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Abstract. An improvement of the classical finite element method is proposed in [1],
the NURBS-Enhanced Finite Element Method (NEFEM). It considers an exact repre-
sentation of the geometry by means of the usual CAD description of the boundary with
Non-Uniform Rational B-Splines (NURBS). For elements not intersecting the boundary,
a standard finite element interpolation and numerical integration is used. Specifically de-
signed piecewise polynomial interpolation and numerical integration are proposed for those
finite elements intersecting the NURBS boundary.

In [2] a numerical example involving an electromagnetic scattering application, is used
in order to demonstrate the applicability and behavior of the proposed methodology. The
results are encouraging and show that the NEFEM is more accurate than the corresponding
isoparametric finite elements, using a Discontinuous Galerkin (DG) formulation. Recent
studies also demonstrate that, for a desired precision, the NEFEM is also more efficient
in terms of number of degrees of freedom, and in terms of CPU time.

In the present work the NEFEM is reviewed and applied to the solution of the Euler
equations of a compressible inviscid fluid. This set of hyperbolic equations represents a
more challenging application for the NEFEM because the nonlinearity of the hyperbolic
system and the sensitivity of DG formulations to the imposition of the wall boundary
condition in curved domains.

1 Introduction

The relevance of an accurate representation of the domain and its boundary has re-
cently been pointed out by several authors, see [3, 4, 5, 6, 7, 8] among others. In some
applications, such as compressible flow problems, an important loss of accuracy is ob-
served when a linear approximation of the boundary is used, see [3, 4]. Reference [3]
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shows that, in the presence of curved boundaries, a meaningful high-order accurate solu-
tion can be obtained only if a corresponding high-order approximation of the geometry
is employed (i.e. isoparametric finite elements). A detailed analysis of this problem is
performed in [7]. In this work, it is shown that for a consistent boundary discretization in
a discontinuous Galerkin finite element method, it is necessary to take into account the
effect of the domain boundary curvature. In [8] the same problem is studied, and a new
method is proposed for computing the flux across a curved face. Using a parameteriza-
tion of the curved boundary the flux definition is modified but the resulting method is,
unfortunately, non-conservative. Several studies can be found in the literature following
these ideas, see for instance [9].

However, the need of an accurate representation of the geometry is not an exclusive
matter of fluid mechanics. For instance, similar conclusions are derived in [5] for linear
elasticity problems: sizable errors are present in the numerical solution when the order for
the geometric approximation is lower than the order of functional interpolation, even for
geometries as simple as an sphere. Isoparametric finite elements or superparametric finite
elements (i.e. greater order for the geometry) are necessary in order to ensure an accurate
enough representation of the geometry. On the other hand, reference [6] analyzes the error
induced by the approximation of curvilinear geometries with isoparametric elements. The
3D Maxwell equations are solved in a sphere with isoparametric finite elements and with an
exact mapping of the geometry. The exact mapping provides more accurate results, with
errors differing by an order in magnitud. Thus, in some applications, an isoparametric
representation of the geometry is far from providing an optimal numerical solution for a
given finite element discretization.

Recently, [10] proposes a new methodology: the isogeometric analysis. Its goal is to
consider an exact representation of the geometry, with no dependency on the spatial
discretization. In the isogeometric analysis the solution of the boundary value problem is
approximated with the same NURBS (Non-Uniform Rational B-Splines, [11]) base used
for the description of the geometry. This idea was first introduced in [12] in the context
of thin shell analysis.

The methodology proposed in [1, 2] and reviewed here, the NURBS-Enhanced Finite
Element Method (NEFEM), follows the same rationale, but it is more simple because of
two main differences: (i) NEFEM also considers the exact NURBS description for the
computational domain, but NURBS are restricted to the boundary of the computational
domain, which is the one that usually is directly related to a CAD, and (ii) the solution
is approximated with standard finite element (FE) polynomial interpolation. Thus, in
the large majority of the domain, for elements not intersecting the NURBS boundary,
a standard FE interpolation and numerical integration is used, preserving the compu-
tational efficiency of classical FE techniques. Specifically designed piecewise polynomial
interpolation and numerical integration are proposed for those finite elements intersecting
the NURBS boundary.

The use of a piecewise polynomial approximation represents an important advantage
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in front of the NURBS functional approximation used in the isogeometric analysis : the
NEFEM ensures the local reproducibility of polynomials and, therefore, it preserves the
classical FE convergence properties.

First, in section 2, a brief NURBS introduction is given. Section 3 reviews the basic
concepts and fundamentals of the NEFEM. Special attention is paid to the interpolation
and numerical integration in those elements affected by the NURBS description of the
boundary. In order to facilitate the explanation, the NEFEM is presented for 2D domains.
Although more attention is required to geometrical aspects, the generalization to 3D
domains is straightforward. In section 4 the NEFEM is combined with a DG formulation
for the numerical solution of the Euler equations. Finally in section 5 the conclusions of
this work are presented.

2 Basic concepts on NURBS

This section is not devoted to develop or discuss NURBS in detail. There are well
known references with excellent presentations of NURBS, see for instance [11]. Here some
basic notions are recalled in order to introduce the notation and the concepts employed
in following sections.

A qth-degree NURBS curve is a piecewise rational function defined in parametric form
as

C(λ) =

nCP∑
i=0

Ci,q(λ)νiBi

nCP∑
i=0

Ci,q(λ)νi

λ ∈ [λa, λb], (1)

where Bi are the control points (determining the control polygon), νi are their control
weights, the interval [λa, λb] is called the parametric space, and Ci,q(λ) are qth-degree
B-spline basis functions. The B-spline basis functions are defined recursively from the
so-called knot vector Λ = {λ0, . . . λnK

} = {λa, . . . , λa︸ ︷︷ ︸
q+1

, λq+1, . . . , λnK−q−1, λb, . . . , λb︸ ︷︷ ︸
q+1

} by

Ci,0(λ) =

{
1 λ ∈ [λi, λi+1)
0 λ /∈ [λi, λi+1)

(2)

Ci,k(λ) =
λ− λi

λi+k − λi

Ci,k−1(λ) +
λi+k+1 − λ

λi+k+1 − λi+1

Ci+1,k−1(λ) for k = 1 . . . q. (3)

Note that the first and final knots must coincide with the endpoints of the parametrization
interval and their multiplicity is always q + 1. The multiplicity of the remaining knots
determines the continuity of the curve at the so-called breakpoints, which are no more than
the knots without multiplicity. Thus, a NURBS is a piecewise rational function whose
definition changes at the breakpoints.
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Figure 1: NURBS curve (solid line), control points (◦), control polygon (dashed line) and image of the
breakpoints (¤)
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Figure 2: B-spline basis functions for the knot vector Λ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}.

Figure 1 shows a NURBS curve and its control polygon. The corresponding B-spline
basis functions are depicted in Figure 2.

A trimmed NURBS is defined as the initial parametrization restricted to a subspace
of the parametric space. Figure 3 shows the NURBS curve shown in Figure 1 trimmed to
the subinterval [0.05, 0.75].

Figure 3: Trimmed NURBS curve for λ ∈ [0.05, 0.75]
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3 NURBS-Enhanced Finite Element Method (NEFEM)

A domain Ω ⊂ R2 is considered, whose boundary ∂Ω, or a portion of its boundary, is
defined by NURBS curves [11]. Every NURBS is assumed to be parameterized by

C : [λa, λb] −→ N([λa, λb]) ⊆ ∂Ω ⊂ R2.

A triangularization of the domain Ω =
⋃

e Ωe is also assumed, such that every triangle
Ωe has at most one side on the NURBS boundary. Figure 4 shows a domain with part
of the boundary described by a NURBS circular curve and a valid triangulation for the
NEFEM.

W

Figure 4: Physical domain with part of the boundary defined by a circular NURBS curve (left) and a
valid triangulation for the NEFEM (right)

At all elements whose boundary does not intersect the NURBS boundary, the usual
FE interpolation and numerical integration is considered. Thus, this section is devoted to
the definition of the interpolation and numerical integration at an element with one side
on the NURBS boundary.

Let us consider an element Ωe with two straight interior sides and one side defined by
a trimmed NURBS,

Γe = C([λe
1, λ

e
2]).

with λa ≤ ue
1 < ue

2 ≤ λb.There are no restrictions in the location of the nodes in the
NURBS boundary. The NURBS parametrization can change its definition inside one edge.
That is, it is possible to have a breakpoint [11] on (ue

1, u
e
2). This is another advantage with

respect to the isogeometric analysis [10].
For each element Ωe, a triangle Te is defined using its vertices, see figure 5.
Then, a linear transformation Ψ : I −→ Te from the reference triangle I to the straight-

sided triangle Te, defined by the vertices of Ωe, is considered, see Figure 6.
Note that the inverse of this linear transformation maps the triangle Te into the ref-

erence triangle I, but also maps the physic element Ωe into a curved element in local
coordinates with two straight sides, namely

Ie := Ψ−1(Ωe), (4)

see Figure 7.
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T
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Figure 5: Physic element Ωe (left) and triangle Te defined using its vertices (right)
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Figure 6: Mapping Ψ defined as the linear transformation from the reference element I to the straight-
sided triangle Te (given by the vertices of Ωe)
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Figure 7: Linear transformation mapping the curved parametric element Ie := Ψ−1(Ωe) to the physic
element Ωe

Remark 1 Note that the reference element I is the same for all elements Ωe. However,
the curved element Ie depends on the trimmed NURBS defining the curved side Γe of Ωe,
and therefore it is different for every element Ωe intersecting the NURBS boundary.

Remark 2 The use of a linear transformation from the local coordinates ξ in Ie to the
cartesian coordinates x in Ωe, ensures that a polynomial interpolation of degree m in ξ
leads to a polynomial interpolation with the same degree in x. Thus, the consistency and
accuracy of the approximation is ensured even for elements Ωe far from being a straight-
sided element.
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Remark 3 In order to reduce the casuistic in the numerical integration, see section 3.1,
it is assumed that the interior vertex of Te is mapped to the vertex (−1, 1) in I. The
implementation of this condition only requires a proper local numbering of the vertices of
the element.

Under these assumptions, the FE interpolation base and numerical integration to be
used are proposed next.

3.1 FE polynomial base

The usual nodal interpolation defined by the Lagrange polynomials is considered in Ie,
or equivalently, in Ωe. In order to systematize the computation of the Lagrange polyno-
mials, {Li(ξ)}nnodes

i=1 , for any order and for any distribution of nodes, the implementation
proposed in [13] is adopted. An orthogonal polynomial base {pi}nnodes

i=1 is considered in Ie,
with no dependency on the nodal coordinates {ξi}nnodes

i=1 . The Lagrange polynomial base
is then obtained as

Li =

nnodes∑
j=1

[
V −1

]
ji

pj, (5)

with the Vandermonde matrix Vij := pj(ξi), for i, j = 1, . . . , nnodes.

Remark 4 Note that any polynomial base {pi}, with no dependency on the nodal coor-
dinates, can be considered for the computation of the Lagrange polynomials using (5).
However, an orthogonal polynomial base {pi}nnodes

i=1 , such as the one derived from the well
known Jacoby polynomials [13, 14, 15, 16], is advisable in order to ensure a moderate
condition number for the Vandermonde matrix V . This base also allows an analytical
computation of some inner products.

From an implementation point of view, it is worth noting that all elemental matrices
can be first computed for the orthogonal polynomial base, and then transformed with
the Vandermonde matrix. That is, let M p

e be an elemental matrix computed in terms of
the orthogonal polynomial base, then M e = V −T M p

eV
−1 is the corresponding elemental

matrix for the Lagrange nodal base.
This paper considers equally-spaced distributions of nodes in Ie, see left distribution

in Figure 8. It corresponds to the usual nodal distribution for the straight-sided reference
triangle I. Other nodal distributions can also be used. For instance, the right distribution
in Figure 8 is adapted in order to locate nodes along the NURBS side. This option makes
sense if one wants to set nodal values along the boundary, but it does not represent any
advantage if boundary conditions are imposed in weak form, as usual in Discontinuous
Galerkin formulations. Moreover, in this case nodal coordinates depend on the curved
triangle Ie reducing the computational efficiency of the approach, and leading to a different
Vandermonde matrix for each curved element. The use of a nodal distribution with
no dependency on the curved element Ie, such as the left distribution, is more efficient
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Figure 8: 5th-order nodal distributions in Ie: for equally-spaced nodes (left) and adapted to the NURBS
side (right)

because of the unique definition of the nodal coordinates and the unique computation of
the Vandermonde matrix, with no dependency of the curved element.

It is worth noting that for high-order interpolation (≥ 5-th order) it can be more
convenient to use special distributions of nodes in order to reduce the condition number
of the resulting elemental matrices, see [17, 18] for details.

3.2 Numerical integration

The NEFEM requires the computation of the integral of any function f over an edge
given by a trimmed NURBS Γe = C([λe

1, λ
e
2]), that is

∫

Γe

f d` =

∫ λe
2

λe
1

f(C(λ))|JC(λ)| dλ,

where |JC | denotes the norm of the differential of the NURBS parameterization C. As
usual, a 1D numerical quadrature is used for the numerical computation of the integral

∫

Γe

f d` ≈
n∑

i=1

f(C(λi))|JC(λi)| ωi, (6)

where λi and ωi are the coordinates and weights of the n integration points in [λe
1, λ

e
2].

Recall that the parametrization of a trimmed NURBS, C, is a piecewise rational func-
tion whose definition changes at the breakpoints. Thus, an independent numerical quadra-
ture must be considered for each one of the intervals between breakpoints in order to
take into account the discontinuous nature of the parametrization. Numerical experi-
ments reveal that Gauss-Legendre quadratures are a competitive choice in front of other
quadrature rules. Numerical experiments also reveal that more popular composite rules,
such as the trapezoidal and Simpson composite rules are not suitable for the integration
of polynomials along NURBS curves, due to the excessive computational cost.

The NEFEM also requires the computation of integrals over an element Ωe with one
side Γe on the NURBS boundary (see Figure 7), that is

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη (7)

8



R. Sevilla, S. Fernández-Méndez and A. Huerta

where |JΨ| is the determinant of the Jacobian of the linear transformation Ψ, see section
3. The computation of (7) requires the definition of a numerical quadrature for every
curved element Ie. Two strategies has been studied. The first one is based on a trans-
formation from the straight-edged triangle Î given by the vertices {(0, 0), (1, 0), (0, 1)},
where well-known efficient triangle quadratures can be considered. The second one con-
siders a transformation from a rectangle to the curved element Ie. Both transformations
are defined under the assumption in Remark 3.

Comparison between these two strategies reveals that the best alternative corresponds
to the definition of a transformation from the rectangle [λe

1, λ
e
2] × [0, 1] to the curved

element Ie, see Figure 9. That is, ϕ = (ϕ1, ϕ2) : [λe
1, λ

e
2]× [0, 1] → Ie, is given by

ϕ1(λ, ζ) := φ1(λ)(1− ζ)− ζ, ϕ2(λ, ζ) := φ2(λ)(1− ζ) + ζ (8)

see Figure 9. Using this transformation, integral (7) is computed as

ξ

η

I
e

0

1
1

1
−1
−1

(

[
e

1 2]
)

,
e

e

1
e

2λ λ λ

λλφ

ϕ

ζ

Figure 9: Transformation from [ue
1, u

e
2]× [−1, 1] to Ie and Ωe

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη ' |JΨ|
nu∑
i=1

nv∑
j=1

f(ξij)|Jϕ(λi, ζj)| ωi$j (9)

where ξij = ϕ(λi, ζj), {λi, ωi} and {ζi, $i} are the 1D quadrature points and weights for
the intervals [λe

1, λ
e
2] and [0, 1] respectively, and |Jϕ| is the determinant of the Jacobian of

the transformation ϕ.

Remark 5 When the transformation from the rectangle ϕ is considered, the integrals
involved in the elemental matrices, for a NEFEM solution with interpolation of degree p,
can be exactly computed for one of the parameters, ζ, using a Gauss-Legendre quadrature
with p + 1 integration points. The numerical integration for the other direction, given by
the NURBS parameter λ, presents the same difficulty as the integration over a NURBS
curve. Moreover, if the geometry is described with a q-th degree B-spline, the elemental
matrices can be exactly computed with Gauss-Legendre quadratures with p + 1 integration
points for the ζ parameter, and q(p + 1) integration points for the NURBS parameter λ.
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In the standard FE framework, it is usually preferable to implement a numerical
quadrature specifically designed for triangles, see [19]. However, this is not the case
for the numerical integration in the NEFEM, where the transformation from the rectan-
gle (8) turns out to be very efficient. For example, Figure 10 shows the integration points,
for the computation of the integral

∫
Ωe

x10 dΩ with an error of about 0.5%, using the
transformation depicted in Figure 9 (left with 30 integration points) and using a classical
triangle quadrature (right with 54 integration points).

Figure 10: Two numerical quadratures in a curved element

4 NUMERICAL EXAMPLE

Euler’s equations describes three important conservation laws: (1) conservation of
mass, (2) conservation of the momentum, and (3) conservation of total energy. The 2D
Euler equations of an inviscid compressible fluid in the absence of external forces, can be
written in dimensionless conservative form as

∂U

∂t
+

∂F k(U )

∂xk

= 0 in Ω, (10)

with

U =




ρ
ρv1

ρv2

ρE


 , F 1 =




ρv1

ρv2
1 + p

ρv1v2

(ρE + p)v1


 , F 2 =




ρv2

ρv1v2

ρv2
2 + p

(ρE + p)v2


 ,

where ρ is the density, v = (v1, v2) the velocity, E the total energy per unit mass and p
is the pressure. This set of nonlinear hyperbolic equations is completed with an equation
of state. For a perfect gas, the equation of state is

p = (γ − 1)ρ
(
E − 1

2
‖v‖2

)
,

where γ is the polytropic gas constant. The speed of sound is also common in this
formulation. It enters in the definition of the Mach number

M =
‖v‖
c

,
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and it is given by

c =

√
γp

ρ
,

see [20, 21] for a detailed presentation.

4.1 Subsonic flow around a circle

The numerical test considered is the subsonic flow around a circle at Mach number
M∞ = 0.3. Using a DG formulation in [3, 4, 7, 8] it is shown that it is not possible to
converge to the steady state solution using linear isoparametric finite elements. Figure 11
show that using the NEFEM it is possible to converge to the steady state solution using
linear elements, while the non-physical entropy production behind the wall causes the no
convergence of the DG solution.

Figure 11: Computational mesh (left), DG solution (center) and NEFEM solution (right) with p = 1

Even if the mesh is refined, DG method doesn’t achieve the steady state while NEFEM
converges to a symmetric solution. NEFEM solution is represented in figure 12.

In the numerical solution of nonlinear hyperbolic problems, such as the Euler equations,
it is very usual to work with a nodal interpolation of the fluxes. This options leads to
a more efficient computational algorithm but it can be the cause of an instability in
the presence of stagnation points, see [22] for more details. To avoid this problem it is
necessary to use the so called full quadrature version of the DG method.

5 Concluding remarks

In this paper an improvement of the classical finite element method has been proposed
for a standard continuous formulation and also for a Discontinuous Galerkin formulation.
It considers the exact geometric model by means of the CAD description of the boundary
of the domain using Non-Uniform Rational B-Splines. Then, for elements intersecting
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Figure 12: Computational mesh and NEFEM solution with p = 1

the boundary a specifically designed polynomial interpolation and numerical integration
is proposed.

Preliminar results show the possibilities of the NEFEM approach using low order in-
terpolations. More precisely, numerical examples reveal that using NEFEM the steady
state solution of the subsonic flow past a circle problem can be achieved using linear
interpolation.

Future work will be focused in the implementation of the full quadrature version of the
DG method and the NEFEM solution of the Euler equations using high order interpola-
tions.
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[12] F. Cirak, M. Ortiz, P. Schröder, Subdivision surfaces: A new paradigm for thin-shell
finite-element analysis, Int. J. Numer. Meth. Engrg. 47 (12) (2000) 2039–2072.

[13] J. S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids.
I. Time-domain solution of maxwell’s equations, J. Comput. Phys. 181 (1) (2002)
186–221.

[14] G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element methods for CFD, Numerical
Mathematics and Scientific computation, Oxford University Press, 1999.
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