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1. INTRODUCTION

Models describing the dependence of lifetimes distributions on explanatory varia-
bles have been considered. A number of such models was proposed by Andersen,
Borgan, Gill and Keiding (1993), Cox and Oakes (1984), Dabrowska and Doksum
(1988), Droesbeke, Fichet and Tassi (1989), Kalbfleisch and Prentice (1980), Lin and
Ying (1994),(1996), etc. Bagdonavičius and Nikulin (1994)-(1996) proposed a gene-
ral approach, which gives the possibility of formulating a number of new models and
showing where known models fit into the proposed new classes.

Suppose that a time to failureTx(�) is a nonnegative random variable with the
survival functionSx(�)(t) = PfTx(�) > tg which depends on a vector ofstresses

x : [0;+∞)! B� Rm:
The time to failureTx(�) could be called the resource of this item. But the notion

of the resource should not depend onx(�). So we will call the uniform resourceto
the random variableRU = 1�Sx(�)(Tx(�)): It takes values in the interval[0;1) and
does not depend onx(�). Note thatTx(�) = t if and only if RU = 1�Sx(�)(t). So
the number 1�Sx(�)(t) 2 [0;1) is calledthe uniform resource used until the moment t
under the stress x(�). The concrete item which failed at the momentt under the stress
x(�) used 1�Sx(�)(t) of the resource. Instead of the uniform resource one can define
a resource with any probability distribution, so we can consider a whole class of
resources. Really, suppose thatG is some fixed survival function, strictly decreasing
and continuous on the support[a;b], �∞� a< b�∞, G(a) = 1, G(b) = 0. H = G�1.
The functional

f G
x(�)(t) = �H �Sx(�)�(t);

is called theG-transfer functional. The survival function of the random variable
RG = f G

x(�)(Tx(�)) is G and does not depend onx(�). The random variableRG is called

the G-resourceand the numberf G
x(�)(t) is called theG-resource used till the moment

t. Denote byG the family of survival functions, continuous and decreasing on their
supports. Consider the class of transfer functionalsM = f f G; G2Gg: Models will
be formulated in dependence on properties of the transfer functionals. Note that some
assumptions may be satisfied by one transfer functional, but not satisfied by another.
This is the cause of considering thewhole class of resources.

In the case ofG(t) = e�t1[0;∞[(t) the transfer functional has the formf G
x(�)(t) =� lnSx(�)(t) and the rate of resource use is

∂ f G
x(�)(t)
∂t

= αx(�)(t);
whereαx(�)(t) =�S0x(�)(t)=Sx(�)(t) is the hazard rate ofTx(�).
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The additive hazards model (AHM) (see Andersen et al. (1993)) holds onE if
there exist functionsλ0 anda such that for allx(�) 2 E

αx(�)(t) = α0(t)+a[x(t)]:
Now we generalize this model.

Definition. The G-generalized additive model holds on E if there exists a function
a(�) on E and a survival function S0 such that, for all x(�) 2 E, the transfer functional
f G 2 M satisfies the differential equation

∂ f G
x(�)(t)
∂t

= ∂ f G
0 (t)
∂t

+a(x(t))(1)

with the initial conditions fG0 (0) = f G
x(�)(0) = 0.

So the stress influences additively the rate of resource use. Equation (1)implies
that

Sx(�)(t) = Gf f G
0 (t)+Z t

0
a[x(τ)]dτg:

Let us consider some particular models different from AHM.

1. TakingG(t) = expf�expftgg, for t 2 R1, we obtain

∂ f G
x(�)(t)
∂t

= αx(�)(t)
Ax(�)(t) ; ∂ f G

0 (t)
∂t

= α0(t)
A0(t) ;

where

Ax(�)(t) = Z t

0
αx(�)(τ)dτ; A0(t) = Z t

0
α0(τ)dτ

are the cumulated hazards rates. So we have the model:

αx(�)(t)
Ax(�)(t) = α0(t)

A0(t) +a(x(t)):
2. TakingG(t) = 1=(1+ t), for t � 0, we obtain

αx(�)(t)
Sx(�)(t) = α0(t)

S0(t) +a(x(t)):
3. TakingG(t) = 1=(1+et), for t 2R1, we obtain

αx(�)(t)
1�Sx(�)(t) = α0(t)

1�S0(t) +a(x(t)):
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4. Take G(t) = 1�Φ(ln t); t � 0, whereΦ(�) is the normalN(0;1) cumulative
distribution function. In terms of survival functions we obtain the model :

Φ�1(1�Sx(�)(t)) = ln

�Z t

0
a[x(τ)]dτ+exp[Φ�1(1�S0(t))]� :

5. TakingG= S0, we obtain

Sx(�)(t) = S0fZ t

0
σ[x(τ)]dτg;

whereσ[x(t)] = 1+a[x(t)]. It is theaccelerated life model.

Other distributions of the resource can be taken.

So a number of alternatives to the AHM is proposed. For example, if at the
beginning of life data follow well the AHM but later it is not so, themodel of
example2 could be choosed. On the contrary, if at the beginning of life data do not
follow the AHM but at the end of life this model suits well, the modelof example3
could be choosed.

2. ESTIMATION

2.1. Notations

Consider the model (1) with some specifiedG and an unknown baseline survival
functionS0.

The functiona[x(�)] is parametrized as follows:

a[x(t)] = γTx(t);
whereγ = (γ1; :::;γm)T is the vector of unknown regression parameters. So the follo-
wing model is considered: for allx(�) 2 E

Sx(�)(t) = GfH(S0(t))+Z t

0
γTx(τ)dτg:(2)

Suppose thatn individuals are observed and assume that the vector of covariates
for the ith individual is a random processXi(�) = (Xi1(�); :::;Xim(�))T .

Denote byNi(t) the univariate counting processes. This process counts the num-
bers of observed failures of each individual in the interval[0; t]; t � 0. Denote by
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Yi(t) the numbers of individual “ at risk” (non-censored and non-failed) just prior to
t for eachi.

Suppose thatfFt ; t � 0g is the filtration generated byfNi(s); Yi(s); Xi(s); i = 1; :::;n; 0� s� tg;
Xi are predictable and the intensitiesλi , given by

λi(t) = lim
ε#0

1
ε

PfNi(t + ε)�Ni(t)� 1jFt�g;
exist. In this case the compensators of the counting processesNi(t) are

Λi(t) = Z t

0
λi(s)ds:

Assume that the random intensitiesλi satisfy themultiplicative intensity model

λi(t) = αX i(�)(t)Yi(t):(3)

Denote

N(t) = n

∑
i=1

Ni(t); Y(t) = n

∑
i=1

Yi(t); Λ(t) = n

∑
i=1

Λi(t); Mi(t) = Ni(t)�Λi(t);
M(t) = n

∑
i=1

Mi(t); J(s) = I (Y(s)> 0) ; α =�G0
G
; ψ = α�H:

The hazard ratesαX i(�)(t) have the form

αi(t) = αX i(�)(t) = ψ(SXi(�)(t))f(H �S0)0(t)+ γTXi(t)g:(4)

2.2. Estimating equation and estimatorsH̃0H̃0H̃0, γ̂̂γ̂γ and Ŝx(�)Ŝx(�)Ŝx(�)
From the Doob-Meyer decompositionN = M+Λ, equalities (3) and (4) imply

dN(t) = dM(t)+ n

∑
i=1

ψ(SX i(�)(t))Yi(t)fdH(S0(t))+ γTXi(t)dtg
and Z t

0

J(u)(dN(u)�S(0)� (γ;u)du)
S(0)(γ;u) = Z t

0
J(u)dH(S0(u))+Z t

0

J(u)dM(u)
S(0)(γ;u) ;
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where

S(0)(γ;u) = n

∑
i=1

Yi(u)ψ(SXi(�)(u));
S(0)� (γ;u) = n

∑
i=1

Yi(u)ψ(SXi(�)(u))γTXi(u):
Under some mild assumptionsM is a martingale, therefore

E
Z t

0

J(u)(dN(u)�S(0)� (γ;u)du)
S(0)(γ;u) = E

Z t

0
J(u)dH(S0(u)):(5)

If Y(t)> 0, then Z t

0
J(u)dH(S0(u)) = H(S0(t)):(6)

Equalities (5) and (6) imply that a reasonable estimator̂H0(t;γ) for H0(t) =
H(S0(t)) (still depending onγ) is determined by the equation

Ĥ0(t;γ) = Z t

0
J(u)dN(u)� S̃(0)� (γ;u)du

S̃(0)(γ;u) ;
where

S̃(0)(γ;u) = n

∑
i=1

Yi(u)α(Ĥi(u;γ)); S̃(0)� (γ;u) = n

∑
i=1

Yi(u)α(Ĥi(u;γ))γTXi(u);
Hi(u;γ) = H0(u)+Z u

0
γTXi(τ)dτ; Ĥi(u;γ) = Ĥ0(u�;γ)+Z u

0
γTXi(τ)dτ:

Denoteτ� = supft : Y(t)> 0g. Suppose that at the non-random momentτ 2]0;∞] all
the individuals are censored, i.e.,τ� � τ. We propose to estimate the parameterγ by
solving the estimating equations

U(γ;τ) = 0;
where the estimating function is given by the formula below

U(γ; t) = n

∑
i=1

Z t

0
J(u)Xi(u)fdNi(u)�Yi(u)α(Ĥi(u;γ))dĤi(u;γ)g:

Those equations generalize the estimating equations of Lin and Ying (1994) for the
additive hazards model (takingα(p)� 1).
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If we denote byγ̂ the estimator ofγ, i.e. U(γ̂;τ) = 0, then the estimator of the
functionH0(t) is

H̃0(t) = Ĥ0(t; γ̂)(7)

and the estimator of the survival functionSx(�)(t) under any covariatex(�) is

Ŝx(�)(t) = G

�
H̃0(t)+Z t

0
γ̂Tx(u)du

� :(8)

Let

S̃
(1)(γ;u) = n

∑
i=1

Xi(u)Yi(u)α(Ĥi(u;γ));
S̃
(1)� (γ;u) = n

∑
i=1

Xi(u)Yi(u)α(Ĥi(u;γ))γTXi(u);
Ẽ(γ;u) = S̃

(1)(γ;u)
S̃(0)(γ;u) :

Then the estimating functionU(γ; t) can be written

U(γ; t) = n

∑
i=1

Z t

0
J(u)fXi(u)� Ẽ(γ;u)g�dNi(u)�Yi(u)α(Ĥi(u;γ))γTXi(u)du

	 :(9)

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

3.1. Asymptotic properties of the estimating function

Denote bykAk= supi; j jai j j the norm of any matrixA, by γ0 the true value of the
parameterγ,

S(1)(γ;u) = n

∑
i=1

Xi(u)Yi(u)α(Hi(u;γ));
S(1)� (γ;u) = n

∑
i=1

Xi(u)Yi(u)α(Hi(u;γ))γTXi(u);
E(γ;u) = S(1)(γ;u)

S(0)(γ;u) ;
S(2)(γ;u) = n

∑
i=1

Xi(u)XT
i (u)Yi(u)α(Hi(u));
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S̃
(2)(γ;u) = n

∑
i=1

Xi(u)XT
i (u)Yi(u)α(Ĥi(u;γ));

S(3)(γ;u) = n

∑
i=1

Yi(u)α0(Hi(u;γ));
S(3)� (γ;u) = n

∑
i=1

Yi(u)α0(Hi(u;γ))γTXi(u):
Assumptions A

1. Negligibility conditions.

There exist a neighborhoodΓ of γ0 and a scalar, vector or matrix functionss(0),
s(0)� , s(1), s(1)� , s(2), s(2)� , s(3), s(3)� , such that form= 0;1;2:

(a)

sup
γ2Γ; t2[0;τ]k1

n
S(m)(γ; t)�s(m)(γ; t)k P! 0;

sup
γ2Γ; t2[0;τ]k1

n
S(m)� (γ; t)�s(m)� (γ; t)k P! 0;

(b) s(0)(γ0; �) is bounded away from zero on[0;τ],
(c) s(m)(�; �), s(m)� (�; �) are continuous functions ofγ 2 Γ uniformly in t 2 [0;τ]

and bounded onΓ� [0;τ].
2.

H0(τ) = H(S0(τ))< ∞;
3. α is a positive continuously differentiable on]0;∞[ function,

4.
Pf sup

t2[0;τ] jXi j (t)j< ∞g= 1 for all i; j:
5.

σ2(t) = Z t

0

s(0)(γ;u)dH0(u)+s(0)� (γ;u)du

s(0)2(γ;u) <+∞:
Lemma. Suppose that assumptions A hold. Thenp

n
�
Ĥ0(t;γ)�H0(t)� D! h(γ; t)Z t

0

dV(u)
h(γ;u) as n! ∞;

where V is the Gaussian martingale with
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EV(t) = 0 and Cov(V(t);V(s)) = σ2(t ^s);
h(γ; t) = exp

��Z t

0

1

s(0)(γ;u) �s(3)(γ;u)dH0(u)+s(3)� (γ;u)du
�� :

Proof: Consider the difference:p
n
�
Ĥ0(t;γ)�H0(t)�=p

n

(Z t

0
J(u)dN(u)� S̃(0)� (γ;u)du

S̃(0)(γ;u) �H0(t))==p
n

(Z t

0
J(u)" dM(u)

S̃(0)(γ;u) + S(0)(γ;u)� S̃(0)(γ;u)
S̃(0)(γ;u) dH0(u)+ S(0)� (γ;u)� S̃(0)� (γ;u)

S̃(0)(γ;u) du

#) :
Note that

1p
n

h
S̃(0)(γ;u)�S(0)(γ;u)i=

1
n

n

∑
i=1

Yi(u)α0fHi(u;γ)gpn
�
Ĥ0(u�;γ)�H0(u)�+op(1) =

s(3)(γ;u)pn[Ĥ0(u�;γ)�H0(u)]+op(1):
Similarly

1p
n

h
S̃(0)� (γ;u)�S(0)� (γ;u)i=

s(3)� (γ;u)pn
�
Ĥ0(u�;γ)�H0(u)�+op(1)

and
n

S̃(0)(γ;u) = 1

s(0)(γ;u) +op(1):
So p

n
�
Ĥ0(t;γ)�H0(t)�=p

n
Z t

0

J(u)dM(u)
S̃(0)(γ;u) �Z t

0

p
n
�
Ĥ0(u�;γ)�H0(u)� s(3)(γ;u)dH0(u)+s(3)� (γ;u)du

s(0)(γ;u) +op(1):
Note that the predictable variation<p

n
Z t

0

J(u)dM(u)
S̃(0)(γ;u) >= n

Z t

0
J(u)S(0)(γ;u)dH0(u)+S(0)� (γ;u)du

S̃(0)2(γ;u) P! σ2(t)
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andZ t

0
J(u) n

S̃(0)2(γ;u) I

����� J(u)pn

S̃(0)(γ;u) ����> ε
��

S(0)(γ;u)dH0(u)+S(0)� (γ;u)du
�

P! 0:
By Rebolledo’s theorem (see Andersen et al (1993)) we obtain the convergence:p

n
Z t

0

J(u)dM(u)
S̃(0)(γ;u) D!V(t) as n! ∞:

Then p
n
�
Ĥ0(t;γ)�H0(t)� D! h(γ; t)Z t

0

dV(u)
h(γ;u) as n! ∞:

The proof is completed. �
Corollary. Under assumptions Ap

n
�
Ĥ0(t;γ)�H0(t)�= h(γ; t)pn

Z t

0

J(u)dM(u)
h(γ;u)S(0)(γ;u) +op(1):(10)

Consider the asymptotical distribution of the score functionU(γ0;τ). The Doob-
Meyer decomposition and equality (9) imply

1p
n

U(γ0; t) = 1p
n

U�(γ0; t)+ 1p
n

∆(γ0; t)+op(1);
where

1p
n

U�(γ0; t)) = 1p
n

n

∑
i=1

Z t

0
J(u)fXi(u)�E(γ0;u)+ 1

h(γ0;u)S(0)(γ0;u)�
n

∑
j=1

�Z t

u
J(s)[Xi(s)�E(γ0;s)]α0(H j(s;γ))h(γ0;s)Yj (s)��

dH0(s)+ γT
0 X j(s)ds

��gdMi(u)(11)

and
1p
n

∆(γ0; t) =�Z t

0
J(s)[Ẽ(γ0;s)�E(γ0;s)]dM(s)+
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Z t

0
J(s)[Ẽ(γ0;s)�E(γ0;s)][S̃(0)(γ0;s)�S(0)(γ0;s)]dH0(s)+Z t

0
J(s)[Ẽ(γ0;s)�E(γ0;s)]�α(Ĥi(s;γ0))�α(Hi(s))	 γT

0 Xi(s)Yi(s)ds:
Thus the problem is to prove that1p

n
U�(γ0; t)) converges to a Gaussian martingale

and 1p
n∆(γ0; t) converges to 0 in probability.

The integral (11) is a local martingale as an integral of a locally bounded predic-
table process with respect to a martingale, so the central limit theorem for martingales
(Rebolledo’s theorem, see Andersen et al. (1993), p.83) can be applied. Thelimit
process of 1p

nU�(γ0; t)) would be a Gaussian martingale if the predictable covaria-

tion process< n�1=2U� > (γ0; t) would converge to some non-random matrix and
the generalized Lindenberg condition would be satisfied. Note that the predictable
covariation process< n�1=2U� > (γ0; t) = 1

n ∑
i

Z t

0
J(u)�Xi(u)�E(γ0;u)+ 1

h(γ0;u)S(0)(γ0;u)�
∑

j

�Z t

u
[X j(s)�E(γ0;s)]α0(H j (s;γ))h(γ0;s)Yj(s)�dH0(s)+ γT

0 X j(s)ds
��)
2�

Yi(u)α(Hi(u;γ))�dH0(u)+ γT
0 Xi(u)du

� :(12)

Hence to obtain the limit distribution of1pnU�(γ0; t)) the assumption that the
process (12) converges in probability to some non-degenerate non-random matrix
must be made. Note that this process has the form1

n ∑n
i=1ξi(t) and if the covariates

Xi(�) are not behaving in some strange way (increasing very quickly and so on), this
convergence is natural.

Therefore we formulate

Stability condition: < n�1=2U� > (γ0; t) P! Σ(γ0; t);
whereΣ(γ0; t) is non-random and non-degenerated matrix.

Theorem 1. Suppose that assumptions A and the stability condition hold.Then, as
n! ∞

n�1=2U(γ0;τ) D! N(0;Σ(γ0;τ)):
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Proof: It is sufficient to prove that the Lindenberg condition is satisfied. Denote

Hil (u) = J(u)fXil (u)�El(γ0; t)+ 1

h(γ0;u)S(0)(γ0;u)
n

∑
j=1

Z t

u
[Xil (s)�El(γ0;s)]α0(H j(s;γ))h(γ0;s)Yj (s)�dH(S0(s))+ γT

0 X j(s)ds
�g;

whereEl (γ0;s)) is a l th component of the vectorE(γ0;s). The Lindenberg condition
in our case is

1
n ∑

i

Z t

0
H2

il (u)If 1p
n
j Hil (u) j> εgYi(u)αi(s)ds

P! 0:
But it is obvious as by assumptions of the theoremHi j (u) are bounded on[0;τ] andZ τ

0
αi(s)ds< ∞:

By Rebolledo’s theorem

n�1=2U�(γ0;τ) D!N(0;Σ(γ0;τ)):
The termn�1=2∆ converges in probability to zero. It can be seen similarly as in
Bagdonavičius & Nikulin (1996) by applying Lenglart’s inequality.

The proof of the theorem 1 is completed. �
3.2. Asymptotic properties of the estimator̂γ̂γ̂γ.

Let

e(γ;u) = s(1)(γ;u)
s(0)(γ;u) ;

S(4)� (γ;u) = n

∑
i=1
fXi(u)�E(γ;u)gYi(u)α0(Hi(u;γ))Z u

0
XT

i (τ)dτγTXi(u):
Assumptions B

1. Negligibility condition:

sup
γ2Γ;t2[0;T ]1

n
S(4)� (γ;u)�s(4)� (γ;u) P! 0:
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2. The matrix

Σ1(γ0;τ) = Z τ

0

�
∂
∂γ

e(γ0;u)s(0)(γ0;u)dH0(u)+h
s(4)� (γ0;u)+s(2)(γ0;u)�e(γ0;u)s(1)T(γ0;u)idu

o
is non degenerated.

Theorem 2. Suppose assumptions B and those of the Theorem 1 hold. Then there
exists a neighborhood ofγ0 within which, with probability tending to 1 as n! ∞, the
root γ̂ of U(γ;τ) = 0 is uniquely defined and

n1=2(γ̂� γ0) D!N(0;Σ2(γ0;τ));(13)

where
Σ2(γ0; t) = Σ�1

1 (γ0; t)Σ(γ0; t)Σ�1
1 (γ0; t):

Proof: Using the Taylor expansion ofn�1=2U(γ;τ) aroundγ0 in γ = γ̂, we obtain

n1=2(γ̂� γ0) =��1
n

∂U(γ�;τ)
∂γ

��1

n�1=2U(γ0;τ);(14)

where γ� is on the line segment betweenγ̂ and γ0. Theorem 1 implies, that the
convergence (13) is proved if we prove that�1

n
∂U(γ0;τ)

∂γ
P! Σ1(γ0;τ) and γ̂ P! γ0:

We have �1
n

∂U(γ;τ)
∂γ

=
1
n

n

∑
i=1

Z τ

0
J(u) ∂

∂γ
Ẽ(γ;u)fdMi(u)+Yi(u)α(Hi(u;γ))dH0(u)+

Yi(u)γTXi(u)�α(Hi(u;γ))�α(Ĥi(u;γ))�du
	+ 1

n

n

∑
i=1

Z τ

0
J(u)fXi(u)� Ẽ(γ;u)g�

Yi(u)� ∂
∂γ

α(Ĥi(u;γ))γTXi(u)+α(Ĥi(u;γ))XT
i (u)�du:

Note that
1
n

n

∑
i=1

Z τ

0
J(u) ∂

∂γ
Ẽ(γ;u)dMi(u) P! 0;
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1
n

n

∑
i=1

Z τ

0
J(u) ∂

∂γ
Ẽ(γ;u)Yi(u)α(Hi(u;γ))dH0(u) P! Z τ

0

∂
∂γ

e(γ;u)s(0)(u;γ)dH0(u);
1
n

n

∑
i=1

Z τ

0
J(u) ∂

∂γ
Ẽ(γ;u)Yi(u)γTXi(u)�α(Ĥi(u;γ))�α(Hi(u;γ))�du

P! 0;
1
n

n

∑
i=1

Z τ

0
J(u)fXi(u)� Ẽ(γ;u)gYi(u) ∂

∂γ
α(Ĥi(u;γ))γTXi(u)du

P! Z τ

0
s(4)� (γ;u)du;

1
n

n

∑
i=1

Z τ

0
J(u)fXi(u)� Ẽ(γ;u)gYi(u)α[Ĥi(u;γ)]γTXi(u)du

P!Z τ

0

h
s(2)(γ;u)�e(γ;u)s(1)(γ;u)idu:

Therefore �1
n

U(γ0;τ)
∂γ

P! Σ1(γ0;τ):(15)

In the rest of the proof we follow Lin and Ying (1996). By assumptions of the
theorem, for anyε > 0, we can chooseδ > 0 such that for allnk1

n
∂
∂γ

U(γ;τ)� 1
n

∂
∂γ

U(γ0;τ)k< ε

wheneverkγ� γ0k< δ. On the other hand the convergence (15) implies that

Pf supkγ�γ0k�δ
k� 1

n
∂
∂γ

U(γ;τ)�Σ1(γ0;τ)k> 2εg! 0(16)

asn! ∞.

Now we apply the theorem about the inverse mapping, which states that iff (u);u2
Rp is continuosly differentiable atu0 and∂ f (u0)=∂u is nonsingular, then there exist
δ0 and ε0 that f is a one-to-one mapping onB(u0;δ0), the ball centered of theu0

with radiusδ0 and f (B(u0;δ0))� B( f (u0);ε0). As noted by Lin and Ying that result
holds simultaneously for a family of such functions with commonδ0 andε0 as long
as their derivatives atu0 are sufficiently close. This result and (16) imply that there
exist δ1 and ε1 such thatn�1U(�;τ) is one-to-one mapping from theB(γ0;δ1) to
n�1U(B(γ0;δ1);τ), which containsB(n�1U(γ0;τ);ε1). Since

n�1U(γ0;τ) P! Z τ

0
[s(1)(u;γ0)�e(u;γ0)]s(0)(u;γ0)dH0(u) = 0;

we have
Pf02 B(n�1U(γ0;t);ε1)g! 1 as n! ∞:
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Therefore

Pfγ̂ exists and is unique in B(γ0;δ1)g ! 1 and γ̂ P! γ0:
Consider the equality (14). Ifn! ∞, then

γ� P! γ0 and � 1
n

∂U(γ�;τ)
∂γ

P! Σ1(γ0;τ);
hence the convergence (13). The proof of the theorem 2 is complete. �
3.3. Asymptotic properties ofH̃0H̃0H̃0 and Ŝx(�)Ŝx(�)Ŝx(�)

Now we will consider the asymptotic distribution of the estimatorof the function
H0. Denote

σ2
1(γ0; t) = Z t

0

s(0)(γ0;u)dH0(u)+s(0)� (γ0;u)du(s(0))2(γ0;u) ;
H i(γ0;u) = J(u)fXi(u)�E(γ0;u)+ 1

h(γ0;u)S(0)(γ0;u)�
n

∑
j=1

�Z t

u
J(s)[X j(s)�E(γ0;s)]α0(H j(s))h(γ0;s)Yj(s)�dH0(s)+ γT

0 X j(s)ds
��g:

Assumptions C (Stability conditions)

1.
n

∑
i=1

Z t

0

H i(γ0;u)
S̃(0)(γ0;u)α(Hi(γ0;u))Yi(u)�dH0(u)+ γT

0 Xi(u)du
� P! A(γ0; t):

2. Z t

0
J(u)� ∂

∂γ

�
1

S̃(0)(γ�;u)�hS(0)(γ0;u)dH0(u)+ S̃(0)� (γ�;u)du
i�

∂
∂γ

 
S̃(0)� (γ�;u)
S̃(0)(γ�;u)!du

)
P!C(γ0; t):

Theorem 3. Under assumptions C and those of Theorem 2 for all t2 [0;τ]
n1=2fH̃0(t)�H0(t)g D!N(0;σ2

2(γ0; t)) as n! ∞;
287



where
H0(t) = H(S0(t)); H̃0(t) = Ĥ0(t; γ̂);

σ2
2(γ0; t) = σ2

1(γ0; t)+C(γ0; t))Σ2(γ0;τ)CT(γ0; t)�2C(γ0; t)Σ�1
1 (γ0;τ)A(γ0; t):

Proof: By Taylor expansion aroundγ0 the random process
p

nfH̃0(t)�H0(t)g can
be written in the following manner:p

nfH̃0(t)�H0(t)g= n1=2
�Z t

0

J(u)
S̃(0)(γ̂;u) (dN(u)� S̃(0)� (γ̂;u)du)�H0(t)�=

n1=2
�Z t

0

J(u)
S̃(0)(γ0;u) (dN(u)� S̃(0)� (γ0;u)du)�Z t

0
J(u) ∂

∂γ

�
1

S̃(0)(γ�;u)�dN(u)(γ̂� γ0)+Z t

0
J(u) ∂

∂γ

 
S̃(0)� (γ�;u)
S̃(0)(γ�;u)!du(γ̂� γ0)�H0(t))=

n1=2fC(γ0; t)(γ̂� γ0)+Z t

0
J(u) dM(u)

S̃(0)(γ0;u)g+op(1);(17)

whereγ� is on the line segment betweenγ̂ andγ0. Taking into account (15), we obtain

n1=2(γ̂� γ0) = Σ�1
1 (γ0;τ)n�1=2U(γ0;τ)+op(1):

From theorem 1:

n�1=2U(γ0;τ) = n�1=2
n

∑
i=1

Z τ

0
H i(γ0;u)dMi(u)+op(1):

Therefore the predictable covariation< n�1=2
n

∑
i=1

Z τ

0
H i(γ0;u)dMi(u);n1=2

Z t

0
J(u) dM(u)

S̃(0)(γ0;u) >=
n

∑
i=1

Z t

0

H i(γ0;u)
S̃(0)(γ0;u)α(Hi(γ;u))Yi(u)�dH0(u)+ γT

0 Xi(u)du
� P! A(γ0; t):

The predictable variation< n1=2
Z t

0
J(u) dM(u)

S̃(0)(γ0;u) >= n
Z t

0
J(s)S(0)(γ0;s)dH(S0(s))+S(0)� (γ0;s)ds

S̃(0)2(γ0;s) P!σ2
1(γ0; t):

Let
H1i(γ0;u) =C(γ0; t)Σ�1

1 (γ0;τ)H i(γ0;u)+nJ(u)=S̃(0)(γ0;u):
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Then p
n[H̃0(t)�H0(t)] = n�1=2

n

∑
i=1

Z t

0
H1i(γ0;u)dMi(u)+op(1):

By assumptions of the theorem for allε > 0

1
n

n

∑
i=1

Z t

0
H2

1i(γ0;u)IfjH1i(γ0;u)j> εgYi(u)αi(u)du
P! 0:

The asymptotic normality of
p

n[H̃0(t)�H0(t)] follows from the theorem of Rebolle-
do. The proof of theorem 3 is complete. �

Consider the asymptotic distribution of the estimatorŜx(�) of the survival function
Sx(�)(t) under any covariatex(�). Denote

Cx(γ0; t) =C(γ0; t)+Z t

0
xT(u)du; g= G0:

Theorem 4. Under assumptions of theorem 1p
n[Ŝx(�)(t)�Sx(�)(t)] D! N(0;σ2

x) as n! ∞;
where

σ2
x(γ0; t) = fσ2

1(γ0; t)+Cx(γ0; t)Σ2(γ0;τ)CT
x(γ0; t)�

2Cx(γ0; t)Σ�1
1 (γ0;τ)A(γ0; t)gg2(H(Sx(t))):

Proof: By Taylor expansion aroundγ0 we obtain (similarly as in the proof of theorem
3):

n1=2[H(Ŝx(�)(t))�H(Sx(�)(t))] =
n1=2

�
H̃0(t;γ0)�H0(t)+Z t

0
xT(u)du(γ̂� γ0)�=

n1=2
�

Cx(γ0; t)Σ�1
1 (γ0; t)U(γ0;τ)+Z t

0
J(u) dM(u)

S̃(0)(γ0;u) )+op(1)� :
The proof of the asymptotical normality of

p
n[H(Ŝx(�)(t))�H(Sx(�)(t))] is similar

to the proof of the asymptotical normality of
p

n[H(Ŝ0(t))�H(S0(t))] in the theorem
3. So we skip it. The asymptotical normality of

p
n[Ŝx(�)(t)�Sx(�)(t)] is obtained by

the functional delta method. The proof is complete. �
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Remark 1. Replacing all the theoretical quantities by empirical ones in the theorems
1-4, we obtain consistent estimates for the limiting covariance matrice of

p
n(γ̂� γ0)

and the limiting variances ofp
n(H̃0(t)�H0(t) and

p
n(Ŝx(�)(t)�Sx(�)(t)): �
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