, 3; e = 1, . . . , nele, with a set of complete Lagrangian functionsI
n, i.e.

∑

n
I

n
= 1. Discontinuity at each elemental boundaryξ

e

e
′ (between elements

e ande
′), is permitted.

• U

LB: Constant velocities at each elemente. Additionally, a linear velocity field
is introduced at each interior edgeξ

e

e
′ and external edgeξ

e
.

In addition, we also impose the stress admissibility condition to the nodal stress
values, i.e.σn,e

∈ B. Since the interpolating functions are complete, andB is convex,
we have thatσLB

∈ B, ∀σLB
∈ Σ

LB. In fact σLB
∈ B

LB
≡ B, and therefore (11b)

holds.
The lower bound of the load factor,λLB, is computed recalling the lower bound

theorem, in particular equation (4) in terms of the discretespaces given above:

λ
LB

= max
λ,σ

LB∈BLB

a(σLB
,v

LB)=λℓ(vLB), ∀v
LB∈ULB

λ. (12)

When using the discrete spacesσLB andvLB in the expression ofa(, ), and noting
thatvLB is piecewise constant, the problem in (12) may be written as,

λ
LB

= max λ

s.t.















∇σLB
+ λf = 0

σLB
· n = λg atΓ

g

(σLB

e
− σLB

e
′ ) · ne

e
′ = 0

σLB
∈ B

LB

(13)
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Since the equations in (13) are in fact the equilibrium equations of the continuum,
condition (11a) holds. Consequently, since (11b) also holds, the spacesΣLB andULB

are purely static.
It is shown in Appendix B that the optimisation problem in (13), for Von Mises or

Mohr-Coulomb plasticity withφ = 0, can be written in the following form:

max λ

s.t.







































f 0 A
M

g 0 N
g

M

0 0 N
e

e
′
M

0 I 0















λ

x
LB

1

x
LB

24







=















0

0

0

b















x
LB

4 , λ free,xLB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×3×nele

,

For Mohr-Coulomb plasticity withφ 6= 0, the following expression is obtained in-
stead:

max λ

s.t.



























f A
M

g N
g

M

0 N
e

e
′
M





{

λ

x
LB

13

}

=







−d
AM

−d
NM

0







λ free,xLB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×3×nele

.

Explicit expressions of the matricesA
M

, Ng

M
, Ne

e
′
M

and vectorsd
AM

andd
NM

are
also given in Appendix B. The variablesxLB, which are a linear transformation of the
stressesσLB, have been introduced in order to express the yield surface as a product of
second order cones (also named Lorentz or quadratic)L

3
= {x ∈ R

3
∣

∣x1 ≥

√

x2
2 + x2

3}.
The resulting optimisation problem is highly sparse and have the standard form of

a SOCP. Specific techniques for such problems have been developed recently, and in
particular, we have used SeDuMi [Stu99] and SDPT3 [TTT03] with satisfactory results,
as the numerical examples in Section 6 show. As a general remark, we comment that
while SeDuMi is faster than SDPT3, the latter has demonstrated, in our examples, to be
more robust than the former.

4 Upper bound problem

4.1 Purely kinematic spaces

Discrete spacesΣUB
∋ σUB andUUB

∋ uUB where the relation

7
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sup
σ∈B

a(σ, u) ≤ max
σ

UB∈BUB
a(σUB

, uUB

) (14)

holds are termedpurely kinematic spaces. Such discrete spaces are described next,
and their kinematic nature demonstrated.

We resort to the same triangulationT
h
(Ω) employed in the lower problem, whereas

the discrete stress and velocity fields are given by [Cir04]:

• Σ
UB: A piecewise constant stress fieldσUB at each elemente is considered,

which is in general discontinuous at the element edges. In addition, we introduce
a tension fieldtUB defined at each internal edgeξ

e

e
′.

• U

UB: Piecewise linear velocities at each elemente, which are also discontinuous
at the element edges.

The computation of the upper bound is not computed using the upper bound theorem,
but resorting also to equation (4), in conjunction with discrete spaces that guarantee that
relation (14) is not violated. The upper bound load factorλ

UB is then the solution of the
following optimisation problem:

λ
UB

= max
λ,σ

UB∈BUB

a(σUB
,v

UB)=λℓ(vUB), ∀v
UB∈UUB

λ. (15)

In order to proof the purely kinematic nature of the spacesΣ
UB andUUB defined

above, we first note that from the linearity of the stress fieldemployedΣUB, which is
constant, the computation of the maximum

max
σ

UB∈BUB
a(σUB

, uUB

)

is reached for an element-wise constant strain rate field. Since the velocity fieldUUB

is linear at each element interior, the maximum can be computed exactly ifBUB
≡ B, or

at least exceeded ifBUB
⊇ B. In our case we resort to the latter case and use a discrete

set of admissible stressesBUB that satisfies the relation

B

UB

⊇ B. (16)

This can be ensured by imposingσUB
∈ B at the interior of the triangles, and im-

posing equivalent admissibility conditions to the tensionfield tUB. The edge tensions
can be interpreted as the projection of a stress field at the edges. The definition of the
admissibility set oftUB, denoted byBUB

t
, parallels that of the the setB, and therefore

depends on the plastic model considered. In Von Mises plasticity, we interprettUB as
the projection of an admissible pure shear stressσ

xy
, and therefore we require,

8
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B

UB

t
= {tUB

∣

∣

|t
UB

T
| ≤ σ

Y
/

√

3} (17)

whereas in Mohr-Coulomb plasticity we choose:

B

UB

t
= {tUB

∣

∣

|t
T
| ≤ c + t

N
tan φ}, (18)

wheret
T

andt
N

are the tangent and normal components oftUB with respect to the
orientation of the edgeξe

e
′. It can be verified that for both cases,σUB

∈ B ⇒ tUB
∈

B

UB

t
, and henceBUB

t
⊇ B. Therefore, (16) is satisfied, and the spacesΣ

UB andUUB

are purely kinematic.
In Appendix C we turn the upper bound optimisation problem in(15) into a standard

SOCP, which are explicitly given in equation (42). We just mention that, like in the
lower bound problem, we transform the elemental stressσUB into a set of elemental
variablesxUB that allow us to recast the membership constraintsσUB

∈ B in the form
x

UB
∈ L

3
× . . . × L

3

︸ ︷︷ ︸

nele

.

5 Mesh adaptivity

In order to capture the localisation of the strains and stresses that characterise the
solution of limit state analysis, the design of an efficient mesh adaptivity strategy is
highly desirable. We describe first an elemental error estimate which is a good candidate
for a remeshing technique. Despite its good performance in general problems, it is not
able to construct fan-type remeshing patterns, which a required in certain problems. For
this reason second remeshing strategy is also constructed which has been numerically
proven to converge to the optimal solution.

5.1 Elemental error estimate

We define the elemental gap as∆
e

h
,

∆
e

h
= D

e

(uUB

)

−

(
∫

Ωe

(−∇ · σLB

) · uUB

dV +

∫

∂Ωe

(ne

· σLB

) · uUB

dS

)

︸ ︷︷ ︸

l
e(uUB)

. (19)

The first term is the elemental work dissipation, which is computed in a similar man-
ner to the global work dissipation detailed in Appendix A, equations (21) and (25),
but integrating over the elemental domainΩ

e. More specifically, for Von Mises plas-
ticity, D

e
(uUB

) =
∫

Ωe σ
Y
ε

eq
(uUB

)dV , and in Mohr-Coulomb plasticity,De
(uUB

) =
∫

Ωe 2c cos φε
eq

(uUB
)dV , where the expressions ofε

eq
(uUB

) for each plastic model are
also given in (21) and (25).
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It is shown in [Cir04] that (i)∆e

h
≥ 0 and (ii)

∑

e
∆

e

h
→ λ

UB
− λ

LB ash → 0,
and thus,∆e

h
it is a good candidate for an error estimate. Accordingly, our remeshing

strategy consists in remeshing those elements whose elemental bound gap is larger than
a given threshold factorη∆ of the larger elemental bound gap, i.e. such that

∆
e

h
> η∆ max

e

∆
e

h
.

The selected elements are remeshed according to the patterngiven in Figure 1a.

(a) (b)

Figure 1: Remeshing pattern for (a) Elemental remeshing, and (b) radial remeshing for a given edge
velocity.

5.2 Radial remeshing strategy

For problems with discontinuous Neumann conditions, such as the strip footing prob-
lem analysed in Section 6.1, it has been reported the need to use meshes with a fan-type
pattern [LS02a, MM06]. Regarding the elemental gap defined in (19), it has been veri-
fied numerically that in such cases, although∆

e

h
→ 0, we don’t have the desired relation

(λ
UB

− λ
LB

) → 0. Moreover, as it is explained in the Appendix D, the only active con-
straints are those at the edges of the elements connected to the point where the load is
discontinuous. Since the edge velocities are conjugated tothe edge equilibrium equa-
tions, the following additional strategy is employed: elements that have nodes with edge
velocities larger than a given relative factorη

u
, 0 < η

u
< 1, are subdivided according to

the pattern in Figure 1b. In other words, if a nodei belonging to elemente satisfies

‖ui,e

‖ > η
u
max

k,l

‖uk,l

‖ k = 1, 2, 3; l = 1 . . . nele,

this element is subdivided at nodei. This strategy is applied after the elemental
remeshing described in the previous section is performed. We note that additional sub-
divisions may be necessary in order to generate a conformingmesh, as indicated in
Figure 1b. This strategy is capable of generate fan-type meshes. Furthermore, since the
edge nodal velocities affect just to two elements in 2D, the radial subdivision is applied
to certain directions only.

10
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6 Numerical examples

6.1 Rigid strip footing

This problem has been widely studied [LS02a, LS02b, Gut05, D0́5, LZC04, LSKH05,
KHS05, MM06]. The load of a flexible strip footing is applied on an assumed weight-
less soil (see Figure 2a). For a purely cohesive material (φ = 0

◦) in plane strain, the
analytical solution is given byλ/c = (2+π)c [Che75]. We show that the mesh strategy
explained in Section 5.2 manages to unblock the lower bound due to the introduction of
a fan-type mesh around the point with the surface load discontinuity. In order to illus-
trate the effect of the remeshing strategy, we have plotted in Figure 3 the linear velocities
of the edges and the constant velocities of the body element.We recall that these are
conjugate to the body equilibrium equations,∇ · σ + λf = 0, and the edge equilib-
rium equations,(σe

− σe
′

) · ne

e
′ = 0, for an edge connecting elementse ande

′. It can
be deduced from the graphs that the only active constraints are the latter edge equilib-
rium relations (the body velocities are practically zero).As it can be observed from the
evolutions of the bounds in Figure 2b, the radial subdivision of the elements that have
larger velocities at the edges manages to unblock the lower bound and converges to the
exact values. Figure 4 shows the resulting mesh after employing 4 elemental and radial
remeshing loops. Interestingly, it is shown in Appendix D that the limit load factor for
this problem can be obtained by just analysing the point withthe load discontinuity,
which in fact requires a minimal number of elements. Indeed,the local analysis with 12
elements leads to a better lower bound (5.1165) than the analysis of the whole domain
with more than 3000 elements (5.1148).
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Log(nele)
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(b)

Figure 2: Strip footing. (a) Geometry and (b) evolution of bounds. The curves correspond to the following
4 cases: adaptive remeshing according to the elemental gap in (19) only (A), additional radial remeshing
all around affected nodes withηu = 0.95 (B), additional radial remeshing in the directions of the affected
elements withηu = 0.75 (C), additional radial remeshing all around affected nodeswith ηu = 0.25 (D).
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(a) (b)

Figure 3: Strip footing problem. Edge velocities (line elements) and body velocities (equal to zero) with
a (a) coarse mesh and (b) a finer mesh.

Figure 4: Strip footing problem. Mesh after 4 adaptive remeshing and using radial remeshing.

6.2 Vertical cut

This problem has been analysed in [LS02a, LS02b, LSKH05, KHS05]. The stability
of the vertical cut in a purely cohesive soil (φ = 0) is given by the parameterN

s
=

Hγ/c, whereγ is the soil density andc is the cohesion. The tighter computed lower
bound forN

s
has been reported in [LS02a]. In [LSKH05], an anisotropic error estimate

is used, which requires an optimal-mesh adaptive scheme that solves an optimisation
problem for the computation of the new element sizes. Our error estimate requires just
to evaluate expression (19), and apparently can improve slightly the lower bound given
in [LSKH05] for similar number of elements (see values Table1). A further run with
15214 elements yields the valuesNLB

= 3.7748 andN
UB

= 3.7849. As a reference,
for the latter mesh and when using a PC with 3GHz and 1GB of RAM,the solution of
the SOCP within SDPT3-4.0 took 237 and 438 seconds for the lower and upper bound
problem, respectively.
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σn = στ = 0

γ

u = 0

u = 0u = 0

(a) (b)

Figure 5: Vertical cur problem. (a) Geometry and (b) initialmesh.

(a) (b)

Figure 6: Vertical cut problem: (a) final mesh employed with 12518 elements and (b) contour plot of
Lagrange multipliers for conditionx1 = 2c.

6.3 Squared plate with asymmetric holes

This problem has been originally modelled in [DAH00] in the context of viscoplas-
ticity and in compression, and by [ZBS02] using the upper bound theorem. Makrodi-
mopoulos and Martin [MM06] have used the same lower bound interpolation described
here, together with the Second Order Conic Programming package MOSEK [ApS05].
However, they have not applied any adaptive remeshing strategy. Thus, we manage to
obtain tighter bounds for similar number of elements (see Table 2). In addition, the finer
meshes shown in Figure 8 reveal the failure mechanism for a purely cohesive material
(Tresca criteria,c = 1, φ = 0

◦), and a cohesive-frictional (φ = 30
◦) material.
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Lower Bound Upper Bound
Reference # elements N

s
# elements N

s

Lyamin et al. [LS02a, LS02b]
2880 3.763 1110 3.801
6400 3.772 2928 3.794

Lyamin et al. [LSKH05]
500 3.71 - -
2000 3.76 - -

Present work
591 3.7288 591 3.8819
1994 3.7664 1994 3.8227
6475 3.7733 6475 3.7964

Table 1: Vertical cut problem. Comparison of bounds obtained by [LS02a], [LSKH05] and in the present
work.

(a) (b)

Figure 7: (a) Geometry and (b) initial mesh employed in the problem of two asymmetric holes.

φ = 0
◦

φ = 30
◦

Reference # elements p/c # elements p/c

Makrodimopoulos and Martin [MM06]
2996 1.7840 2996 1.0464
12738 1.8089 12738 1.0562

Present work
2919 1.8031 1476 1.0542
10778 1.8112 9227 1.0578

Table 2: Comparison of bounds obtained in [MM06] and in the present work.

7 Conclusions

The main goal and novelty of the article is the design of adaptive remeshing strategy
using the solutions of the lower and upper bound limit state problems, while using
Second Order Conic Programming (SOCP) for the satisfactionof the plastic criteria.
Additionally, the remeshing strategy designed here can deal effectively with problems
with discontinuous Neumann conditions.
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(a) (b)

Figure 8: Final mesh with 10778 elements employed in the problem of 2 asymmetric holes with (a)
φ = 0◦ and (b)φ = 30◦.

A Specific expressions for Von Mises and Mohr-Coulomb plasticity

In Von Mises plasticity, the yield function is given by

f(σ) =

√

devσ : devσ −

√

2

3
σ

Y
, (20)

with σ
Y

the yield stress. From the associative ruleε = γ∂f(σ)/σ= γdevσ/
√

devσ : devσ,
and the definition of the internal work dissipation (7), it follows thatD(u) andε

eq
(u)

can be expressed as,

D(u)
V M

=

∫

Ω

σ
Y
ε

eq,V M
dV

ε
eq,V M

(u) =

√

(2/3)ε(u) : ε(u).

(21)

In two-dimensional plane strain analysis, the yield function in (20) is expressed as,

f(σ) =

√

(σ
xx

− σ
yy

)2 + 4σ2
xy

−

2
√

3
σ

Y
.

By applying the following transformation of the stress variablesσT
= {σ

xx
σ

yy
σ

xy
}:

x24 =







x2

x3

x4







= M
−1
V M

σ , M
−1
V M

=





0 0 2

1 −1 0

1 0 0



 , (22)

the membership constraintσ ∈ B = {σ
∣

∣f(σ) ≤ 0} is equivalent to the following
set of constraints:

x13 ∈ L

3
; x1 =

2
√

3
σ

Y
; x4 free, (23)

whereL3
= {x ∈ R

3
∣

∣x1 ≥

√

x2
2 + x2

3} is the three-dimensional Lorentz cone.
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Regarding Mohr-Coulomb plasticity, its yield function is given by,

f(σ) =

√

2devσ : devσ + 2trace(σ) sin φ − 2c cos φ (24)

with c andφ the soil cohesion and internal friction angle. In this case,the following
expression for the internal rate of dissipation can be deduced:

D(u)
MC

=

∫

Ω

2cε
eq,MC

cos φdV

ε
eq,MC

(u) =

√

ε(u) : ε(u)/(2 + 2 sin
2
φ).

(25)

In particular, in two-dimensional plane strain analysis, the yield function in (24) reads

f(σ) =

√

(σ
xx

− σ
yy

)2 + 4σ2
xy

+ (σ
xx

+ σ
yy

) sin φ − 2c cos φ.

By transforming the stress variables as,

x13 =







x1

x2

x3







= M
−1
MC

σ + d, (26a)

with

M
−1
MC

=





− sin φ − sin φ 0

0 0 2

1 −1 0



 , d =







2c cos φ

0

0







, (26b)

we can replace the conditionσ ∈ B by x13 ∈ L

3. If φ = 0, the same transformation
used for Von Mises plasticity can be used here, but replacingthe equality constraint in
(23)x1 =

2√
3
σ

Y
by x1 = 2c.

Note that since matricesM−1
V M

andM
−1
MC

in (22) and (26b) are invertible, we can
expressσ as a function of thex variables:

σ = M
V M

x24 ; σ = M
MC

x13 − M
MC

d (27a)

with

M
V M

=





0 0 1

0 −1 1

0.5 0 0



 , M
MC

=
1

2





(sin φ)
−1

0 1

(sin φ)
−1

0 −1

0 1 0



 . (27b)
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B Discrete lower bound problem

We write next the algebraic form of the discrete lower bound problem in (13). Full
details of the implementation can be found in [Cir04, Gut05], and we will give here the
mean steps towards the construction of the final optimisation problem.

For each elemente, we denote the elemental stress vector byσeT
= {σe,1T

σe,2T

σe,3T

},
with σe,nT

= {σ
e,n

xx
σ

e,n

yy
σ

e,n

xy
}, n = 1, 2, 3 the nodal stresses. On the other hand, we

note that since the stresses are linear, imposing the secondand third equality constraints
at the whole edge is equivalent to impose them at each node of the edge. Consequently,
the first two equality constraints in (13) may be then writtenas,

A
eσe

+ λf
e

= 0; e = 1, . . . , nele (28a)

N
nσn,e

+ λg
n,e

= 0; e, n ∈ ξ
g (28b)

whereξ
g is the set of external boundaries with Neumann conditions, and condition

(28a) is imposed at the nodes connected to those edges, with normal vectornT

ξ
g =

{n
x

n
y
}. The matricesAe andN

e are given by,

A
e

=
[

D
1
D

2
D

3
]

; D
n

=

[

I
n

,x
0 I

n

,y

0 I
n

,y
I

n

,x

]

(29a)

N
n

=

[

n
x

0 n
y

0 n
y

n
x

]

(29b)

whereI
n

,x
andI

n

,y
are the derivatives of the interpolating functions of noden with

respect tox andy, respectively. Note that, in order to ensure exact equilibrium, we have
to assume that the body loadsf and the surface loadsg are, at most, constant at each
element and linear at each edge, respectively. Their elemental and nodal values are given
in the vectorsfe andg

n,e in (28). The third equality constraint in (13) is the equilibrium
equation at the internal edges. Any pair of elementse ande

′, with a common edgeξe

e
′

and with normal vectorne

e
′ , leads to two nodal equations that are expressed as,

N
nσn,e

−N
nσn,e

′

= 0; e, e
′
, n ∈ ξ

e

e
′, (30)

whereN
n has the same form as in (29b). The assembling of the elemental(28)

and (30), together with the membership constraint in (13) leads to the following global
optimisation problem:

max λ

s.t.



















f A

g N
g

0 N
e

e
′





{

λ

σLB

}

= 0

σe,n
∈ B, n = 1, 2, 3; e = 1, . . . , nele.

(31)
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Matrix A and vectorsfandg are the assembling of the elemental and nodal contri-
butions ofAe, fe andg

e, respectively, whereas matricesN
g andN

e

e
′ are the assembled

nodal matricesNn in (28b) and (30), respectively. The vectorσLB corresponds to
the whole set of nodal stresses, and has3 × 3 × nele scalar components. In order to
write the membership constraint as a second order conic constraint, a linear transfor-
mation of the nodal stresses is required. It is shown in Appendix A that in Von Mises
plasticity or in Mohr-Coulomb withφ = 0, it is convenient to introduce the variable
x

n,e

14 = {x
n,e

1 x
n,e

2 x
n,e

3 x
n,e

4 } and use the elemental transformation:

σn,e

= M
V M

x
n,e

24 , (32)

together with the conditionx1 = 2σ
Y
/
√

3 or x1 = 2c. In Mohr-Coulomb plasticity
with φ 6= 0, we use the variablexn,e

13 = {x
n,e

1 x
n,e

2 x
n,e

3 } and the transformation:

σn,e

= M
MC

x
n,e

13 − M
MC

d (33)

Explicit expressions for the matricesM
V M

, M
MC

and vectord are given in equa-
tions (26b) and (27) of Appendix A. Inserting the transformation (32) into the con-
straints in (31) yields the following optimisation problem:

max λ

s.t.







































f 0 A
M

g 0 N
g

M

0 0 N
e

e
′
M

0 I 0















λ

x
LB

1

x
LB

24







=















0

0

0

b















x
LB

4 , λ free,xLB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×3×nele

, (34)

valid in Von Mises or Mohr-Coulomb plasticity withφ = 0. For each plastic model,
the vectorb is given bybT

V M
= 2σ

Y
/
√

3{1 . . . 1}3×nele
andb

T

MC
= 2c{1 . . . 1}3×nele

,
respectively. The matricesA

M
, Ng

M
andNe

e
′
M

are the assembling of the elemental prod-
uctsAe

M and nodal productsNn
M. The global vectorsxLB

1 andx
LB

24 have the follow-
ing componentsxLB

1

T

= {x
1,1
1

T

. . .x
3,nele

1

T

}3×nele
andxLB

24

T

= {x
1,1
24 . . .x

3,nele

24 }3×3×nele
.

A slightly shorter expression than (34) is obtained when inserting transformation (33)
into (31), which gives rise to the lower bound optimisation problem in Mohr-Coulomb
plasticity withφ 6= 0:
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max λ

s.t.



























f A
M

g N
g

M

0 N
e

e
′
M





{

λ

x
LB

13

}

=







−d
AM

−d
NM

0







λ free,xLB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×3×nele

, (35)

whered
AM

andd
NM

are the assembling of the elemental productsA
e
M

MC
d and

N
n
M

MC
d. The three-dimensional Lorentz coneL3 is defined byL3

= {x ∈ R
3
∣

∣x1 ≥

√

x2
2 + x2

3}.

C Discrete upper bound problem

Inserting the membership constraints for the edge tensionstUB, the optimisation
problem in (15) turns into,

sup λ

s.t.







a(σUB
, vUB

) = λℓ(vUB
), ∀vUB

∈ U

UB

tUB
∈ B

UB

t

σUB
∈ B

UB
.

(36)

whereσUB
= {σ1T

. . .σnele
T

}3×nele
andv

UB
= {v

1T

. . .v
nele

T

}2×3×nele
are the

global vectors of stresses and velocities. Their elementalcomponents are given by
σe

= {σ
e

xx
σ

e

yy
σ

e

xy
} and v

eT
= {v

1,e
T

v
2,e

T

v
3,e

T

}. In addition, we denote by

t
e−eT

={t
1,e−e

′T

t
2,e−e

′T

} the nodal tensions at the edgeξ
e

e
′. In order to recast (36)

in a standard optimisation form, we first note that, recalling the nodal matricesDn in
(29a), the elemental contribution of the terms ina(, ) andℓ() may be written as,

∑

e=1,nele

a(σe

, ve

) =

∑

e=1,nele

v
e

·

∫

Ωe





D
1

D
2

D
3



 dV σe

+

∑

e,e
′∈ξ

e
e′

∫

ξ
e
e′

te−e
′

(ve

− ve
′

)dΓ

=

∑

e=1,nele

v
e

· Ãσe

+

∑

e,e
′∈ξ

e
e′

v
e−e

′

· B
e

t
e−e

′

= v
UB

·

(

AσUB

+ Bt
UB

)

(37)
∑

e=1,nele

∫

Ωe

ve

· fdV =

∑

e=1,nele

∑

n=1,2,3

v
n,e

·

∫

Ωe

I
nfdV =

∑

e=1,nele

v
e

· f
e

= v
UB

· f

∑

e∈Γg

∫

Γe
g

ve

· gdV =

∑

e∈Γg

∑

n∈Γe
g

v
n,e

·

∫

Γe
g

I
ngdV =

∑

e∈Γg

v
e

· g
e

= v
UB

g
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whereÃ
eT

=
∫

Ωe

[

D
1T

D
2T

D
3T

]

dV . The nodal velocities at the edgesv
e−e

′

ξ
and

the elemental matrixBe are given by

v
e−e

′

ξ
=















v
1,e

v
2,e

v
1,e

′

v
2,e

′















, B
e

=









Ĩ
11

Ĩ
12

Ĩ
21

Ĩ
22

−Ĩ
11

−Ĩ
12

−Ĩ
21

−Ĩ
22









, Ĩ
ij

= I
i

ξ
I

j

ξ
I2

with I2 the2× 2 unit matrix andIn

ξ
, n = 1, 2 the nodal interpolating functions at the

edges. The elemental vectorsf
e andg

e in (37) are two elemental vectors associated to
the body and surface loads. MatricesÃ andB, and vectorsf andg are the assembled
elemental contributions of̃Ae, Be, fe andg

e, respectively.
With this notation at hand, the conditiona(σUB

, vUB
) = λℓ(vUB

), ∀vUB
∈ U

UB is
equivalent to the following system of equations:

ÃσUB

+ Bt
UB

− λ(f + g) = 0. (38)

Regarding the tension membership constraints, for each interior eachξe

e
′, the Von

Mises condition (17) is applied to the two nodal tensionst
1,e−e

′

andt
2,e−e

′

as follows:

t
n,e−e

′

T
− s2n−1 = σ

Y
/

√

3 ; s1 ≥ 0 , n = 1, 2

−t
n,e−e

′

T
− s2n

= σ
Y
/

√

3 ; s2 ≥ 0 , n = 1, 2,

(39a)

whereas the Mohr-Coulomb condition (18) may be written in a similar manner,

t
n,e−e

′

T
− s2n−1 = c + t

n,e−e
′

N
tan φ ; s1 ≥ 0 , n = 1, 2

−t
n,e−e

′

T
− s2n

= c + t
n,e−e

′

N
tan φ ; s2 ≥ 0 , n = 1, 2.

(39b)

Both conditions in (39) can be expressed in the following compact form:

T
e

t
e−e

′

+ I4s
e

= b
e

t
, (40a)

wheres
eT

= {s1 s2 s3 s4}, I4 is the4 × 4 unit matrix, and the matrixTe and vector
b

e

t
have the following expressions for each plastic model:
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T
e

V M
=









0 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 −1









[

R 0

0 R

]

, b
e

tV M
=

σ
Y

√

3















1

1

1

1















,

T
e

MC
=









− tan φ 1 0 0

− tan φ −1 0 0

0 0 − tan φ 1

0 0 − tan φ −1









[

R 0

0 R

]

, b
e

tMC
= c















1

1

1

1















.

(40b)
Matrix R is a two-dimensional rotation matrix that transforms the nodal tensions

vectorsti,e
, i = 1, 2 in x − y components into the local components aligned with the

edgeξe

e
′.

Gathering the constraints (38) and (40), we can rewrite the upper bound optimisation
problem in (36) as,

max λ

s.t.























[

−f − g B 0 Ã

0 T I 0

]















λ

t
UB

s

σUB















=

{

0

b
t

}

λ, t
UBfree, s ≥ 0, σUB

∈ B

UB
.

, (41)

with T,b
t
ands the assembled elemental contributionsT

e, be

t
ands

e in (40).
In order to write the stress membership constraint as a SOCP,we resort to the same

technique employed in the lower bound method. In the presentcase, though, the stresses
field is elemental, not nodal, and thus, we will use the transformations in (27) but applied
to the elemental stressesσe. The resulting optimisation problem in Von Mises plasticity
or Mohr-Coulomb withφ = 0 reads,

sup λ

s.t.











































−f − g B 0 0 Ã
M

0 T 0 I 0

0 0 I 0 0



























λ

t
UB

x
UB

1

s

x
UB

24























=







0

b
t

b







λ, t
UB

,x
UB

4 free, s ≥ 0,x
UB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×nele

.

, (42a)
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where the vectorb is given bybT

V M
= 2σ

Y
/
√

3{1 . . . 1}
nele

andbT

MC
= 2c{1 . . . 1}

nele

in Von Mises and Mohr Coulomb plasticity, respectively. ForMohr-Coulomb with
φ 6= 0 we obtain,

sup λ

s.t.































[

−f − g B 0 Ã
M

0 T I 0

]















λ

t
UB

s

x
UB

13















=

{

−d
AM

b
t

}

λ, t
UBfree, s ≥ 0,x

UB

13 ∈ L

3
× . . . × L

3

︸ ︷︷ ︸

3×nele

.

. (42b)

The matrixÃ
M

and vectord
AM

are the assembling of the elemental contributions
Ã

e
M andMd, with M andd in (27b) and (26b).

D Analysis of the lower bound problem with singular surface loads

The need for fan-type mesh distribution around points with discontinuous Neumann
conditions was already pointed out by [Che75] when analysing the strip footing prob-
lem with the lower bound theorem and adding discontinuitiesin the stress field. This
discontinuities allow variations in the direction of the principal stress along elements
with constant stresses. This fact was recognised in [Che75]when subdividing the rigid-
plastic domain in sub-domains that are in static equilibrium.
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b
a

(a) (b)

σa

σb

n2

n3

n1
P

g = λ
loc

{

0
−1

}

Figure 9: (a) Continuum problem and (b) simplified model with2 elements used for the analysis of the
lower bound problem.

In the context of the discretised stress and velocity fields used here (which are also
employed in [LS02a, MM06]), we first analyse the simple problem depicted in Figure 9.
The vertical surface loadgT

= {0, −1} is applied along a free surface, with a discon-
tinuity at pointP . The domain aroundP is discretised with 2 elements,a andb, which
are connected at pointP at the nodes also denoteda andb (see Figure 9b). The max-
imum load factor for the local system considered here, in case it exist, is denotedλloc.
According to the lower bound problem described in Section 3,the stress is piecewise
linear, and thus discontinuity is allowed at the top Neumannboundaries and at the ver-
tical internal edge given by the normalsn1, n3 andn2. However, in order to guarantee
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a rigorous lower bound, equilibrium is enforced at these boundaries, or equivalently, at
nodesa andb due to the linearity of the stress field. Consequently, the following nodal
equilibrium equations are obtained:

σ · n1
= λ

locg,

(σa

− σb

) · n2
= 0,

σb

· n3
= 0.

It can be verified that the previous equations allow to write the stresses ata andb as

σaT

= {σ, 0, −λ
loc

}

σb
T

= {σ, 0, 0},
(43)

whereσ is a free variable. In addition, the admissibility of the stressesσa andσb,
for the Von Mises yield surface with yield stressσ

y
, gives rise, after taking into account

equations (43), to the following conditions:

σ2
+ (λ

loc

)
2
+ σλ

loc

≤ σ
2
y

σ
2

= σ
2
y
.

(44)

The maximum value ofλ that satisfies these conditions is given byλ
loc

= 2σ
y
/
√

3,
which is obtained forσ = −σ

y
/
√

3. Three main conclusions can be drawn from this
result:

1 A maximum value forλloc has been found. The lower bound problem searches the
maximum value ofλ = λ

LB that satisfies all the discretised equilibrium equations
in the whole domain. Therefore, in a mesh that contains the local simplified
system given above, the values found provide a limitation inthe maximum value,
i.e. λUB

≤ λ
loc.

2 Any remeshing strategy of the two elements considered withthe pattern in Figure
1a leads to a identical problem as the one considered here, and thus leaves the
value ofλloc unchanged.

3 If we add one additional element around pointP , let’s say elementc, we are
adding three more variablesσc, and two more equilibrium equations at the inter-
nal edge, plus one more yield condition forσc. Therefore, if the new conditions
are independent of the previous ones, the limitation found for the local problem
always exists, independently of the number of elements.
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In order to verify numerically the last remark, we have modelled the simplified model
for different opening anglesα of the two free surfaces and for different number of
elementsnele (see Figure 10). In addition, for the caseα = 180

◦, we have only added
elements within a central angleβ. The evolution of theλloc is plotted in Figure 11. Two
further conclusions can be extracted:

4 In agreement with point 3 above, a maximum valueλ
loc is always found.

5 It has been verified in Figure 11 that for values ofβ > 90
◦, the load factorλloc

converges to the exact solution(2 + π)c = 5.141592. Although it can not be
appreciated in the Figure, forβ = 80, the limit λloc

= 5.31805 is obtained (tests
until nele = 1000 have been performed).
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Figure 10: Values ofλloc as a function ofα andnele.

We found the last point relevant in two senses. First, there is no need to remesh
radially in all directions, and thus it appears reasonable to design a strategy that con-
centrates elements in those directions that constrain the maximisation problem. Second,
the load factor of the rigid strip footing has been found by only searching the solution
of a local constrained problem. This means that if the velocity and stress field at the
limit load are not desired, a strict lower bound of the load factor may be computed by
just analysing the reduced model, which is computational much cheaper than modelling
the whole domain. Furthermore, from the tightness of theλ

loc, we can deduce that the
load factor of the non-discretised studied problem is determined by a local phenomenon,
independently of the fracture lines (or velocity and stressfield).

We have performed the same analysis for a Mohr-Coulomb material, and the same
conclusions have been found. Instead of the valueN

s
= (2 + π)c though, the solution

converged towards the Prandt solution given by [Che75, Pra20]:
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Figure 11: Values ofλloc for α = 180◦ and different number of elements within different centred angles
β.

λ = c
(

e
π tan φ

tan
2
(45 + φ/2) − 1

)

cot φ

In particular, for the valuesc = 1 andφ = 30
◦, this expression yieldsλ = 30.13962,

which is the limit value of the local problem (see Figure 12).Whether the observed
behaviour for the strip footing can be extended in 3D for a footing slab must still be
investigated.
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