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SYSTEM
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The research will focus on the development of advance monitoriza-
tion technologies oriented to asses / evaluate the ship condition by 
means of IAS data and ship/shore and shore/ship communications.
This monitorizacion will be applied to re-engineering, operation and 
proactive maintenance of the ship.
The tele- monitorization is divided into four main blocks: TLX, TLY,TLZ 
and TLG.

TLX   Telemetric System for ship-shore communication
TLY   Communications server for recording and storing data in a Data              
Base
TLZ   Data analysis for monitorization an predictive maintenance ap-
plications
TLG   Data transmission from the analysis unit to fi nal system users ( 
shipyards, ship- owners, equipment manufacturers, crews, etc..)

g   System Units and Functions
TLX    Is divided into two subsequent blocks. TLXAD and TLCOM

TLXAD:
Gathers digital and analogical data values from diff erent sources on 
board.
Data capture is achieved by connecting to the local net the IAS (Inte-
grated Automatic System)
Compiled data is processed, normalized, prepared in packs, and de-
livered to TLCOM,  for later transmission. 

TLXCOM:
Actives the communication system if it is not in the permanent ac-
tive modality and transmits to TLY the data packages received from 
TLXAD.
The connecting and transmitting frequencies to send the data pack-

ages ashore are independent of those frequencies used by the TLXAD 
to communicate with the ship´s IAS, in sampling and data capture 
operations. 
The communication with the server TLXSRV is trustworthy with ac-
knowledgment of the data transferred.  TLCOM deals with re-tries in 
case of errors or impossibility of communication.
TLXCOM receives , as asynchronous signals  from shore TLXSRV,   re-
ports and  instructions. By these instructions TLX can increase or di-
minish the amount of data to be compiled from the IAS or its resolu-
tion,  and also tune to the connection frequency or alternative routes 
for the transmission of data.

TLY   A shore based TLXY server ( Ingeoman Offi  ce ), which  receives 
data from the diff erent TLXCOM,S records and stores the information 
in a data-base.
Initially, this data-base is used for verifying the system and establish-
ing a prototype fi rst level of  vigilance for the ship subsystems.
TLZ   Establishes de algorithms, correlations and logics to watch the 
functioning state of the ship diff erent subsystems
These algorithms are based on the concepts of statistical distances 
and orthogonal decompositions
The last level of TLZ consists in an expert system which detects anom-
alies   predicts breakdowns and  makes a diagnosis of the originating 
causes. That is to say, a tool of  Proactive and Predictive Maintenance
TLG   The procedures to transmit the requested analysis data to fi nal 
users have been already developed

g   Ship-Shore Communications
Ship-shore communications are Internet communications of the IP 
type
Connection and Internet access from the ship is achieved by satellite 
communications in order to get the global coverage required to keep 
in contact the ship with the TLXSRV any time, anywhere. 
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1 Introduction
The particular characteristics of seismic wave propogations call for 
the development of special approaches in signal processing. Seismic 
data are recorded from a set of seismometers. They are usually rep-
resented on a so-called record section which takes advantage of the 
lateral coherence between neighbour traces. The x-axis represents 
the distance between the seismometers while the y-axis represents 
the time. One of the most usual techniques to identify and separate 
coherent waves is the f-k fi lter, [3]. It consists of a 2D Fourier Trans-
form (FT) followed by some selection fi lter. The 2D FT allows to pass 
from the time-distance domain to the frequency-wavenumber one. 
It is particularly adapted for signals which propagate at constant ve-
locity. However, the characteristics of seismic signals often vary with 

time and make impossible an effi  cient use of the f-k fi lter. On the 
other hand, if two signals arrive at a diff erent time but at the same 
frequency and velocity, they won’t be distinguished by this method. 
Thinking of the time-varying specifi city of geophysic signals, we pro-
pose to adapt the f-k fi lter using a time-frequency spectral localisa-
tion method, called the S-transform.

2 The S-transform
The S-transform (ST) bridges the gap between the short time FT 
(STFT) and the wavelet transform. Like the STFT, the ST uses a win-
dow to localise the complex Fourier sinusoid but, unlike the STFT, the 
width and height of the window scale with frequency in analogy with 
wavelets. The ST of a time series  is defi ned as [2]: 
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 where the most usual chosen window w is Gaussian:  

 in which f is the frequency, t and   the time variables and k a scaling 
factor which controls the number of oscillations in the window. The 
Gaussian window has a frequency-dependent variance: .

The ST is perfectly invertible [1].

3 Time dependent f-k fi lter
As mentionned in the introduction, the f-k transform (FK) consists of 
a 2D FT. So, if we call h(t,x) the function representing a record section, 
its FK is: H(f,t) = FTx{FTt[h(t,x)]}. Now, to keep the time information of 
the record section, we propose to modify this transform in the fol-
lowing way: 

 
So we pass from a 2D representation to a 3D one and get our time 
dependent f-k fi lter (TFK).

3.1 Application of the TFK
We perform our method in various steps:
1. Apply an f-k transform on the original data. 
2. Select the areas of interest on the FK.
3. Apply a TFK on the original data but only on the frequency and 
wavenumber ranges of interest to simplify the procedure.
4. Compute the 3D fi lter, depending on the areas that should be kept 
or fi ltered.
5. Invert the TFK through an inverse ST and an inverse FT.

3.2 Results
We present two sets of examples. The fi rst one, fi g. 1(a), represents 
two hyperbolae with noise. An f-k fi lter would be unable to fi lter one 
of them as the velocity (slope) is time-varying. Moreover, both hy-
perbolae start with the same slope. Fig. 1(b) represents the positive 
frequency part of the f-k. It can be seen that it is impossible to diff er-
enciate one wave from the other one. Fig. 1(c) is the result

Figure 1: Filtering a hyperbola using a TFK Figure 2: Filtering a straight line using a TFK
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of resting the TFK fi ltered data from the original one. It has been done 
this way to demonstrate that there is no problem of amplitude. 
The second example, fi g. 2(a), contains three waves, two of which 
with the same frequency. As can be seen on fi g. 2(b), the f-k does 
not allow to distinguish between the two waves with the same slope. 
However a TFK is perfectly able to fi lter just one of them, fi g. 2(c). 

4 Conclusion
A time dependent f-k fi lter has been presented. It allows to fi lter seis-
mic waves which are time varying and to distinguish between signals 
of the same frequency but at a diff erent time. Some synthetic exam-
ples have shown the effi  ciency of the method. 

This method should be useful for instance to remove water reverber-
ations from OBS data without removing other seismic signals with 
trajectories which sometimes share the gradients.
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Abstract
This paper addresses the interpolation of sparse irregular data when 
these sparse data belong to diff erent scales. We propose an algo-
rithm to iteratively approximate the intermediate values between ir-
regularly sampled data, when a set of sparse values at coarser scales 
is known. This is possible if there is a characterized model for the 
multiresolution decomposition / reconstruction scheme of the da-
taset. Although the problem is ill-posed, and there are infi nite solu-
tions, this approach gives an easy scheme to interpolate the values 
of a signal using all the information available at diff erent scales. This 
reconstruction method could be used as an extension on any inter-
polation. A simplifi ed one-dimensional case illustrates the explana-
tion; the scheme is based on a fast dyadic wavelet transform and its 
inversion, using a fi lter bank analysis/synthesis implementation for 
the wavelet transforms model. This can be a basis method suitable 
for applied cases where there are sparse measures from diff erent in-
struments that are sensing the same scene simultaneously with sev-
eral resolutions. Extensions of the method to sparse multiresolution 
data with higher dimensions (images or vector fi elds) also off er some 
promising preliminary results.

1. Introduction
In many signal processing applications it is necessary to reconstruct a 
signal from a set of sparse data, [1]-[3] to name a few. Many approach-
es have been used for sparse data interpolation, from the popular 
polynomial methods or splines, to other transform-based approaches 
such as zero padding, wavelet transform methods [4], regularization 
methods like WIPE or CLEAN deconvolution [5]. All these methods 
either make some assumption or put some restrictions on the data. 
This paper addresses the interpolation of multiresolution sparse, 
without any restriction on sparsity distribution of known data, and 
any condition on gap sizes or their distribution. Initially a fi lter model 
for the generation of multiresolution data and their synthesis coun-
terpart is the main requisite, although fi nally this assumption can be 
partially relaxed, needing only the low pass component.  To fi x intui-
tively one possible application of the method we can take a remote 
sensing application in oceanography, and suppose we have a set of 
discrete measures (i.e. sea surface temperature, SST) obtained simul-
taneously by processing the obtained data from several instruments 
on diff erent platforms (i.e. airborne, orbital). These datasets will have 
diff erent spatial resolutions, and the occlusions (i.e. due to atmos-
pheric factors, i.e clouds) will produce gaps between the discrete val-
ues. We would like a method to calculate, using these heterogeneous 

and discrete measures, the best match to the “real” SST map at the 
highest resolution that can be achieved by these sensors. Our ap-
proach takes advantage of an initial interpolation and a second step 
that iteratively refi nes the result, minimizing the error at the coarser 
scales. The method is an extension of the wavelet based reconstruc-
tion of nonuniformely sampled data in [6] to a multiresolution sparse 
data set. The zero crossings and the modulus maxima values of the 
wavelet transforms to reconstruct signals [7], or the edges on images, 
are also necessary references to our approach. The main diff erence 
is that, in our case, sparse data are in the ‘data’ domain at diff erent 
resolutions, the low-pass components of the wavelet decomposition, 
opposed to [7], where sparse data are in the ‘transform’ domain. This 
diff erence makes our approach a priori more suitable for the cases 
when we have measures from instruments working simultaneously 
at diff erent resolutions. 

2. Results and Discussion 
We represent our initial multiresolution sparse data, derived from a 
discrete vector in Fig. 1, where sparse multiresolution values are cir-
cles, and with less than 10% of the data at each dyadic wavelet de-
composition level. 
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