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Host immune activation forms a vital line of defence against bacterial pathogenicity.
However, just as hosts have evolved immune responses, bacteria have developed
means to escape, hijack and subvert these responses to promote survival. In recent
years, a highly conserved group of signalling cascades within the host, collectively
termed the integrated stress response (ISR), have become increasingly implicated in
immune activation during bacterial infection. Activation of the ISR leads to a complex
web of cellular reprogramming, which ultimately results in the paradoxical outcomes
of either cellular homeostasis or cell death. Therefore, any pathogen with means to
manipulate this pathway could induce a range of cellular outcomes and benefit from
favourable conditions for long-term survival and replication. This review aims to outline
what is currently known about bacterial manipulation of the ISR and present key
hypotheses highlighting areas for future research.
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INTRODUCTION

The relationship between microbes and hosts has shaped almost every aspect of microbial and
mammalian evolution. This association is formed through an extensive series of interactions, some
of which are beneficial, whilst others pose pathogenic threat. The immune system, consisting of
innate and adaptive or acquired immunity, is a highly complex network enabling the human body
to detect and determine the fate of foreign entities (Nicholson, 2016). During the first line of
defence against pathogens, the host cell utilises the innate immune system to activate extensive
signalling cascades in a concerted effort to defend against pathogenicity. These include activation
of host pattern recognition receptors such as toll-like receptors (TLRs; Wright et al., 1989; Hoshino
et al., 1999; Kumar et al., 2009) and Nod-like receptors (Opitz et al., 2005; Hasegawa et al., 2006),
which detect structural bacterial features, termed pathogen-associated molecular patterns (Lai and
Gallo, 2008; Davis et al., 2011). The resulting induction of pro-inflammatory cytokines enables host
cells to initiate both intracellular and extracellular mechanisms to protect the cell and surrounding
tissues (Lai and Gallo, 2008; Davis et al., 2011). These result in inflammation and the subsequent
activation of macrophage- and neutrophil-mediated bacterial clearance at the infection site (Zhou
et al., 2019). In some cases, autophagic responses are also triggered to remove foreign bacteria,
such as Salmonella (Wild et al., 2011), with the host cells internalising the bacterium into double-
membraned vesicles, termed autophagosomes, which are subsequently targetted for lysosomal
degradation, thereby removing the foreign bacterium (Bah and Vergne, 2017).
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To evade host-mediated innate immune responses, bacterial
pathogens are also constantly evolving and developing
mechanisms to ensure persistence within host cells and
gain evolutionary success. Such mechanisms include antigenic
variation (Saunders, 1990), inhibition of the humoral immune
response by recruitment of complement inhibitors (Meri et al.,
2013), direct interaction with complement components (Amdahl
et al., 2013), evasion of autophagic responses (Ogawa et al.,
2005), and residing in immune-privileged sites (Young et al.,
2002). These strategies ultimately allow the bacteria to avoid
detection and induce conditions favourable for bacterial survival
and successful proliferation (Young et al., 2002).

In recent years, a group of highly conserved cellular
pathways, collectively termed the integrated stress response
(ISR), has gained increased interest in relation to host–pathogen
interactions (Pakos-Zebrucka et al., 2016). The ISR, which can
respond to a variety of stimuli, has been implicated in controlling
the tight balance between cellular survival and death during
adverse conditions, with a body of evidence implicating cross-
talk between the ISR and viruses, forming a key mechanism of
viral pathogenesis (Rabouw et al., 2020). The aim of this review
is to explore to what extent bacteria have exploited these stress
response pathways to overcome cell defences. Given that the ISR
functions as a master regulator of cellular fate, understanding to
what end bacteria can manipulate these pathways will allow for
a better understanding of their disease pathology. Furthermore,
as antibiotic resistance is on the increase, a better understanding
of these host–microbe interactions may help identify novel
candidate therapeutic targets.

THE INTEGRATED STRESS RESPONSE

Within eukaryotic cells, the ISR is a mechanism that, in response
to changes in either intracellular or extracellular conditions,
has the capability of switching between cellular survival or
inducing cell death by triggering a range of signalling cascades
(reviewed by Pakos-Zebrucka et al., 2016). Stimuli can include
both physiological and pathological changes and once triggered
results in the reduction of global protein synthesis, allowing
the cell to focus energy into overcoming stress (Brostrom and
Brostrom, 1997) mediated via the phosphorylation of eukaryotic
translation initiation factor 2 alpha (eIF2α; Siekierka et al., 1982;
Donnelly et al., 2013; Figures 1A–C). However, during ISR
activation, there is also increased translation of a selection of
stress response mRNAs via non-canonical translation (Ryoo and
Vasudevan, 2017). This includes mRNAs coding for transcription
factors, such as activating transcription factor 4 (ATF4), C/EBP
homologous protein (CHOP), and growth arrest and DNA
damage-inducible protein (GADD34), which act as effectors
of the ISR (Lee et al., 2009; Palam et al., 2011; Hinnebusch
and Lorsch, 2012) specifically upregulating the expression of
genes involved in cellular reprogramming under stress conditions
(Karpinski et al., 1992; Harding et al., 2003; B’chir et al., 2013;
Figures 1D,E).

Of the ISR effectors, ATF4, a basic leucine zipper
transcription factor, is the best studied (Karpinski et al., 1992;

Vallejo et al., 1993; Ameri and Harris, 2008). Once activated,
ATF4 regulates the expression of genes involved in stress
responses, amino acid (AA) synthesis, metastasis, angiogenesis
and differentiation, allowing for a stress-specific cellular response
(Ameri and Harris, 2008). During hypoxia, endoplasmic
reticulum (ER) stress, and AA starvation, ATF4 also upregulates
transcripts involved in autophagy (Rzymski et al., 2010; B’chir
et al., 2013; Deegan et al., 2015). One mechanism by which this
is achieved is the inhibition of mammalian target of rapamycin
(mTOR) complex 1 (mTORC1) via translational upregulation of
regulated in development and DNA-damage response 1, which
functions to activate autophagic responses (Whitney et al., 2009;
Kroemer et al., 2010; Dennis et al., 2013; Figures 1D,F).

Through the action of ATF4, the ISR can induce cell
death via upregulation of downstream targets including the
transcription factors CHOP and ATF3 (Puthalakath et al., 2007).
One mechanism for this function is via CHOP increasing the
expression of additional pro-apoptotic factors from the Bcl-2
homology 3-only group of the Bcl-2 family (Puthalakath et al.,
2007; Galehdar et al., 2010). It has also been suggested that
ATF4 and CHOP may interact directly to form heterodimers
to heighten the expression of pro-apoptotic genes, such as Bim
(Teske et al., 2013).

However, the ISR can also induce cellular survival and
overcome the stress. In this case, upon cessation of stress,
GADD34 activates protein phosphatase 1 (PP1), which
dephosphorylates eIF2α (Connor et al., 2001; Novoa et al.,
2001), thus terminating the ISR and returning the cell to
homeostatic translation (Figure 1G; Novoa et al., 2001, 2003).
As such, the ISR can induce the directly opposing outcomes of
cellular survival or death.

Whilst the ISR can be initiated by multiple stimuli (e.g. AA
starvation, ER stress, viral infection, and heme deprivation), the
point of convergence of this response hinges upon the abrogation
of canonical translation initiation via the phosphorylation of
eIF2α at serine 51 (Siekierka et al., 1982; Donnelly et al.,
2013; Figure 1). During homeostatic translation initiation, eIF2
in its active-GTP bound form associates with the initiator
methionyl tRNA (tRNAi

Met) to form a ternary complex. Upon
AUG recognition, the tRNAi

Met is released, and eIF2-GTP is
hydrolysed to eIF2-GDP (Hinnebusch and Lorsch, 2012). To
enable subsequent rounds of translation, eIF2-GTP is regenerated
by the guanine nucleotide exchange factor (GEF) eIF2B (Price
and Proud, 1994; Jennings et al., 2013). The activation of the ISR
and the subsequent phosphorylation of eIF2α at serine 51 block
eIF2B GEF activity and result in a deficit of cellular eIF2-GTP and
subsequently the ternary complex (Kenner et al., 2019), leading
to the shutdown of most mRNA transcripts (Figures 1B,C).
Some of these stalled complexes of translational machinery and
transcripts consisting of both proteins and RNAs are sequestered
into dynamic, phase dense, cytoplasmic foci termed stress
granules (Nover et al., 1989; Anderson and Kedersha, 2002).
Stress granules can form within minutes and dissolve at a similar
pace upon stress cessation (Kedersha et al., 2000). Due to their
dynamic nature, they require ongoing retrograde transport of
stalled translational machinery along functioning microtubules
(Loschi et al., 2009). Functionally, stress granules play a key role
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FIGURE 1 | The integrated stress response (ISR). (A) A range of cellular stress stimuli activate one of four stress response kinases, general control non-depressible 2
(GCN2), protein kinase R-like endoplasmic reticulum (ER) kinase (PERK), protein kinase R (PKR), and heme-regulated inhibitor HRI kinases, which (B) phosphorylate
eukaryotic initiation factor 2 alpha (eIF2α). (C) This results in abrogation of canonical translation initiation, (D) which selectively upregulates the translation of ISR
effector mRNAs, such as activating transcription factor 4 (ATF4). (E) These effectors bind to and target genes involved in cellular reprogramming for expression.
(F) GCN2 and ATF4 also both induce autophagy via inhibition of mammalian target of rapamycin complex 1 (mTORC1). (G) If stress is overcome, the
stress-inducible phosphatase growth arrest and DNA damage-inducible protein (GADD34) dephosphorylates eIF2α, returning homeostatic translation initiation and
terminating the ISR.

in allowing molecules to be sorted for storage, degradation or
for re-initiation of translation, thereby allowing for rapid sorting
of transcripts once homeostasis is returned (Nover et al., 1989;
Anderson and Kedersha, 2002).

To enact the core function of the ISR, eIF2α phosphorylation
is mediated by a family of four serine/threonine stress
response kinases (Wek et al., 2006). Whilst all four kinases
share significant sequence similarity in their kinase domain

(Donnelly et al., 2013), each contains a unique regulatory
domain, allowing for differential regulation via distinct stressors
(Meurs et al., 1990; Chen et al., 1991; Berlanga et al., 1998; Shi
et al., 1998; Dong et al., 2000; Harding et al., 2000; Rafie-Kolpin
et al., 2000). Protein kinase double-stranded RNA-dependent
(PKR) also known as EIF2AK2 classically responds to double-
stranded RNA generated during viral infections (Clemens and
Elia, 1997). PRK has also been found to respond to oxidative
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and ER stress as well as cytokine signalling and reactive oxygen
species (ROS; Cheshire et al., 1999; Ito et al., 1999; Ruvolo et al.,
2001; Onuki et al., 2004; Nakamura et al., 2010; Anda et al.,
2017). The protein kinase R-like ER kinase (PERK, EIF2AK3)
forms one arm of a larger three-armed response to misfolded
proteins in the ER, collectively termed the unfolded protein
response (UPR; Walter and Ron, 2011). It is typically activated
by ER stress, brought on by the accumulation of misfolded
proteins in the ER lumen (Harding et al., 2000; Walter and Ron,
2011) and by changes to ATP and Ca2+ in the ER independently
of misfolded proteins (Sanderson et al., 2010). PERK can also
be activated by oxidative stress and hypoxia (Koumenis et al.,
2002; Harding et al., 2003). General control non-depressible
2 (GCN2, EIF2AK4), the most highly conserved eIF2α kinase
(Yang et al., 2000; Donnelly et al., 2013), is activated primarily
by AA starvation (Wek et al., 1995) but can also been activated
by ROS, viral infection and UV radiation (Berlanga et al., 2006;
Grallert and Boye, 2007; Pyo et al., 2008). Heme-regulated
inhibitor (HRI; EIF2AK1), a kinase mainly associated with
protection against toxic globin aggregates in erythroid cells, is
involved in protection against ROS induced by sodium arsenite
as well as proteasome inhibition (Han et al., 2001; Lu et al., 2001;
McEwen et al., 2005; Chen, 2007; Yerlikaya and DoKudur, 2008).
Interestingly, to date, bacterial pathogens have been shown to
activate all kinases with the exception of the viral specific kinase,
PKR (Tattoli et al., 2012; Tsutsuki et al., 2016; Abdel-Nour et al.,
2019).

BACTERIAL MANIPULATION OF THE
INTEGRATED STRESS RESPONSE

In recent years, it has become apparent that the ISR forms an
integral part of the host innate immune response to pathogens
(reviewed by Rodrigues et al., 2018). This is supported by studies
showing that pathogens can induce eIF2α phosphorylation via
PERK, GCN2 and HRI (Tattoli et al., 2012; Tsutsuki et al.,
2016; Abdel-Nour et al., 2019). Given that the ISR plays a
crucial role in controlling cellular fate during stress (Costa-
Mattioli and Walter, 2020), pathogens with means to dampen
or hijack the ISR pathway are likely able to influence cellular
signalling and ultimately benefit from long-term survival and
promote persistence of infection. Indeed, it is well-documented
that viruses manipulate specific elements of the ISR during
infection. Hepatitis C virus, Japanese encephalitis virus and
human cytomegalovirus directly inhibit the viral specific eIF2α

kinase PKR (Toroney et al., 2010; Tu et al., 2012; Ziehr
et al., 2016), and Kaposi’s sarcoma-associated virus indirectly
inhibits PKR via inhibition of its activator PACT (Sharma
et al., 2017). Another point of ISR modulation displayed
by viruses is to dampen eIF2α phosphorylation. Junin virus
directly inhibits eIF2α (Linero et al., 2011), and hepatitis C
virus activates GADD34 to dephosphorylate eIF2α during stress
(Ruggieri et al., 2012).

However, recent evidence suggests that some bacterial species
might also be manipulating the host ISR, inducing a variety
of cellular outcomes. This review will focus on how five

bacterial model organisms, Shiga toxin-producing Escherichia
coli, Shigella flexneri, Salmonella enterica serovar Typhimurium,
Pseudomonas aeruginosa, and Porphyromonas gingivalis can
manipulate specific components of the ISR to gain control over
cellular fate and immune signalling, creating an environment
favouring bacterial viability, replication, and infection.

Shiga Toxin-Producing Escherichia coli
Shiga toxin-producing E. coli O157:H7 (STEC) is a widespread
pathogen presenting severe risk to human health, causing
haemorrhagic colitis and haemolytic uremic syndrome (Riley
et al., 1983; Ko et al., 2016). Annually, the prevalence of acute
STEC infection is thought to be ∼2.8 million cases worldwide,
with infection progressing to HUS in 3,890 cases and resulting in
death in 230 cases (Majowicz et al., 2014).

Virulent strains of STEC have been shown to target the ISR
to induce host cell death mediated via a secreted virulence
factor termed subtilase cytotoxin (SubAB; Tsutsuki et al., 2016;
Figure 2A). SubAB is a secreted toxin consisting of two subunits;
the B subunit binds the host extracellular toxin receptor and
facilitates toxin internalisation, whereas the A subunit is a serine
protease, which, in conjunction with the B subunit, facilitates
the intracellular virulent effects of the pathogen (Morinaga
et al., 2007). The main target of SubAB is the cleavage of
the PERK chaperone binding immunoglobulin protein (BiP;
Figure 2B), resulting in the dimerisation and activation of
PERK, inducing eIF2α phosphorylation (Tsutsuki et al., 2016;
Figure 2C). ISR activation triggered in this manner causes
stress granule formation, which is dependent upon death-
associated protein 1 activation (Tsutsuki et al., 2016). Inhibition
of protein kinase C δ (PKCδ) and phosphoinositide-dependent
kinase 1 (PDK1) are implicated in the formation of these stress
granules, as chemical inhibition of both also heightens stress
granule formation in response to SubAB (Tsutsuki et al., 2016).
Furthermore, death-associated protein 1 knockdown increased
basal levels of phospho-PDK1(S196), thereby inhibiting stress
granule formation, further implicating PKD1 inhibition in
formation of stress granules in response to SubAB (Tsutsuki
et al., 2016; Figure 2D). Interestingly, in rat intestinal epithelioid
cells, PDK1 has been shown to inhibit cell death in response
to H2O2 (Song et al., 2009). Therefore, the inhibition of PDK1
coupled with prolonged PERK activation (Lin et al., 2009),
which is known to promote apoptosis, may push the host cell
towards death (Figure 2E; Lin et al., 2009; Tsutsuki et al.,
2016). In contrast, in human lung cancer cells, PKCδ activation
induces cell death via the CHOP-ATF3 arm of the ISR (Xu
et al., 2012). Hence, the exact role PKCδ inhibition by SubAB
in cell death requires further attention. Although driving the
host cell towards death may seem counterproductive for bacterial
survival, it is thought that Shiga-toxic E. coli displays altruism
(Loś et al., 2012); in this context, ISR-mediated destruction of
host cell and internalised bacteria could provide nutrients to the
wider STEC community.

Shigella flexneri
Shigella is a genus of gram-negative, facultative anaerobic
bacteria that primarily infect the gastrointestinal tract, causing
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FIGURE 2 | Shiga toxin-producing Escherichia coli (STEC). (A) During infection, STEC secretes subtilase cytotoxin (subAB), (B) which cleaves protein kinase R-like
endoplasmic reticulum (ER) kinases (PERKs) chaperone binding immunoglobulin protein (BiP), and (C) leading to the activation of PERK and subsequent
phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). (D) This results in the formation of stress granules in a manner dependent on death-associated protein
1 (DAP1) activation of phosphoinositide-dependent kinase 1 (PDK1) and protein kinase C δ (PKCδ), (E) pushing the cell towards death.

acute shigellosis (Fernandez and Sansonetti, 2003). Whilst
closely related to E. coli, Shigella possesses unique methods of
pathogenicity (Ud-Din and Wahid, 2014). Diarrhoea is an early
symptom of infection as the bacteria moves through the small
intestine, but the primary target of Shigella is the invasion of
colonic epithelial cells from the basolateral surface (Phalipon and
Sansonetti, 2007). Once internalised, the bacteria replicate and
spread from cell to cell. The infection also causes inflammatory
colitis via secreted toxins (Eashida et al., 2015). The mechanism of

Shigella invasion has been reviewed elsewhere (Carayol and Van
Nhieu, 2013; Liu et al., 2019).

Infection with Group B serogroup S. flexneri has been shown
to robustly induce the ISR, resulting in the activation of two eIF2α

kinases, GCN2, and HRI (Tattoli et al., 2012; Abdel-Nour et al.,
2019; Figure 3). During the initial stage of infection, S. flexneri
induces AA starvation through membrane damage, which results
in the activation of GCN2 (Tattoli et al., 2012; Figure 3A).
In its active form, GCN2 inhibits mTORC1 (Figure 3F), as
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demonstrated via its dispersal from LAMP2, and increases the
transcription of the AA stress-related gene asparagine synthetase,
a response that increases for up to 4 h post-infection (Tattoli
et al., 2012; Abdel-Nour et al., 2019). However, S. flexneri is able
to activate mTORC1 via direct delivery of its OspB effector into
host’s cellular cytoplasm using the S. flexneri Type III secretion
system (T3SS), which interacts with the IQ motif of the GTPase-
activating protein 1 (Lu et al., 2015), an upstream regulator
of mTORC1 (Tekletsadik et al., 2012; Figure 3I), ultimately
resulting in increased host cell proliferation around the infection
foci during the later stages of early infection. This increased
cellular proliferation reduces S. flexneri spread but is thought to
provide a preferential intracellular niche acting as a protective
measure (Lu et al., 2015).

In addition, like STEC infection, Shigella infections also
result in the aggregation of stalled messenger ribonucleoproteins
(mRNPs) into stress granules (Tattoli et al., 2012; Vonaesch
et al., 2016; Abdel-Nour et al., 2019; Figure 3E). The activation
of the ISR leads to the upregulation of ATF3, ATF4, and
GADD34 (Abdel-Nour et al., 2019) and consequently the robust
upregulation of the transcription and expression of ISR and
inflammatory-related genes (Tattoli et al., 2012; Abdel-Nour et al.,
2019). Interestingly, in the presence of ISR-inducing exogenous
stresses such as mitochondrial, oxidative and heat shock stress,
an increase in frequency and a decrease in an area of stress
granules formed are observed in S. flexneri-infected cells at
2–3.5 h post-infection (Vonaesch et al., 2016). The composition
of the stress granules is also altered with the selective exclusion
of eIF3B, eIF4G, and eIF4B via a mechanism downstream of
eIF2α (Vonaesch et al., 2016). Since the phenotype observed is
similar to the hindered assembly of stress granules seen following
chemical disruption of the tubulin network with nocodazole
(Fujimura et al., 2009; Kolobova et al., 2009; Vonaesch et al.,
2016) and the movement of eIF3B and eIF4B is controlled by
microtubule assembly (Shanina et al., 2001; Harris et al., 2006;
Figure 3E), this differential stress granule composition may
be dependent upon microtubule dysregulation. Interestingly,
stresses such as selenite and hydrogen peroxide, which bypass
eIF2α phosphorylation instead inhibiting mTORC1 function,
also result in the formation of atypical stress granules lacking
components such as eIF3 (Emara et al., 2012; Fujimura et al.,
2012), thereby also implicating the S. flexneri infection-induced
inhibition of mTORC1 in the differential stress granule formation
(Tattoli et al., 2012; Vonaesch et al., 2016). As the formation
of stress granules during S. flexneri infection has only been
investigated up to 5 h (Abdel-Nour et al., 2019), whether the
formation of stress granules is altered similarly during later-stage
infection when mTORC1 is reactivated remains unknown. If this
does not occur later when mTORC1 is reactivated, this would
aid the hypothesis that modulation is at least partially dependent
on mTORC1 inhibition. Furthermore, whether this modulation
to stress granule formation during infection may provide any
evolutionary benefit to S. flexneri or is simply a downstream effect
of ISR modulation remains unknown.

In addition to ISR activation via membrane damage,
intracellular sensing of bacterial peptidoglycan by the host PRR,
nucleotide-binding oligomerisation domain-containing protein

1 (NOD1), also induces ISR activation and expression of the
pro-inflammatory cytokine nuclear factor kappa-light chain-
enhancer of activated B cells (NF-κB) in an HRI-dependent
manner (Abdel-Nour et al., 2019; Figure 3J). NOD1 activation
results in dissociation of the HRI chaperone, heat shock
protein beta-r 8 (HSPB8), from HRI, consequently activating
HRI (Abdel-Nour et al., 2019; Figure 3K). Activated HRI
induces robust eIF2α phosphorylation (Figure 3C), resulting
in heightened HSPB8 transcription in a manner dependent on
ATF4 and ATF3 signalling (Abdel-Nour et al., 2019; Figure 3L).
This nascent HSPB8 can interact with the previously dissociated
HSPB8 and NOD1 to form a signalosome (Figure 3M) and
during S. flexneri infection causes the upregulation of host
immune inflammatory responses and macrophage activation
through the NF-κB pathway (Abdel-Nour et al., 2019; Figure 3N).
As this pathway is also triggered by misfolded proteins within the
cytosol and is comparable with the UPR in the ER, it was coined
the cytosolic UPR (cUPR; Abdel-Nour et al., 2019).

Shigella flexneri infection results in the induction of the ISR,
which can be viewed as a protective response activating pro-
inflammatory responses via the cUPR (Abdel-Nour et al., 2019)
and autophagy via mTORC1 inhibition (Tattoli et al., 2012),
during early infection. However, Abdel-Nour et al. (2019) found
that the eIF2α S51A mutant, which cannot be phosphorylated,
results in a significantly increased frequency of intracellular
S. flexneri compared with cells with phosphorylated eIF2α

(Abdel-Nour et al., 2019). Taken together, these data indicate
that intracellular S. flexneri replication is heightened during ISR
activation, and it is plausible that the phosphorylation state of
eIF2α may at least partially control bacterial spread and viability.

However, during later-stage infection, S. flexneri-mediated
reactivation of mTORC1 not only increases host cell viability
but also decreases bacterial spread around the infection foci (Lu
et al., 2015). Whilst the impact of mTORC1 reactivation on
bacterial infection has not been investigated, focussing on the ISR
may provide further insights into this mechanism. Furthermore,
infection results in GADD34 expression; however, whether this
occurs during later-stage infection, when mTORC1 is reactivated,
is as of yet unknown (Abdel-Nour et al., 2019). As GADD34
induces the dephosphorylation of eIF2α via the activation of PP1
(Connor et al., 2001; Novoa et al., 2001), the potential of sustained
GADD34 expression during later stage of S. flexneri infection
(Abdel-Nour et al., 2019) may lead to termination of the ISR,
potentially aiding the cell in returning to homeostatic conditions.

There is also evidence that inhibition of mTORC1 leads to
eIF2α phosphorylation in cancer cell lines (Harvey et al., 2019).
If this also occurs during S. flexneri infection, the reactivation
of mTORC1 may further push the cellular equilibrium of
eIF2α towards the non-phosphorylated form. Therefore, if
dephosphorylation of mTORC1 was coupled with the GADD34
expression, this could act as a two-part shift to favour a
state with minimal eIF2α phosphorylation. Though counter-
intuitive, whilst defective eIF2α signalling favours S. flexneri
invasion (Abdel-Nour et al., 2019), it may lead to increased
host viability, which has been suggested to benefit S. flexneri,
the latter remaining in infected cells for much of its life cycle
(Killackey et al., 2016). Thus, whether mTORC1 reactivation or
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FIGURE 3 | Shigella flexneri. (A) Membrane damage caused during S. flexneri internalisation induces amino acid (AA) starvation, (B) activating general control
non-depressible 2 (GCN2), and (C) subsequently phosphorylation of eIF2α. (D) This results in the inhibition of cap-dependent translation initiation (E) and
consequently the formation of stress granules. (F) GCN2 also inhibits mammalian target of rapamycin complex 1 [mTORC1; (G)], inducing autophagy and (H)
modulating the frequency and composition of stress granules during exogenous stress induction. (I) mTORC1 activity is reactivated during later-stage infection via
S. flexneri’s OspB effector. (J) Concurrently, S. flexneri’s peptidoglycan is detected by nucleotide-binding oligomerisation domain-containing protein 1 (NOD1), (K)
which induces dissociation of the chaperone heat shock protein beta-r 8 (HSPB8) from HRI, causing its activation and subsequent eIF2α phosphorylation. (L) This
results in the activation of activating transcription factor 4 (ATF4), which along with ATF3, upregulated the expression and translation of HSPB8. (M) This nascent
HSPB8 associates with NOD1 (N) leading to the activation of pro-inflammatory responses by nuclear factor kappa-light chain-enhancer of activated B cell (NF-κB)
activation.

persistent GADD34 expression leads to eIF2α dephosphorylation
during infection, and the consequential effects upon host cell
viability and S. flexneri persistence and replication, is an area
requiring further attention. Given that increased host cellular

replication during OspB-mediated mTORC1 reactivation is
thought to provide a preferential niche for S. flexneri survival
(Lu et al., 2015), it is entirely plausible that this potential ISR
termination may feed into this, helping to create an even further
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immune-privileged environment for S. flexneri. Furthermore,
the effect of OspB only occurs later during the infection (Lu
et al., 2015), whereas the initial phenotype of GCN2 activation
and mTOR inhibition require internalisation and the resulting
membrane damage (Tattoli et al., 2012; Abdel-Nour et al.,
2019), which is intriguing as internalisation of OspB only
requires extracellular contact between the bacteria and host cell
(Hueck, 1998). Therefore, elucidation of the interaction between
S. flexneri and these pathways may provide valuable insights into
the pathogenic mechanisms of S. flexneri in chronic infections.

Salmonella enterica
Salmonella enterica serovar Typhimurium is an enteric pathogen
primarily associated with food-borne gastrointestinal disease
(Fabrega and Vila, 2013) and is thought to affect 1.3 billion
people annually, leading to approximately 3 million deaths
globally (Pui et al., 2011). During infection, Salmonella
typhimurium adheres to the host’s intestinal epithelium,
resulting in extensive cytoskeletal rearrangements (Finlay
et al., 1991). These modifications cause membrane ruffles,
which eventually engulf the bacteria in large vesicles known
as Salmonella-containing vesicles, creating an intracellular
compartment in which Salmonella can survive and replicate
(Steele-Mortimer, 2008). Salmonella infection is detected
by host TLRs and NOD proteins, which initiates the
NF-κB signalling cascade and results in cytokine and
chemokine production, leading to an inflammatory state
(Souvannavong et al., 2007; Spiller et al., 2008; Winter et al.,
2009; Keestra et al., 2011).

As with S. flexneri, membrane damage induced by Salmonella
invasion causes intracellular AA starvation with the activation
of ISR through the eIF2α kinases GCN2 (Tattoli et al., 2012;
Figures 4A,B). This AA starvation-induced activation of
GCN2 also initially inhibits the activity of mTORC1, via
the dispersal from LAMP2 and results in the activation of
autophagy (Tattoli et al., 2012; Figures 4C,D). Interestingly,
within 4 h of infection, the raptor/rag/regulator pathways
can reactivate mTORC1, effectively saving Salmonella
from autophagy; however, the mechanism by which this
occurs has yet to be fully determined (Tattoli et al., 2012;
Figure 4E).

In later stages of infection, e.g., 12–24 h post-infection,
Salmonella has also been shown to induce ER stress (Figure 4F),
robustly activating the UPR and leading to the activation of X-box
binding protein 1 and transcription factor 6 (Antoniou et al.,
2018; Figure 4G), which is known to increase lipid biogenesis
and increase ER expansion (Sriburi et al., 2004, 2007; Figure 4H).
During Salmonella-induced ER stress, human leukocyte antigen
(HLA)-B27 becomes misfolded, causing SCV to move away
from host golgi apparatus (Antoniou et al., 2018). This, coupled
with ER expansion, is thought to allow for increased space
for the SCV and is supported by observations that ER stress
induction by thapsigargin and misfolded HLA-B27 increase
intracellular Salmonella viability and replication (Antoniou et al.,
2018; Figure 4I). Thus, Salmonella effectively utilises the ISR and
UPR in two opposing ways, firstly by reversing the autophagic
responses brought on by the ISR during early-stage infection via

mTORC1 reactivation and then inducing ER stress to allow for
preferential replication conditions in later stages of infection.

Pseudomonas aeruginosa
Pseudomonas aeruginosa, a gram-negative, rod-shaped, mono-
flagellated bacterium, is one of the most frequent causative agents
for hospital-acquired infections resulting in loss of life (Buhl et al.,
2015), with immunocompromised patient’s survival rates being
disproportionately lowered (Migiyama et al., 2013). Chronic
lung infections caused by P. aeruginosa are a common cause
of death in patients with cystic fibrosis and chronic obstructive
pulmonary disease, with those affected often experiencing
recurrent infections (Murphy et al., 2008; Yum et al., 2014).

During infection, P. aeruginosa secretes a wide variety
of proteins including the extracellular adhesin CdrA (Borlee
et al., 2010), the diffusible quorum-sensing molecule N-(3-
oxododecanoyl)-homoserine lactone (HSL; Smith et al., 2002),
and virulence factors [e.g., alkaline protease A (ArpA; Vasil and
Ochsner, 1999) and HasAp (Létoffé et al., 1996)], all of which
are known to induce ER stress (Grabiner et al., 2014; van‘t
Wout et al., 2015; Figure 5A). In mouse embryonic fibroblasts
(MEFs), HSL, which has a key role in P. aeruginosa cell-
to-cell communication within the structurally ordered biofilm
(Smith et al., 2002), induces ER stress via the release of
Ca2+ from ER stores (Figure 5B). This causes an imbalance
in ER homeostasis and activates PERK (Figure 5C), which
phosphorylates eIF2α and results in a global shutdown of protein
synthesis (Grabiner et al., 2014; Figures 5D,E). Interestingly,
this translational stalling reduces the expression and secretion of
the pro-inflammatory chemokine keratinocyte chemoattractant
(KC), the mouse equivalent of interleukin 8 (IL-8; Grabiner
et al., 2014; Figure 5F). Thus, HSL may lead to the
suppression of KC secretion through eliciting the host ISR,
aiding P. aeruginosa to evade host inflammatory and antibacterial
responses during the early stages of infection (Grabiner et al.,
2014). This observation contrasts with the robust expression
of IL-8 seen in S. flexneri infection (Abdel-Nour et al., 2019)
and suggests a species-specific response (Abdel-Nour et al.,
2019). However, further studies are required to probe this
and ascertain whether this response is species specific or cell
dependent due to the differential approaches used with one
study using mouse-derived MEFs (Grabiner et al., 2014) and
the other using the human cervical epithelial cell line HeLa
(Abdel-Nour et al., 2019).

Another example of P. aeruginosa-mediated ISR manipulation
is through the secretion of ArpA (Figure 5G), a protease involved
in, amongst other pathways, hosts siderophore-mediated iron
scavenging (Vasil and Ochsner, 1999; Kim et al., 2006; van‘t
Wout et al., 2015). Whereas HSL induces ER stress through
activation of the p53 MAPK pathway, ArpA specifically activates
HRI (Figure 5H), which induces the expression of GADD34
(van‘t Wout et al., 2015; Figure 5I) and is protective against
P. aeruginosa cytotoxicity, allowing for prolonged host cell
survival (van‘t Wout et al., 2015; Figure 5J). The mechanism
by which HRI activation and GADD34 expression increase
host viability is currently unknown, but increased GADD34
expression could lead to increased PP1 activity and consequently
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FIGURE 4 | Salmonella. (A) Membrane damage caused during Salmonella internalisation induces amino acid (AA) starvation, (B) leading to general control
non-depressible 2 (GCN2) activation, and (C) inhibition of mammalian target of rapamycin complex 1 (mTORC1), and (D) ultimately inducing autophagy. (E) During
later-stage infection, Salmonella reactivates mTORC1, thereby inhibiting autophagy. (F) Salmonella also induces endoplasmic reticulum (ER) stress, (G) activating the
unfolded protein response (UPRs) ATF6 and X-box binding protein 1 XBP1 arms, (H) leading to expansion of the ER, and (I) which increases intracellular Salmonella
viability and replication.

dephosphorylation of eIF2α (Connor et al., 2001; Novoa et al.,
2001). This deactivation of the ISR could prove to be a promising
system for P. aeruginosa to push the cell towards survival, thereby
increasing viability. However, given the recent findings of Abdel-
Nour et al. (2019), it is entirely plausible that activation of HRI
by ArpA may activate the cUPR, which has been shown to be
protective against S. flexneri infection. Whether this increased
viability is due to eIF2α dephosphorylation or cUPR activation,

or a combination of both, remains to be elucidated and requires
further attention.

Pseudomonas aeruginosa hereby displays a two-part
manipulation of the host ISR, both dampening inflammatory
responses and increasing host cell viability. These reduced
inflammatory and immune responses may act as the
critical tipping point, leading to the decreased survival of
immunocompromised patients (who already have impaired
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FIGURE 5 | Pseudomonas aeruginosa. (A) The quorum-sensing molecule N-(3-oxododecanoyl)-homoserine lactone (HSL) secreted by P. aeruginosa (B) induces
endoplasmic reticulum (ER) stress, (C) activating protein kinase R-like ER kinases (PERKs), and (D) which leads to eukaryotic initiation factor 2 alpha (eIF2α)
phosphorylation. (E) The consequential translational stalling (F) results in decreased expression of the pro-inflammatory cytokine interleukin 8 (IL-8) production. (G) A
protease, alkaline protease A (ArpA), secreted by P. aeruginosa (H) activates heme-regulated inhibitor (HRI), (I) leading to the specific upregulation of growth arrest
and DNA damage-inducible protein (GADD34), and (J) which increases host cell viability.

immune responses), as it could result in unregulated and
therefore heightened P. aeruginosa growth.

Porphyromonas gingivalis
Porphyromonas gingivalis is a gram-negative, anaerobic
bacterium and the “keystone pathogen” of the chronic oral
inflammatory gum disease, periodontitis (Socransky et al., 1998).

Infection triggers host immune responses resulting in
inflammation of the gingival tissues, which in some cases
progresses to periodontitis, resulting in alveolar bone resorption
and ultimately tooth loss (Pihlstrom et al., 2005). P. gingivalis
is known to modulate several host cell responses including
the inhibition of antimicrobial responses whilst leaving pro-
inflammatory signalling active, thereby providing nutrients from
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inflammatory spoils (Hajishengallis and Lambris, 2012). To
achieve this, P. gingivalis employs a range of virulence factors
including lipopolysaccharides (LPSs), fimbriae and lysine- and
arginine-specific cysteine proteases, termed gingipains (Jia et al.,
2019). Gingipains are cell surface-anchored proteins (Andrian
et al., 2006), which can also be excreted in membrane-bound
vesicles (Grenier et al., 1989) and therefore can account for up to
85% of proteolytic activity around the P. gingivalis infection site
(De Diego et al., 2013).

A recent study using human umbilical vein cells as host cells
suggested that the virulence of P. gingivalis (strain 381) may
involve the UPR and ISR (Hirasawa and Kurita-Ochiai, 2018;
Figure 6). In this study, the authors showed that whilst infection
ultimately resulted in apoptosis after 21-h infection, early-stage
infection (∼8 h) resulted in ER stress characterised by increased
expression of CHOP and BiP at both the transcriptional and
translational levels coupled with increased caspase-12 activity
(Hirasawa and Kurita-Ochiai, 2018; Figures 6A–C). In addition,
enhanced autophagy, characterised by the increased expression
of autophagy markers Beclin-1, microtubule-associated protein
1A/1B-light chain 3, and acidic vesicular organelles (Figure 6D),
was also observed. This response was inhibited by pretreatment
with an ER stress inhibitor salubrinal, an inhibitor of PP1,
that results in blockage of eIF2α dephosphorylation (Boyce
et al., 2005). Furthermore, siRNA knockdown of LC3 resulted
in increased apoptosis, thereby implicating ER stress-induced
autophagy as a protective response against P. gingivalis-induced
apoptosis (Hirasawa and Kurita-Ochiai, 2018). These results
are corroborated by studies in mice where administration of
P. gingivalis induced ER stress with increased expression of both
CHOP and BiP (Yamada et al., 2015).

Interestingly, the lysine-specific gingipain of P. gingivalis
has been shown to degrade mTORC1 and modulate levels of
mTORC1-associated proteins in oral epithelial cells after 4 h
of infection (Stafford et al., 2013; Figures 6E,F). However,
this mTOR degradation requires P. gingivalis internalisation,
indicating that these effects are probably not mediated by
the secretory fraction of gingipains produced by extracellular
P. gingivalis (Stafford et al., 2013). Inactivation of mTOR
is known to induce autophagy (Jung et al., 2010), fitting
with the early stage autophagy seen by Hirasawa and Kurita-
Ochiai (2018; Figure 6G). Furthermore, mTOR inhibition by
rapamycin suppresses tunicamycin-induced ER stress, resulting
in autophagy (Dong et al., 2015). Therefore, gingipain-mediated
degradation of mTOR may help dampen ER stress induced by
P. gingivalis infection, aiding host cell survival in the early stages
of infection by delaying the onset of apoptosis.

DISCUSSION AND FUTURE
PERSPECTIVES

Infection by pathogens triggers concerted whole organism
immune responses by the host, which are often initiated at
the cellular level. In fact, individual host cells can respond
independently to adverse conditions via a variety of intracellular
signalling systems, with the ISR being a key mediator of these

responses and determining cellular fate (Costa-Mattioli and
Walter, 2020). In recent years, it has become apparent that
the ISR may have a wider role in host immune responses
(Cláudio et al., 2013; Pulendran, 2015). Here, we discuss recent
advances in understanding host–microbe interactions, which
demonstrate that bacterial pathogens can interact with the host
ISR during infection, directly manipulating cellular fate and
immune signalling. This demonstrates that a comprehensive
understanding of pathogenic interactions with the ISR is crucial
for the elucidation of microbial disease progression.

Given the paradoxical role of the ISR, any change to a
particular signal can have vastly different outcomes dependent
upon the circumstance. For example, in neuronal cells, inhibition
of PERK is protective during stress induction (Moreno et al.,
2013); conversely in pancreatic cells, it induces type I interferon
activation, proving to be fatal (Yu et al., 2015). These opposing
outcomes of ISR dysregulation are also apparent during bacterial
infection. Where PERK activation by STEC and Porphorymonas
gingivalis infection ultimately leads to cell death (Tsutsuki et al.,
2016; Hirasawa and Kurita-Ochiai, 2018), PERK activation by
P. aeruginosa reduced the secretion of the pro-inflammatory
cytokine KC, the mouse equivalent of IL-8, potentially aiding
immune evasion (Grabiner et al., 2014). Conversely, S. flexneri
infection and activation of both GCN2 and HRI showed the
opposite of this phenotype, leading to robust upregulation of
IL-8 (Abdel-Nour et al., 2019). Although it remains to be
elucidated whether these changes are cell type or infection
specific, these conflicting phenotypes demonstrate the range of
outcomes that bacterial manipulation of the ISR can have on
immune signalling and cellular fate; however, further work is
required to evidence this.

Furthermore, Abdel-Nour et al. (2019) found that inhibition
of eIF2 signalling via the knock-in eIF2α S51A mutant
induced a significant decrease in intracellular S. flexneri,
thereby implicating eIF2α signalling in the control of bacterial
internalisation. These findings corroborate those of Shrestha et al.
(2012), who reported that invasion of the Far East scarlet-like
fever causing pathogen Yersinia pseudotuberculosis resulted in a
25-fold increase in MEFs containing the eIF2α S51A knock-in
compared with wild type. The authors also identified functional
eIF2α signalling as a prerequisite for cytokine expression and
demonstrated that Y. pseudotuberculosis specifically dampens
eIF2 phosphorylation during a range of cellular stresses through
the action of a virulence factor YopJ, which is inserted
directly into host cells via a T3SS. Ultimately, this resulted
in decreased pro-inflammatory cytokine expression (Shrestha
et al., 2012). These findings further demonstrate the potential
for ISR manipulation as an immuno-evasive mechanism of
bacterial pathogens.

Particularly striking is that both S. flexneri and P. aeruginosa
infection result in the activation of HRI, with S. flexneri inducing
HRI activation leading to initiation of immune signalling as
demonstrated by NF-κB activation (Abdel-Nour et al., 2019)
and P. aeruginosa inducing HRI activation leading to increased
host cell viability (van‘t Wout et al., 2015). Interestingly, during
monospecies bacterial infection, HRI activation is required for
Y. pseudotuberculosis and Listeria monocytogenes to achieve their
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FIGURE 6 | Porphyromonas gingivalis. (A) P. gingivalis infection induces endoplasmic reticulum (ER) stress, (B) leading to protein kinase R-like ER kinase (PERK)
activation, and (C) the expression of C/EBP homologous protein (CHOP) and binding immunoglobulin protein (BiP). (D) Concurrently, it also induces to autophagy as
determined by the markers Beclin-1 and 1A/1B-light chain 3 (LC3-II). (E) P. gingivalis secretes a lysine-specific cysteine protease, termed the lysine gingipain, (F)
which degrades mammalian target of rapamycin complex 1 (mTORC1), and (G) leading to the induction of autophagy.

virulence associated intracellular activities, where a lack of HRI
interferes with the pathogens T3SS virulence factors (Shrestha
et al., 2013). In contrast, at an organismal level, HRI-deficient
mice have been shown to be more susceptible to L. monocytogenes
infection and less able to mount a system-level cytokine response
(Bahnan et al., 2018). This suggests potentially different outcomes
depending on whether infection is monospecies or polymicrobial
in nature, and hence, the exact role of HRI needs further

attention. To date, HRI-specific inhibitors have been identified
(Rosen et al., 2009), and PERK inhibitors have already shown
promise in combatting neurodegenerative diseases that impact
upon the ISR (Moreno et al., 2013). Greater understanding of
the exact role of HRI in bacterial infection is therefore an area
that may allow for the targetting of HRI as a novel antimicrobial
therapy using inhibitors or activators in an infection-specific
manner. Findings that internalisation efficiency of Chlamydia
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trachomatis was independent of HRI activity and that it was
increased by loss of PKR (Shrestha et al., 2013) support PKR as
another potential therapeutic target.

During prolonged ER stress, LPS is known to trigger a
TLR-dependent reprogramming of the ISR (Woo et al., 2012).
LPS is detected by TLRs, which triggers a signalling cascade
mediated by the action of its downstream adaptor TRIF and
results in decreased serine phosphorylation of eIF2Bε, thereby
increasing eIF2B GEF activity in a manner independent of eIF2α

phosphorylation (Woo et al., 2012). This increased eIF2B GEF
activity results in suppression of CHOP, increasing cell survival,
and increased translation of the pro-inflammatory cytokine TNF-
α (Woo et al., 2012). Both P. aeruginosa and P. gingivalis induce
the production of host TNF-α dependent on their LPS (Raoust
et al., 2009; Nativel et al., 2017). Therefore, given that both
P. aeruginosa and P. gingivalis infections are long term and
chronic and can induce ER stress and PERK activation, it is
entirely plausible that the TNF-α expression may be at least
partially dependent on the TLR/TRIF eIF2B pathway (Grabiner
et al., 2014; van‘t Wout et al., 2015; Yamada et al., 2015;
Hirasawa and Kurita-Ochiai, 2018). Indeed, P. gingivalis survival
is known to hinge upon increased inflammatory signalling, whilst
dampening host antimicrobial responses, all in a TLR-dependent
manner (Hajishengallis and Lambris, 2012). Here, investigation
into this potential reprogramming of the ISR during infection
may yield crucial information into P. gingivalis virulence and
may point to the potential of therapeutic targeting of eIF2B
activity during chronic infection. Given that Woo et al. (2012)
only investigated the TLR-dependent ISR reprogramming under
ER stress, it is entirely possible that this signalling cascade
may also occur during other stresses; therefore, all of the
bacteria discussed above may induce this response. The limiting
factors would be host cell survival time and cytotoxicity of
infection, as this cascade occurs primarily during long-term stress
(Woo et al., 2012).

This review has highlighted a diverse range of cellular
outcomes during bacterial manipulation of the ISR. It should
be noted that most of the studies to date have investigated the
role of a single species upon a single cell type, whereas most
bacterial infections are polymicrobial (Brogden et al., 2005). As
with host immune responses, pathogenic bacteria are known
to interact with other microbes; indeed, the virulence and
disease severity of both P. gingivalis and Salmonella infection
are thought to be reliant upon their ability to manipulate
the wider bacterial community (reviewed in Hajishengallis
et al., 2012). P. aeruginosa is also known to secrete products,
which have a community wide effect in cystic fibrosis patients,
ultimately shaping microbial community dynamics within
the lung (Reviewed in O’Brien and Fothergill, 2017). Whilst,

pyocyanin, a quorum-sensing molecule secreted by P. aeruginosa
in response to gram-negative cell wall fragments, is thought
to reduce microbial community diversity to select for a more
pathogenic community (Norman et al., 2004; Korgaonkar
and Whiteley, 2011; Korgaonkar et al., 2013), pyocyanin also
functions to generate ROS (Xu et al., 2013), a known inducer
of the ISR. Given that secretion of pyocyanin is governed by
inter-bacterial communication, which is inherently non-linear
(Dietrich et al., 2006), alterations in pyocyanin concentrations
could induce differential ROS production over time. This could
plausibly result in oscillation of host ISR activation, adding
another layer of complexity to the ISR dampening interaction
seen during monospecies P. aeruginosa infection. Furthermore,
Bifidobacterium spp. protects mice from STEC toxicity via
the production of acetate, which inhibits the subAB toxin
produced by STEC (Fukuda et al., 2011, 2012). This lowering
of toxicity may well be due dampening of STEC-mediated ISR
activation in host tissues around the infection sites, especially
as subAB self-internalises (Morinaga et al., 2007), which is
likely be in contact with the extracellular acetate before the
internalisation event. Therefore, given the role of the wider
bacterial community upon virulence, studying the interactions
between polymicrobial communities and the host ISR may lead
to advances in the understanding of host–pathogen interactions,
reflect physiological conditions and act as a platform for
possible therapies.
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