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1 Introduction
Recently, wide-angle seismic techniques are getting popular for 
ocean subsoil research. For these studies, an array of sensors is de-
ployed at the bottom of the sea to record the reaction of the subsoil 
to a set of airguns that shoot nearby the surface. These shots are regu-
lar enough to detect refl ected signals through their coherent appear-
ance. In order to take advantage of these similarities, the response of 
each shot is aligned side by side according to their shot time, making 
a time-distance image called record section (RS).

On these plots, high energy waves usually mask in the time-distance 
domain weak signals that carry valuable information on the fi ne 
structure of the Earth. To analyze these signals in detail, we need to 
use other attributes that allow us to distinguish them.

The frequency-wavenumber (f–k) fi lter, τ–p fi lter and hyperbolic Ra-
don are common tools to distinguish seismic phases through their 
apparent velocity [1]. f–k provides an extremely good selectivity but, 
because of being based on the 2-D Fourier transform, it completely 
loses any time-space resolution. The others use a Radon transform, 
which cannot adapt to variable trajectories.

To solve the limitations of the Radon and f–k approaches, we intro-
duce a new tool that allows to fi lter a RS according to the slowness 
(inverse of velocity), while adapts to the specifi c signal trajectories 
and maintains the other signals with minimal distortion [2].

2 Slowness fi lter
In a RS, the slowness of a seismic phase is the gradient along the trav-
el-time trajectory of this phase. Because of its slow variation, it is pos-
sible to approximate locally the trajectory of any phase by a straight 
line or beam, and to identify its gradient with its slope. Moreover, as 
lateral coherency is high along a wave front and low in other direc-
tions, we can distinguish which phases contribute to each sample.
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 Figure 1: Decomposition of one sample into three slowness com-
ponents.

For continuous functions, the projection along one beam is done 
through a line integral, solid lines in Figure 1. For discrete functions, 
this integral turns into a sum. But as the samples along beams are 
usually not available, we have to interpolate them. For simplicity, we 
only estimate the samples at the intersection points between beams 
and traces, circles on Figure 1.

Our fi lter is divided in 2 steps: fi rst, the RS is decomposed into a set 
of diff erent RSs, one for each slowness step (see 2.1), and then, we 
apply a 3-D fi lter and a back transform to build the fi ltered RS. For the 
second step, two opposite strategies can be followed: either we can 
build the fi ltered RS from the desired components, or we can keep 
the undesired components to estimate the signals to be removed 

and substract them from the original RS. Both strategies require an 
inversion of a linear system of equations. This kind of operations can 
be expensive and very unstable if performed directly. But, as locally 
the energy of a seismic phase is mainly confi ned into a narrow slow-
ness range, the undesired phase can be approximated by the sum of 
a small set of slownesses. Hence, this operation becomes trivial.

2.1 Instantaneous slowness estimation
The aim is to estimate all possible projections   along a set of parallel 
beams with slope s that crosses every sample at trace m. For any ele-
ment of this projection  , a sum of the values at points where beams 
and traces intersect must be determined. For the example on Figure 
1, the estimation at trace   of the element n of a projection with slope 
s is:

     (1)

where   is the distance between the interpolated point and the near-
est previous sample, and   is an interpolated version of  . It is suffi  -
ciently accurate to use a polynomial interpolation [3] of degree   with 
the nearest samples of the same trace. The decomposition of   into 
three slope components   using three trace long windows   can be 
summarized in vectorial notation as:

     (2)

In (2),   is an M square Toeplitz matrix with no more than P+1 non-
zero diagonals. When no interpolation is required, these matrices 
have only a single diagonal equal to one, so at trace   and at slope  ,   is 
an identity matrix I. This system can be generalized for SL projections 
and windows of M traces as:
   

     (3)

         where                           and M is odd.

3 Results
In the following we apply the slowness fi lter to attenuate one well-
defi ned interferent seismic phase. For sake of simplicity, a rough tra-
jectory and domain of the interference signal has been specifi ed to 
estimate its slowness and its time-space region of infl uence. 
The RS shown in Figure 2 is composed of two waves with a hyperbolic 
trajectory and a random noise with the same amplitude spectrum. 
It should be noted that at the beginning, both traces have the same 
slope.

In this test, we want to remove the second hyperbola having the 
minimal distortion on the rest of the RS, and particularly on the fi rst 
hyperbola. We can notice in Figure 2 that the slowness fi lter has re-
moved successfully the undesired phase preserving the desired one. 
These results could never been achieved using a f–k fi lter because of 
the slope variation of this wave and, the lack of time-space resolu-
tion that forces to choose between removing or preserving all equal-
slope signals.
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4 Conclusion
We have presented a new method for adaptively fi ltering RS depend-
ing on the instantaneous slowness of seismic phases. The proposed 
method works effi  ciently even in a non-stationary context, being 
completely adapted to any specifi c signal trajectory and preserv-
ing the other signals with minimal distortion. This makes possible to 
analyze weaker signals and to extract much more information from 
seismic RS.

(a) (b)

Figure 2: Two synthetic seismic phases.  (a) Original RS. (b) Filtered RS with  M =  9
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1. Introduction
A broad range of in situ and remote hyperspectral sensors, covering 
from several hundreds to thousands spectral bands, have been devel-
oped recently for diff erent environmental monitoring applications.  
Several studies using hyperspectral data and derivative spectroscopy 
have been done so as to assess qualitative and quantitative informa-
tion about water components [1]. One of the key aspects to take into 
account is the processing techniques applied to raw spectral data to 
get comparable results between diff erent measurements. 

The commonly derivative spectroscopy used to explore subtle fea-
tures in spectral data is notoriously sensitive to noise [2]. Noise level 
in hyperspectral data is high as their narrow bandwidth can only cap-
ture very little energy that may be overcome by the self-generated 
noise inside the sensors. To remove the noise from hyperspectral data 
smoothing techniques are commonly used [3]. However, for preserv-
ing the properties of the original data, smoothing and derivative 
techniques should be carefully applied to minimize possible numeri-
cal artifacts. There is a trade-off  between noise removal and the ability 
to resolve fi ne spectral details. The main factor controlling the extent 

of smoothing is the size of the fi lter window used for averaging or 
convolution. The greater the size of the fi lter window, the smoother 
the result. The spectral details revealed in the derivative spectra are 
a function of the band separation (BS=Δλ). Features smaller than Δλ 
will be lost and features at the scale of Δλ will be enhanced.

In the present study, a comparison between the spectral data ob-
tained using two hyperspectral sensors with diff erent spectral reso-
lution is exposed. Smoothing and derivative algorithms have been 
applied to both types of spectral data in order to assess qualitative 
information from their spectral features. 

2. Results and Discussion 
Two diff erent hyperspectral sensors have been employed: the Ocean 
Optics USB4000 Spectrometer, that uses the Toshiba TCD1304AP 
3648-element linear CCD-array detector and the MicroParts GmbH 
UV/VIS Microspectrometer, a lower cost and lower energy-consum-
ing device more suitable for being part of a node in a monitoring sen-
sor network [4], that uses the Hamamatsu S8378 256-element linear 
CMOS-array detector.
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