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Resumen. In this work we proposed an extencion of the level set technique to track
any number of free surfaces. This extension is based in a hierarchical ordering of several
level set functions. To complete the X–FEM approach, the enrichment via partition of the
unity method is also extended. The ridge function, base of the enriched interpolation, is
restated to include several level sets and the hierarchy between them.

1 INTRODUCTION

Despite the term “multi flow” is widely used in the level set community, most works
using level sets for tracking free surfaces limit the number of phases to two. In these
works, the sign of a level set describes the phases location. There are some exceptions
of “multi–phase” or “n–phase” models which can handle n > 2. For example, the work
of Tan and Zabaras [7] combines level sets with some features of front tracking methods
to model the microstructure evolution in the solidification of multi–component alloys. In
this work each component is defined by a level set function: the sign limits the solid–liquid
interface.

Two algorithms to simulate triple junctions where the motion of the interfaces depends
on surface tension and bulk energies were proposed by Zhao et. al. [9] and Ruuth [5].
Both use several level sets to track interfaces. They use as many level sets as materials;
to prevents overlapping or vacuum, some artificial constraints are added to the model.

2 Problem statement

We will focus on unsteady incompressible n–phase (n > 2) viscous flows of immiscible
fluids which can be described by the Stokes equations in its quasi–static version (inertia
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term neglected). This is a common approach in geophysical modeling, where creeping
(very slow) flow arises. The governing equations can be written as

∇ · (η∇su) + ∇p = ρg, (1a)

∇ · u = 0 (1b)

where u is the velocity, η the viscosity, p the pressure, ρ the density, and g the gravita-
tional acceleration vector. The symetric gradient operator ∇s is defined as 1/2(∇� +∇).
Density and viscosity fields are constant on each phase, leading to discontinuities across
all interfaces. As the equation (1) is quasi–static, it does not contain any explicit time
dependence and the transient character of the solution is due to the motion of the phases.

The location of the different phases is described by a collection of level set functions.
The level sets represent material properties and they are consequently transported by the
motion of the fluid. Thus the evolution of each one of the level sets, describing phase
locations, is determined by pure advection equation

φ̇(i) + u · ∇φ(i) = 0 (2)

where u is the velocity field, solution of the Stoke’s problem (1), and φ(i) is the level set
number i.

3 Describing a n–phase fluid with n − 1 level sets

The level set technique is widely used in two and three dimensions to track the interface
between materials in two–phase flow problems, see for example [8, 1, 10].

3.1 Two phases with a single level set

The location of the interface between two materials can be described using a level set
function φ(1). The superscript (1) denotes the number of level set and it will be useful
when 3 or more phases were described. Despite it is not necessary for the discussion in
this Section, it is included here to use the same notation as in the following Sections.
The sign of the level set φ(1) describes a partition of the simulation domain Ω in two
subdomains Ω1 and Ω2 using the following sign convention

φ(1)(x, t) =

⎧

⎨

⎩

x ∈ Ω1 if φ(1)(x, t) > 0
x is on the interface if φ(1)(x, t) = 0
x ∈ Ω2 if φ(1)(x, t) < 0

(3)

where x stands for a point in Ω and t is the time. The interface location is the set of points
where the level set field vanishes. An example of partition is shown in Figure 1. Initially
the level set φ(1) is defined as a signed distance to the interface. Far enough from the
interface, φ(1) is truncated by maximum and minimum cutoff values. The resulting level
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set function describes the position of the interface independently of the computational
mesh, thus the same mesh can be used trough the entire simulation avoiding remeshing
procedures.

Ω

Ω1
Ω2

Figure 1: One level set function splits the domain in two subdomains corresponding to the different
phases.

3.2 Tracking more than two phases: hierarchy of level sets

One level set allows for describing only two phases (two subdomains). To include a
third subdomain Ω3 a second level set function φ(2) is needed. We propose to assign a
hierarchy to the level set functions: the subdomain Ω1 is determined by the first level set
φ(1) as

φ(1)(x, t) =

{

x ∈ Ω1 if φ(1)(x, t) > 0
x /∈ Ω1 if φ(1)(x, t) < 0

(4)

The curve where the level set φ(1)(x, t) equals zero is the interface between the first phase
and the rest of the domain. That is, either the second or the third phase. The remaining
part in the simulation domain (x ∈ Ω\Ω1) is split by the second level set φ(2) as

for x /∈ Ω1, φ(2)(x, t) =

{

x ∈ Ω2 if φ(2)(x, t) > 0
x ∈ Ω3 if φ(2)(x, t) < 0

(5)

determining the location of the second and third sub domains. Note that the second level
set does not have any influence where the first level set is positive. The first level set
is “prior to” —or has upper hierarchy than— the second level set. Figure 2 shows the
partition of the domain by two hierarchical level sets into three subdomains.

This hierarchy phase description can be extended to the general case of n phases being
tracked by n − 1 level sets. The level set number i, φ(i), defines the location of the phase
i as follows

for x /∈
i−1
⋃

j=1

Ωj , φ(i)(x, t) =

{

x ∈ Ωi if φ(i)(x, t) > 0
x /∈ Ωi if φ(i)(x, t) < 0

(6)
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Ω

Ω1

Ω2 Ω3

φ(1)

φ(2)

Figure 2: Two hierarchical level sets describe three material sub domains. The second level set φ(2) acts
only where the first level set φ(1) is negative. Dotted line represents the level set with lower hierarchy
eclipsed by the first level set.

for all i = 1 . . . n − 2. The less hierarchical level set φ(n−1) determines the location of the
last two phases in the remaining space as

for x /∈
n−2
⋃

j=1

Ωj , φ(n−1)(x, t) =

{

x ∈ Ωn−1 if φ(n−1)(x, t) > 0
x ∈ Ωn if φ(n−1)(x, t) < 0

(7)

In this approach the positive part of the i–th level set defines the material subdomain
Ωi and the negative region have to be partitioned by the level sets with less hierarchy.
Figure 3 illustrates a partition into four subdomains by three level sets.

Ω

Ω1

Ω2
Ω3

Ω4

φ(1)

φ(2)
φ(3)

Figure 3: Three hierarchical level sets allows for describing four material phases. The last level set φ(3)

acts only where the first two level set are negative.

A shorter description of the domains defined by each hierarchical level set can be done
by means of the McCauley brackets

〈φ〉 = 1/2 (φ + |φ|).
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The domain Ωi described by the level set φi is

Ωi = supp
{〈φi〉

i−1
∏

j=1

〈−φj〉}.

4 Enrichment with X–FEM

The interface described by a level set does not need to conform with mesh edges, that
leads to elements with different material properties in its interior. In X–FEM approach,
the interpolation in those elements is enriched allowing the expected gradient discontinuity
across the interface.

The interpolation of velocity u in enriched elements is composed by the standard finite
element part, plus an enriched part. The second involves additional degrees of freedom
aj and its associated interpolation functions Mj

uh(x, t) =
∑

j∈N
uj(t) Nj(x) +

∑

j∈Nenr

aj(t) Mj(x) (8)

where N is the set of standard finite element velocity degrees of freedom and Nenr is the
set of enriched degrees of freedom. The Nenr set evolves trough time and needs to be
recomputed at each time step after level set movement. The pressure field p is enriched
in a similar way.

The interpolation function Mj is constructed as the product of standard nodal shape
functions and a ridge function R

Mj(x) = Nj(x)R(x). (9)

The R function is based on the level set and has a “crest” just over the interface between
materials. Several different ridge functions have been proposed in the literature (see for
example [1, 2]). In the next sections a ridge function based on several hierarchical level
sets is proposed. It is based on the ridge for two–phases used by Moës in [2].

4.1 Two phases, one Ridge

In two–phase simulation the only interface is described by the only level set. The
enriched elements are those which are crossed by φ(1), and the ridge function can be
constructed as

R(x) =
∑

j∈Nenr

|φ(1)
j |Nj(x) −

∣

∣

∣

∣

∣

∑

j∈Nenr

φ
(1)
j Nj(x)

∣

∣

∣

∣

∣

. (10)

Note that this ridge function vanishes in the element edges not crossed by the level set.
Thus, the solution between enriched and non–enriched elements conforms naturally. The
plot of such a ridge is shown in Figure 4.
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Figure 4: Ridge function R based on one level set φ(1).

4.2 Ridge function for two level sets

When two hierarchical level set are used two things have to be redefined. Firstly, the
detection of enriched element has to include the level set hierarchy. Secondly, the triple
junction case, where two level sets intersects, has to be take into account.

The enriched element detection can be expressed as follows: find the elements crossed
by φ(1) and the elements crossed by φ(2) with φ(1) negative. This statement can be easily
encoded, in the code repository we provide a highly vectorized MATLAB function named
crossedByLevelSet which accept any type element in any number of dimensions and
returns if one element has to be enriched.

The ridge function R in enriched elements cross by only the k–th level set is defined
as in the previous case. The function r(k) is the ridge associated with level set k

r(k)(x) =
∑

j∈Nenr

|φ(k)
j |Nj(x) −

∣

∣

∣

∣

∣

∑

j∈Nenr

φ
(k)
j Nj(x)

∣

∣

∣

∣

∣

(11)

where k is one or two for elements crossed by φ(1) or φ(2), respectively. The ridge function
is R = r(k).

In the triple junction case, where two interfaces cross simultaneously one element, the
ridge function has to take into account both level sets and the hierarchy between them.
In this case R is defined as

R(x) = r(1)(x) + r(2)(x)C(1)(x) (12)

where the cutoff C(1) function introduces the level set hierarchy

C(1)(x) =

⎧

⎨

⎩

1 if φ(1)(x, t) ≤ 0
0 if φ(1)(x, t) ≥ m(1)

f (1)(x) otherwise
(13)

Here m(1) is the minimum positive nodal value of the level set φ(1) in element, and f (1)(x)
is defined as

f (1)(x) =
(

1 − φ(1)

m(1)

)2

. (14)
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The cutoff C(1) function restricts the second ridge r(2) to the region where the first level
set φ(1) is negative, and smoothly reduces the value of R(2) where φ(1) is positive.

Composite ridge 

R=  r (1) + r (2)C (1)

(d)

Cutoff function C (1)

(c)

Ridge r (2)

level set 2
φ(2)
3

φ(2)
2

φ(2)
1(b)

node 3

node 2

node 1

Ridge r (1)

level set 1

φ(1)
3

φ(1)
2

φ(1)
1

(a)

Ω1

Ω2
Ω3

node 3

node 2
node 1(e)

Figure 5: Building of a composite ridge based in two hierarchical level sets. Plots (a) and (b) show the
level sets and the simple ridge based on it. The cutoff function C(1) based on the first level set is shown
in plot (c).

The construction of a ridge function inside an element crossed by two level sets is shown
in Figure 5. Note that obtained ridge shown in panel (d) conforms with its three neighbor
elements: edge 2–3 is shared with a non enriched element and the ridge is zero. Edge 1–3
is shared with an element crossed only by the first level set and the ridge on this edge
takes the same values as r(1). Finally, the ridge in edge 1–2 depends on values of both
level sets, in this case the neighbor element is crossed by the same level sets too.

4.2.1 General case

The ridge of the last example can be extended to the general case where n level sets
simultaneously crossing one element. In that case, the ridge function is extended in the
following form

R(x) = r(1)(x) +
n−1
∑

i=2

r(i)(x)C(i−1)(x) (15)

with the C(i) cutoff function

C(i)(x) =

⎧

⎨

⎩

1 if φ(i)(x, t) ≤ 0
0 if φ(i)(x, t) ≥ m(i)

f (i)(x) otherwise
(16)
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the f (i) function

f (i)(x) =
(

1 − φ(i)

m(i)

)2

(17)

and the value
m(i) = min(|φ(i)|). (18)

Note that when the ridge function is constructed with an level set which not crosses
the element, is becomes zero. Thus in Equation (15) all ridges can be added together.

5 Numerical examples

The proposed n–phase approach is used to simulate some gravitational Raleigh–Taylor
instabilities. The model is composed by three fluid immiscible materials. The mechanic
of the problem is governed by Equation (1). The driving force in all the presented models
is the gravity; the lower buoyant layers are less dense than the overlying layers and a
diapir develops.

The initial configuration of the following models is composed by three materials located
as shown in figure 6. The upper layer is ten times denser than the two lower materials.
As the lower materials have different viscosity the formed diapir looses its vertical axis of
symmetry.

0 1
0

0.5

0.5

1

1.5

g

Figure 6: Initial configuration composed of three materials. The upper material is denser than the other
two. The viscosity of the materials is indicated on figure 7.

The evolution of four models with different viscosity contrast between the two lower
layers is shown in Figure 7. The (a) row corresponds to a model where all materials have
the same viscosity η = 1. In this conditions the two buoyant materials behave as a unique
fluid and a standard symmetric diapir develops. The second row in Figure 7 shows the
evolution of the diapir when the viscosity of the right lower material is five times the
viscosity of the left material. In this case the symmetry is lost. The evolution of the left
half of the model is similar to the (a) row while the right half of the model is controlled by
the viscosity contrast between the right material and the overburden layer. The models of
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the third and fourth rows have a viscosity contrast between the two lower layers of 10 and
100, respectively. The very viscous right material of the last model is almost stopped,
while the left material develops the diapir alone. The generated flow change its main
pattern during evolution. In the early stages (1st and 2nd snapshots) the high viscosity
of the right material inhibits the movement in the right half and the flow is concentrated
in the left part of the domain. This flux inclines the diapir to the left. Once the material
gains enough height to loose the influence of the viscous layer (last two snapshots), the
main flow moves to the right half of the model because there are more space facilitating
the return flow. This right flux inclines the diapir to the right.

6 CONCLUSIONS

We have proposed and tested a methodology to extend the level set technique to track
any number of free surfaces. The extension is based in a hierarchical ordering of several
level set functions. To complete the X–FEM approach, the enrichment via partition of
the unity method is also extended. The ridge function, base of the enriched interpolation,
is restated to include several level sets and the hierarchy between them.
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Figure 7: Several evolution of the 3–phase diapir. The difference of the four models (a), (b), (c) and
(d) is the viscosity of the lower right material, which is 1, 5, 10 and 100, respectively. The other two
materials have viscosity η = 1 in all models. The upper denser layer has a density of 10, while the two
buoyant lower materials have a density of one.
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