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1. INTRODUCTION

Models describing the dependence of lifetimes distributions on exjglgneaaria-
bles have been considered. A number of such models was proposed by Andersen,
Borgan, Gill and Keiding (1993), Cox and Oakes (1984), Dabrowska awidsiin
(1988), Droesbeke, Fichet and Tassi (1989), Kalbfleisch and Prentice)(198@&nd
Ying (1994),(1996), etc. BagdonaviCius and Nikulin (1994)-@pg8roposed a gene-
ral approach, which gives the possibility of formulating a numbereaf models and
showing where known models fit into the proposed new classes.

Suppose that a time to failur., is a nonnegative random variable with the
survival functionSy) (t) = P{Tx.) >t} which depends on a vector efresses

X: [0,40) - BCR™

The time to failureTy,.) could be called the resource of this item. But the notion
of the resource should not depend x(n). So we will call the uniform resourceo
the random variabl&’ = 1— Sy (Tx,). It takes values in the interv40,1) and
does not depend or(-). Note thatTy.) =t if and only if RO=1- Sxy(t). So
the number 1- Sy (t) € [0,1) is calledthe uniform resource used until the momentt
under the stress(x). The concrete item which failed at the momeéninder the stress
X(-) used 1- Sy, (t) of the resource. Instead of the uniform resource one can define
a resource with any probability distribution, so we can consider alevhlass of
resources. Really, suppose tliais some fixed survival function, strictly decreasing
and continuous on the suppdatb], —o <a<b<w, G(a)=1,G(b)=0. H=G 1.
The functional

fxiy (1) = (HoSxy) (),

is called theG-transfer functional The survival function of the random variable
RC = f)?(,) (Tx(,)) is G and does not depend ou-). The random variabl&® is called
the G-resourceand the numbelf)‘f(_) (t) is called theG-resource used till the moment
t. Denote byG the family of survival functions, continuous and decreasing on their
supports. Consider the class of transfer functiodidls- { f¢, Ge G}. Models will
be formulated in dependence on properties of the transfer functionats.tiNd some
assumptions may be satisfied by one transfer functional, but not eatisfi another.
This is the cause of considering thdole class of resources

In the case ofG(t) = e*‘l[ovoo[(t) the transfer functional has the forlféf(,)(t) =
—InSx,(t) and the rate of resource use is

S (1)
X()
it = ay. (1),

whereay . (t) = _g((.)(t)/s((_)(t) is the hazard rate dfy).
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The additive hazards model (AHM) (see Andersen et al. (1993)) holds dn
there exist functiond anda such that for allx(-) € E

ax (t) = ao(t) +afx(t)].

Now we generalize this model.

Definition. The G-generalized additive model holds on E if there exists a function

a(-) on E and a survival function ¢Ssuch that, for all X-) € E, the transfer functional

G € o satisfies the differential equation

oy ® _ até(
ot ot

with the initial conditions £(0) = fyr,(0) = 0.

1)

+a(x(t))

0

So the stress influences additively the rate of resource use. Equationplies
that

Sy (1) = G{TS(1) +'/ot alx(1)|dt}.

Let us consider some particular models different from AHM.

1. TakingG(t) = exp{—exp{t}}, fort € R, we obtain

af)%(.)(t) _Ox) (1) afé;(t) oo(t)

ot Axy(t)’ ot Ag(t)’

where .

t
Ay () = /O ax) (DT, Ao(t) = /O do(T)dr
are the cumulated hazards rates. So we have the model:

ax) (1) _ ao(t)
Ay ()~ Ag(ty A

2. TakingG(t) = 1/(1+t), for t > 0, we obtain

3. TakingG(t) = 1/(1+¢€), for t € R, we obtain

ax()(t) ao(t)




4. Take G(t) = 1—®(Int), t > 0, where®(-) is the normalN(0,1) cumulative
distribution function. In terms of survival functions we obtalretmodel :

1 _ ! “1q
(1 S((_)(t))_ln{ /0 alx(1)]dt + exp[® 11— S(t))] L.

5. Taking G = &, we obtain

t
S () = Sof [ olx(o1dr),

whereo[x(t)] = 1+ ajx(t)]. It is the accelerated life model
Other distributions of the resource can be taken.

So a number of alternatives to the AHM is proposed. For example, if at the
beginning of life data follow well the AHM but later it is not so, theodel of
example2 could be choosed. On the contrary, if at the beginning of life data do no
follow the AHM but at the end of life this model suits well, the modélexample3
could be choosed.

2. ESTIMATION

2.1. Notations

Consider the model (1) with some specifiécand an unknown baseline survival
function &.

The functiona[x(-)] is parametrized as follows:
alx(t)] = y'x(t),

wherey = (yi,...,Yy,) " is the vector of unknown regression parameters. So the follo-
wing model is considered: for all(-) € E

) Sy (1) = G{H(So(1) +/0t VI X(T)dT}.

Suppose that individuals are observed and assume that the vector of covariates
for theith individual is a random proces§(-) = (Xi1(-), ..., Xim(*))T.

Denote byNi(t) the univariate counting processes. This process counts the num-
bers of observed failures of each individual in the interiat], t > 0. Denote by
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Yi(t) the numbers of individual “ at risk” (non-censored and non-failed) juer to
t for eachi.

Suppose thaf %, t > 0} is the filtration generated by
{Ni(s), Yi(9), Xi(s), i=1,...,n; 0< s<t},
X; are predictable and the intensiti®s given by
1
Ai(t) = lim =P{Ni(t + &) — Ni(t) > 1| -},
€l0 €
exist. In this case the compensators of the counting procé&gsare
t
Ai(t) :/ Ai(s)ds
0
Assume that the random intensitigssatisfy themultiplicative intensity model
3) Ai(t) = ax, ) ()Yi(t).

Denote

N(t):_;Ni(t)7 Y(t):;\ﬁ(t)a /\(t):_;/\i(t)a Mi(t) = Ni(t) = Ai(t),

M(t) = iMi(t), J(s)=1(Y(5)>0), a= —%, W=oaoH.
The hazard rateay, ,(t) have the form
(@) 01 (1) = g, () = WS, () (D)) {(H 0 S)' (1) + Y Xi(1)}.

2.2. Estimating equation and estimatorddo, ¥ and é((.)

From the Doob-Meyer decompositidh= M + A, equalities (3) and (4) imply

n

dN(t) = dM(t) + _ZLIJ(Sxi(.)(t))Yi (D{dH(So(t)) +Y"Xi(t)dt}

and

tI(u)(dN(U) - SV (y,updy) t I(u)dM(u)
/0 SO (y,u) _/()J(u)dH(S()(u))+/() SO(y,u) ’
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where
n

SO(y.u) = glvi<u>w<8xi(.)<u>>,

ZY (W)Y Xi(u).
Under some mild assumptioh$ is a martingale, therefore
3(u)(dN() — SV (v, u)du) /
5 E =E [ JudH(S
®) /0 S(O (y,u)

If Y(t) >0, then

(6) [} 3 (W) = H(S()

Equalities (5) and (6) imply that a reasonable estimatcﬁio(t,y) for Ho(t) =
H(S(t)) (still depending ory) is determined by the equation

- oo s

where

) = 3 YWal ). E00 = 5 YWaE .

u ~ ~ u
Hi(uY) = o)+ [ Y Xi(odt, Ai(uy) = Fo(u=y) + [ yxi(0dr.
Denotet” = supft : Y(t) > 0}. Suppose that at the non-random monmeat0, «| all

the individuals are censored, i.&}, < 1. We propose to estimate the paramstéy
solving the estimating equations

U(y,1) =0,
where the estimating function is given by the formula below

Uiyt = Z/J W{AN(W) = V(e (uy))dH (u)}-

Those equations generalize the estimating equations of Lin and Yingt I89the
additive hazards model (takirayp) = 1).
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If we denote byy the estimator ofy, i.e. U(y,1) = 0, then the estimator of the
functionHo(t) is

(7) Ho(t) = Ho(t,9)

and the estimator of the survival functi®@.)(t) under any covariatg(-) is
~ ~ t,\
8) (1) = G{Ho(t) + /0 yTx(u)du}.

Let

n

&Y (y,u) = Zixi(u)\ﬁ(U)a(Fh(u,v)),

i=
n

8y = Zxi(u)Yi(u)a(Hi(u,v))vTxi(u).,

E(y U) = 7’%(1) (yl u)
T E0 ()
Then the estimating functiod (y,t) can be written

©)
U(y.t) = _;/Ota(u){xi(u) — E(y,u)} {dN (u) = Yi(u)a(Hi (u,y))y" Xi(u)du} .

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

3.1. Asymptotic properties of the estimating function

Denote by||Al| = sup j[aj| the norm of any matrix, by y, the true value of the

parametey,
n

SY(y.u) = _;Xi(U)Yi(U)G(Hi (U,Y),

£y = 3 X @ )Y X




& = 3 WX YWY

SO (y,u) = ZYi(u)G’(Hi(U:V)):

Sy > Wwa'(H(u )Y Xi(w)

Assumptions A

1. Negligibility conditions.
There exist a neighborhoddof y, and a scalar, vector or matrix functiosld,
S0 s, Y &2 &2 &3 &9 such that fom=0,1,2:

@)

1
sup  [I2S™(y,t) —s™(y,t)]| 5o,
yer.tejox] N

1
sup  [|=8™(v,t) - ™ (y,t)]| B o,
yer.tejor] N

(b) s9(y,-) is bounded away from zero d,1],

() sM(-,), ™ (..) are continuous functions gfe I uniformly int € [0,T]
and bounded off x [0,T].

Ho(T) = H(S(T)) < o,

3. a is a positive continuously differentiable @, o[ function,

4,
P{ sup [Xj(t)| <} =1 foralli,j.
te[0,1]
5. 0
t 5O (y,u)dHo(u) +s.” (y,u)du

2 t) = / 9 0 k 9 ]
o°(t) A S92(y.0) < 4o

Lemma. Suppose that assumptions A hold. Then

A D tdV(u)
Vi [Ho(t,y) = Ho()] = h(y,t) | hyw 2 M

where V is the Gaussian martingale with
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EV(t)=0 and CoWV(t),V(s) =0?(tAS),

h(y,t) = exp{ /Ot le,u) (5(3) (v, u)dHo(u) + s (y, u)du) } .

Proof: Consider the difference:

_ n{/OtJ(u)

Note that 1
7 [870n0) - 8% vu)] =
5 2 (W {H Wy h/A (i) Ho(w)] + op(D) =
s (y,u) VAlRo(u—,Y) — Ho(u)] + 0p(2).
Similarly .
(87w -8 =
P (v.w)vA [Fo(u-.y) ~ Ho(w)] +0p(1)
and 1 )
v SOy o
So

VN [Ho(t,y) — Ho(t)] = \/ﬁ'/ot Jgg)(zyﬁl;) -

$3(y,u)dHo(u) + ¥ (y, u)du
sO(y,w)

[ VAot ) Holw)] +op(D).

Note that the predictable variation

o =0 SOy udHo(W + 87 (v wdu £ o

t
< \/ﬁ./o S02(y,u)

(uydM(u
SO (y,u)
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and

t n J(u)y/n
/o ) §92(y, u) ! { ‘ SO (y,u)

By Rebolledo’s theorem (see Andersen et al (1993)) we obtain the convergence

> s} (S<0)(y, u)dHo(u) + Sy, u)du) Ro.

t J(u)dM(u) p
\/ﬁ/OW—)V(t) as n-— oo,

Then

VATRolty) - Ho(0] S hovt) |1 2508

The proof is completed.

Corollary. Under assumptions A

(10) Vi [Fo(t,y) — Ho(t)] = h(\ﬂt)ﬁ/ot h(;]/_(:j))%

V.0 +0p(1).

Consider the asymptotical distribution of the score functidiyy,t). The Doob-
Meyer decomposition and equality (9) imply

ZEU00:) = 20" (00.)+ —Z=Al1p.1) + 0p(L),
where
1 . 1 Dot o 1
TRV =2y [0 B0t
5 | [ 919 Bt S (Hy (5 V)0 9 (9
=
(11) (dHo(s) + Y5 Xj(9)ds) ] }dMi (u)
and
1 t ~
TRB060 = [ AN Elvo9AM(S)+
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/J E¥0:S) ~ E0-9]5(4:9) ~ S°(vo.9]dHo() +
[ ISIEN o 9] {alFi(s¥0) - alk(9) IEXi (9 (9ds

Thus the problem is to prove th%u*(yo,t)) converges to a Gaussian martingale
and %A(yo,t) converges to 0 in probability.

The integral (11) is a local martingale as an integral of a locally boundedigr
table process with respect to a martingale, so the central limit theoremaftingales
(Rebolledo’s theorem, see Andersen et al. (1993), p.83) can be appliedimihe
process ofﬁu*(yo,t)) would be a Gaussian martingale if the predictable covaria-

tion process< n~Y/2U* > (y,,t) would converge to some non-random matrix and
the generalized Lindenberg condition would be satisfied. Note that #gwigtable
covariation process

/ —1 X
<Y oY) 2/ { E0o W+ fre 5%y, 0)

®2
5 | /X019~ Ets0.91a (5 )y, 9) (Ao(9) + 1, (909 } x

J

(12) Yi(u)a(Hi(u,y)) [dHo(u) + yg Xi(u)du] .

Hence to obtain the limit distribution O%U*(yo,t)) the assumption that the

process (12) converges in probability to some non-degenerate normmamedrix
must be made. Note that this process has the bl ; &i(t) and if the covariates
Xi(+) are not behaving in some strange way (increasing very quickly and schis), t
convergence is natural.

Therefore we formulate

Stability condition:
< nil/ZU* > (V07t) £> Z(Vo-,t)7
whereX(yy,t) is non-random and non-degenerated matrix.

Theorem 1. Suppose that assumptions A and the stability condition hbken, as
n— o
_ D
20 (¥o.1) = N(0, Z(p, T)).
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Proof: It is sufficient to prove that the Lindenberg condition is satisfied. dden

1

Hi (W) =W (W) = Bl Y + e —ami

> 1X(5)~ B0, 9]0 (H) (8.Y)NYo, 9 (8) (AH(S0(9) + ¥} X (999}
=1/u

whereE (yy,S)) is alth component of the vectdE(y,,s). The Lindenberg condition
in our case is

1ot 1 P
- IZ/O Hilz(u)l{ﬁ | Hii (u) |> €}Yi(u)ai(s)ds— O.
But it is obvious as by assumptions of the theoné(u) are bounded of0, 1] and

T
/ i (s)ds< co.
0
By Rebolledo’s theorem
N 20" (vp, 1) 3 N(0,Z (o, 1)

The termn~1/2A converges in probability to zero. It can be seen similarly as in
BagdonaviCius & Nikulin (1996) by applying Lenglart’s inequality.

The proof of the theorem 1 is completed.

3.2. Asymptotic properties of the estimatoly.

Let
sV (y,u)
sO(y,u)’

e(y7 U) =

n

00w = Y 0G0~ EVUIW (i) [ X @y X u)

Assumptions B
1. Negligibility condition:

1
sup ﬁSi‘l)(y,u)fs(f)(y,u) Po

Yer te[0.T]

284



2. The matrix

2100 = [ { 36000.08 o, u)Ho(u) +
[S£4) (Yo, U) + 52 (Yo, ) — (Yo, U)SMT (yp, u)] d u}

is non degenerated.

Theorem 2. Suppose assumptions B and those of the Theorem 1 hold. Then there
exists a neighborhood @f, within which, with probability tending to 1 as+ , the
rooty of U(y,T) = Ois uniquely defined and

(13) 2§ yo) > N(0, Z2(Yp. 1)),

where
%2(Yort) = 23 (Yo, ) Z (Yo, ) Z1 1Yo t)-

Proof: Using the Taylor expansion af /U (y,T) aroundy, in y= Y, we obtain

-1
(1) 25y = (320 i),

wherey* is on the line segment betwegnandy,. Theorem 1 implies, that the
convergence (13) is proved if we prove that

iaug\:(,) U5 (o1) and 75y,
We have
1oU(y,1) _
SR
%;/ J(u )ag E(y,u) {dMi (u) + Y (Wa(Hi(u,y))dHo(u)+

MY [k () -] du)+ 3 3 (300 Elvu)

Yi(u)

Sl YV )+ a(ﬂi(u,v))xﬂu)}du.

Note that 6
/J ayErudM(w) 5 P o,
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/J a2 )Yi(ua (Hi(u,v))dHo(lD5/OT%e(v,U)s(")(u,v)dHo(u),
53 )30 S EQUM@Y X e ) - a(uy)]duS o
%Ii/orJ(U){Xi(u)—E(V7U)}Yi(u)%a(lqi(u,v))v-rxi(u)du£>/OTSY‘)(V’U)du:
%l_il/or‘](u){xi(u)_E(V-,U)}Yi(u)a“:'i(U7V)]VTXi(U)du£>

T
/O [$2(v.u) -~ ey.u)s? (.| du
Therefore

n av (yO )

In the rest of the proof we follow Lin and Ying (1996). By assurops of the
theorem, for any > 0, we can choosé > 0 such that for alh

G
sVl <e

| ndy

nay()

whenevelly—ypl| < 8. On the other hand the convergence (15) implies that

(16) P{ sup IIf—a—U( 1) —21(Yp, D)l > 26} = 0
IY-Yol<s D

asn— o,

Now we apply the theorem about the inverse mapping, which states thaj jt1 €
RP is continuosly differentiable atp anddf (up)/0u is nonsingular, then there exist
Op andgg that f is a one-to-one mapping dB(up,do), the ball centered of theg
with radiusdg and f(B(uo,®)) D B(f(un),€0). As noted by Lin and Ying that result
holds simultaneously for a family of such functions with comndgrandeg as long
as their derivatives aip are sufficiently close. This result and (16) imply that there
exist 8; and & such thatn~'U(-,1) is one-to-one mapping from thB(yy;8;1) to

U (B(yp,81),T), which containB(n—U (yy,T),€1). Since

U060 B [ 189 (uy0) — (U108 u.v0)dHo(w) = O,

we have
P{0eB(n W(yyt);e1)} =1 as n— o,
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Therefore

P{y exists and is unique inB(yy,d1)} -+ 1 and \75 Yo-

Consider the equality (14). H — oo, then

1oU(y',t
v 5w and 22D B 5y,

hence the convergence (13). The proof of the theorem 2 is complete.

3.3. Asymptotic properties ofHg and s((.)

Now we will consider the asymptotic distribution of the estimaibthe function
Ho. Denote

2 o 189y, WdHo(u) + 89 (v, u)du
oo = [ |

1
Hi (Yo, u) = J(u){Xi(u) — E(yo,u) + h(y07 u)go) (yo7 u) x
3| 151105~ o 91 (R ) (5 (A +17X) 9149}

Assumptions C (Stability conditions)

1.
Nty
i;/O g&f&uul) al(Hi (Yo, )i (u) (dHo(u) + Y3 Xi (u)du) 5 Afyg,t).

/otj(“){%@ (; u>> [0 udFo(w) + 8%y ] -

8%y P
<S(0 Dy )>du}—>C(yO,t).

Theorem 3. Under assumptions C and those of Theorem 2 for al[®, T]

n2{Fo(t) — Ho(t)} B N(0,05(yp,t)) as n— oo,
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where 3 A
Ho(t) = H(S)(t)) HO(t) = HO(t:V)7

0§(y07t) = O-%(y&t) +C(y07t))22(y07T)CT (y07t) o ZC(VO,'[)ZI]'(VO,T)A(VO,I:).

Proof: By Taylor expansion aroung, the random procesgn{Ho(t) — Ho(t)} can
be written in the following manner:

U

Vi{Fo(t) — Ho 1/2{ 5900 (u)—éi"’(v,u)du)—Ho(t)}—

b () (0) ) 1 .
n1/2{ ) Sy, 1) (dN(u) — & (Vo,U)dU)f/O J(U)a/(W)dN(U)(VVoH

(0)
[aws @oxjﬂ;) du(y— o) - Ho(t)} -

a7) LYo+ | ) g ) +0p(d).

wherey* is on the line segment betwegiandy,. Taking into account (15), we obtain

2§ Yo) = Z1 (Yo, N 2U (o, T) + 0p(1).

From theorem 1:
n T
nil/zu (y07T) = n71/2 Z/ Hi(Vo: U)dMi(U) + OP(]-)-
&0

Therefore the predictable covariation

<n1/221/Hy0 u)dM (U 1/2/J

Z/ 3oy, yo, Hi (v, U))Yi (u) (dHo(u) -+ Y X1 (u)du) 5 Ay, t).
The predictable variation
<n1/2/ o (Yo,u > n/J oS (YO+)S(k Yo 9ds 7 0%(\/07)

Let
Hii (Yo, U) = C(Yo, )21 (Yo, DHi(Yo, U) + nI(W) /Sy, u).
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Then —
VilFo(t) — Ho(t)] = ,rl/zzl /O Hai (Yo, UAM (U) + 0p(1).

By assumptions of the theorem for alb> 0
10 i
ﬁzl/o H1; (Yo, W {|H1i (Yo, U)| > €}Yi(u)ati(u)du— 0.
4.

The asymptotic normality of/f[Fo(t) — Ho(t)] follows from the theorem of Rebolle-
do. The proof of theorem 3 is complete.

Consider the asymptotic distribution of the estimaﬁi@(r_) of the survival function
Sx((t) under any covariatg(-). Denote

t
Cxl¥o.t) = Cliot) + [ X (W, g=G.

Theorem 4. Under assumptions of theorem 1

VIS (1) — Sy (] B N(0,0%) as n— e,

where
0%(Yo:t) = {2 (Yo, 1) + Cx(Yo.t) Z2(Yo, T)Cx (Yo, t) —
2Cx (Yo, 1) Z; *(Yo, DAY, 1) }oP(H (Sx(1))).

Proof: By Taylor expansion aroung we obtain (similarly as in the proof of theorem
3):
M2[H Sk (1)) — H(Sx (1)] =
2 { it yo) - Holt)+ [ ¥ (Wu(i- vo)}

20160 oDV o)+ | 0 g ) + 051}

The proof of the asymptotical normality @fn[H (S (t)) —H(Sx((t))] is similar

(
to the proof of the asymptotical normality ¢fn[H (ég( )) H(S(t))] in the theorem
3. So we skip it. The asymptotical normality 9fn[Sx.(t) — Sx((t)] is obtained by
the functional delta method. The proof is complete.
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Remark 1. Replacing all the theoretical quantities by empirical ones in the theorems
1-4, we obtain consistent estimates for the limiting covariance matfigén¢y — y,)
and the limiting variances of

V(Fo(t) —Ho(t) and /(S (t) — Sk (1)).
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