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Abstract

In traditional statistics all parameters of the mathematical model and
possible observations should be well defined. Sometimes such assumption
appears too rigid for the real-life problems, especially while dealing with
linguistic data or imprecise requirements. To relax this rigidity fuzzy methods
are incorporated into statistics. We review hitherto existing achievements in
testing statistical hypotheses in fuzzy environment, point out their advantages
or disadvantages and practical problems. We propose also a formalization of
that decision problem and indicate the directions of further investigations in
order to construct a more general theory.
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1 Introduction

At the first stage of investigations concerning different kind of phenomena (e.g.,
biological, technical, physical, and social) initial hypotheses relating to these phe-
nomena are often formulated. Then, during the second experimental stage, facts
which either confirm or falsify these hypotheses are collected and analyzed. When
the considered hypothesis is of a probabilistic nature, i.e., the phenomenon under
investigation is described by a probabilistic model, the methods of mathemati-
cal statistics are used. These methods, called statistical tests, let us specify such
events which are almost improbable when the considered hypothesis is true. Ob-
servations of such events indicate that the considered hypothesis may be not true,
and therefore, should be rejected.

In traditional statistics all parameters of the mathematical model and the ob-
served experimental data should be well defined. However, the complexity of in-
vestigated phenomena make the underlying models inadequate to the observed
reality. In such situations the traditional models are valid only under some addi-
tional assumptions that might be not fulfilled. We face such a situation when our
experimental data are of a linguistic type.
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The problems stated above have motivated many researchers to enrich the tra-
ditional approach to hypothesis testing by introducing fuzzy models. These fuzzy
models were proposed in order to describe uncertainties both in the experimental
data and in the investigated hypotheses. Diversity of approaches indicates that we
are yet in the initial stage, and the commonly accepted methodology hasn’t been
worked out. Therefore, it seems to be useful to summarize the already obtained
results in order to show their weak points. This is the aim of Sections 4, 5, 6 and
7 of this paper. Such an analysis can also show the directions of further investiga-
tions in this area (Sec. 8). In Section 2 we review some of the basic notions of the
traditional approach to hypotheses testing. Section 3 provides a formalization of
the problem in order to make more visible the differences between the traditional
and the new approaches.

2 Elements of the traditional theory of testing sta-
tistical hypotheses

Assume that the investigated phenomenon is described by a probability distribution
Pθ which belongs to a family of distributions P = {Pθ : θ ∈ Θ}. We consider
the null hypothesis H : θ ∈ ΘH concerning the parameter θ, with the alternative
hypothesisK : θ ∈ ΘK , where ΘH and ΘK are subsets of Θ such that ΘH∪ΘK = Θ
and ΘH ∩ΘK = Ø. We assume that if θ were known one would also know whether
or not the hypothesis is true. If ΘH (ΘK) contains only a single element, then the
considered hypothesis is called ”simple”, otherwise is said to be ”composite ”.

In the experiment we observe a random variable X = (X1, X2, . . . , Xn), and
this observation can lead to one of two possible decisions: either d0 (to accept H,
and to reject K), or d1 (to accept K, and to reject H). Traditionally we denote d0

by zero, and d1 by one. Hence, a decision rule (a statistical test) can be defined
as a function ϕ : X → {0, 1}, where X is a sample space. Such a test is also
called a non-randomized statistical test, contrary to a randomized statistical test
ϕ̃ : X → [0, 1] which uses an additional random mechanism (independent from X)
to undertake the decision. Each statistical test divides the sample space X into
two exclusive subsets: {x ∈ X : ϕ(x) = 0} - the set of the acceptance of H, and
K = {x ∈ X : ϕ(x) = 1} - the set of the rejection of H (the acceptance of K) which
is also called ”a critical region”. In practice, we compute a certain test statistic
T (X) (i.e. a function of the observations), then we find a critical region K, and
finally we reject the considered hypothesis if T (X) ∈ K or accept it otherwise.

Our decision can be either right or we can commit one of two possible errors: to
reject H when it is true (type I error), or to accept H when it is false (type II error).
The optimal test would minimize the probabilities of both errors simultaneously,
but such a test doesn’t exist. Therefore, in practice we set an upper limit for
the probability of type I error: Eθϕ(x) ≤ δ, ∀θ ∈ ΘH where δ is usually a small
number (e.g. 0.01, or 0.05) and then we select a test which minimize the probability
of type II error. In this case we also say that our test maximizes its power, i.e. the
probability of the rejection of H when it is false. The power of test is of interest
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mainly while comparing different tests in order to find an optimal one. We say
that the test ϕ is more powerful than the test ψ if{

Eθϕ(x) ≥ Eθψ(x), ∀θ ∈ ΘK

Eθϕ(x) > Eθψ(x), for a certain θ ∈ ΘK .

The test which is more powerful than all other tests is called ”uniformly most
powerful”.

The approach to the problem of statistical testing described above was estab-
lished by Neyman and Pearson. There exist also other approaches, e.g. Bayesian
and minimax. Let L : Θ× {d0, d1} → R be a loss function. We interpret its value
L(θ, di) as our loss when the true value of the parameter is θ and we undertake the
decision di. The expected value of the loss function

R(θ, ϕ) = EθL(θ, ϕ(x)), θ ∈ ΘH

is called a risk.
In the Bayesian approach a prior probability distribution π(θ) is imposed on

the set Θ. The prior distribution π(θ) describes initial subjective opinions (a prior
information) about possible values of θ. Knowing the prior distribution we can
calculate the Bayes risk

r(π, ϕ) =
∫
Θ

R(θ, ϕ)π(dθ).

For a given prior distribution an optimal Bayes test ϕ is that one which minimizes
the Bayes risk, i.e.

r(π, ϕ) ≤ r(π, φ), ∀φ ∈ Φ,

where Φ is a set of possible tests. Unfortunately, in order to apply this method it
is necessary to assume that θ is a random variable and that its distribution π(θ)
is known. This assumption is usually not warranted in applications. If no prior
information regarding θ is available one might consider the maximum of the risk
function to be the most important feature. Of two tests the one with a smaller
maximum is then preferable, and the optimal test ϕ0, called a minimax test, is
that which minimizes the maximal risk,i.e.

sup
θ∈Θ

R(θ, ϕ0) = inf
ϕ∈Φ

sup
θ∈Θ

R(θ, ϕ).

Since this maximum represents the worst average loss that can result from the use
of a given procedure, the minimax solution is one that gives the greatest protection
against large losses. For more details concerning the traditional theory of testing
statistical hypotheses we refer the reader to [7, 22].

3 A formal description of the hypotheses testing
problem

The notions defined in the previous section can be used for a formal description of
the hypotheses testing problem.
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Definition 1 Testing hypotheses is a decision problem described by an ordered 7-
tuple

(X ,P,H,D,Φ,U ,W) ,

where: X is a sample space (possible states), P is a family of probability distri-
butions, H is a set of hypotheses, D is a set of decisions, Φ is a set of tests, U is
a utility function, and W is a preference function on the set of tests Φ.

The utility function U may be interpreted (depending on the applied approach)
as a confidence level, the loss function or the risk, whereas the preference function
W may be interpreted as the power of test, the Bayes risk, or the maximal risk.
Both U and W we call sometimes requirements.

As it has been already stated in Introduction, the traditional approach might
not be sufficient in the real life. A generalization of the classical theory that takes
into account non-random uncertainty and lack of precision is really needed in prac-
tice. A fuzzy approach could be useful to describe all imprecision by ”fuzzyfying”
all elements of the 7-tuple which describes the decision problem in the presence of
non-random uncertainties. However, it seems reasonable to restrict ourselves only
to fuzzyfication of the space of possible states X , and of the set of hypotheses H.
In the case of fuzzy states we can deal with imprecise observations such as: ”is
close to 5”, ”somewhere between 6 and 8”, ”a lot of”, etc. In the case of fuzzy
hypotheses we can formulate them, for example, in a form ”H : θ is close to 5”,
etc. Fuzzy observations may lead to fuzzy decisions D and fuzzy tests Φ. The lack
of precision can be also taken into account by the fuzzyfication of U or W.

4 Testing hypotheses with fuzzy data

Testing hypotheses with fuzzy data is discussed by Casals, Gil, and Gil [3, 4, 5, 8].
The starting point of their papers comes from the paper of Tanaka,Okuda, and Asai
[31], who introduced the notion of the fuzzy information system A = {(Ai, µi) :
i ∈ I}, i.e., a set of fuzzy observations which fulfill additionally the orthogonality
constraint: ∑

i∈I

µi(x) = 1, ∀x ∈ S,

where Ai ⊂ S ⊆ R, I is a set of indexes, and µi : S → [0, 1] is a membership
function. So we have X = An.

In their papers, Casals,Gil, and Gil used Zadeh’s concept of the probability of
fuzzy event

P̃ (A1, . . . , An) =
∫
Sn

µ1(x1) . . . µn(xn)dP (x1, . . . , xn),

where P is a probability distribution on Sn.
For the model given above, Casals, Gil, and Gil [3] proposed a new version of

the Neyman-Pearson Lemma which supplies the uniformly most powerful test for
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simple hypotheses H : θ = θ0, K : θ = θ1

ϕ(X1, . . . , Xn) =
{

1, when P̃1(X1, . . . , Xn) > c0P̃0(X1, . . . , Xn)
0, otherwise

for a given significance level δ.
Casals, Gil, and Gil proposed also a method of constructing the optimal Bayesian

and minimax tests. The approach proposed by Casals, Gil, and Gil has, however,
some weak points. First, a finite set of possible observations has to be specified in
advance. This precludes the usage of their test in the cases of observations that
are only countable or even uncountable. Secondly, the orthogonality constraint has
to be fulfilled. That condition is rather of a technical nature and is not natural
for practical applications. Moreover, it precludes the existence of two observations
which are described simultaneously by nondecreasing or nonincreasing membership
function (such as, for example, ”rather greater than 50”). In order to weaken the
orthogonality constraint in the fuzzy information system Casals, Gil, and Gil [3]
consider, so called, almost surely scale invariant tests. They conclude that given
any set consisting of a finite number of fuzzy events we may construct a corre-
sponding fuzzy information system leading to the same inference. More precisely,
for any test ϕ based on fuzzy observations O = {(Oi, νi) : i = 1, 2, . . . ,m} there
exist a corresponding fuzzy information system A = {(Ai, µi) : i = 1, 2, . . . ,m} and
an optimal almost surely scale invariant test ϕ′ based on A, for which probability
of type I and type II error coincides with the corresponding probabilities of ϕ. O
and A are connected in the following way:

ν1(x1) . . . νm(xm) = Cµ1(x1) . . . µm(xm)

for almost all (x1, . . . xm) ∈ Sm, where C is a given positive constant.
Unfortunately the assertion that we can find a fuzzy information system A cor-

responding to any space of fuzzy observations O satisfying the equation given above
is not true. A space O which includes at least two observations with nondecreasing
or nonincreasing membership function is a simple counterexample. We can also
prove a more general lemma:

Lemma 1 Let S be a measurable space with a measure λ. Let O = {(Oi, νi) : i =
1, 2, . . . ,m} denote a set of fuzzy observations, i.e., Oi ⊂ S and νi : S → [0, 1]. If
there exist at least two observations (Oj , νj) and (Ok, νk) in O such that:

1. supp(νj)÷supp(νk) ⊇ U , where U ⊂ S, λ(U) > 0 and ÷ is a symmetric
difference of sets;

2. νj(x) = νk(x) = 1 for x ∈ V , where V ⊂ S, λ(V ) > 0;

then it is not possible to construct the optimal almost surely scale invariant test
corresponding to O.
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Proof. Without loss of generality we may assume that m = 2.
Let us take two fuzzy observations (O1, ν1), (O2, ν2) satisfying conditions 1), 2)

of the lemma . Then we can take two points a ∈ U and b ∈ V such that

ν1(a) = α, 0 < α ≤ 1
ν1(b) = 1,
ν2(a) = 0,
ν2(b) = 1.

Suppose, on the contrary, that we can construct the optimal almost surely scale
invariant test corresponding to any set of fuzzy observations O. Then we should
have a corresponding fuzzy information system (A1, µ1) and (A2, µ2) a positive
constant C such that:

ν1(x1)ν2(x2) = Cµ1(x1)µ2(x2) for almost all (x1, x2) ∈ S2. (1)

We thus get
ν1(a)ν2(a) = 0 = Cµ1(a)µ2(a), (2)

ν1(b)ν2(b) = 1 = Cµ1(b)µ2(b), (3)

ν1(a)ν2(b) = α = Cµ1(a)µ2(b), (4)

ν1(b)ν2(a) = 0 = Cµ1(b)µ2(a). (5)

Since (A1, µ1) and (A2, µ2) satisfy the orthogonality constraint, we also have

µ1(a) + µ2(a) = 1, (6)

µ1(b) + µ2(b) = 1. (7)

From (2) we get µ1(a) = 0 or µ2(a) = 0, but from (4) we conclude that µ1(a) 6=
0 and µ2(a) = 0. Similarly, from (5) it follows that µ1(b) = 0 or µ2(a) = 0, but (3)
gives µ1(b) 6= 0 and µ2(a) = 0. Hence (6) shows that µ1(a) = 1. Thus from (4) we
get µ2(b) = α/C. Therefore (3) leads us to the conclusion, that µ1(b) = 1/α. If
α < 1 then µ1(b) > 1 which is impossible. If α = 1 then µ1(b) = 1, but from (7)
we get µ2(b) = 0 which is impossible as well.

The same reasoning applies to any choice of points a ∈ U and b ∈ V . Thus
equation (1) is not fulfilled on the set U×V . Since λ(U) > 0 and λ(V ) > 0 we have
λ(U × V ) > 0. This contradicts the assertion that we can find a fuzzy information
system leading to the almost surely scale invariant test corresponding to any set of
observations and proves our lemma. �

The reformulation of the Neyman-Pearson Lemma by Casals et al., though in-
teresting, does not bring the problem close to reality. It is a well-known fact that
the application of tests based directly on the Neyman-Pearson Lemma is minimal,
and is limited only to the case of simple hypotheses. This lemma is extremely
important as the starting point for the construction of other tests such as uni-
formly most powerful tests for composite hypotheses (the Karlin-Rubin theorem).
It seems, however, that the generalization given by Casals, Gil, and Gil doesn’t let
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us to make such an extension for testing composite hypotheses with fuzzy data.
Moreover, the application of the test proposed by Casals et al. leads to very impor-
tant computational problems. Practically these problems preclude the test from
the usage even in the case of moderate samples. To overcome these problems Casals
and Gil [5] proposed a modification based on the Central Limit Theorem. However,
we don’t know the accuracy of this approximation. Another problem arises when
we analyze the conditions under which the test based on the Zadeh’s definition
of the probability could be used. In this approach the probability distribution is
known explicitly, and the probabilities of events are not fuzzy. Hence, we deal
with the case of uncertain observations of intrinsically non-fuzzy events driven by
a probabilistic distribution of a known type, which raises some doubts. Moreover,
no specific features of the fuzzy set theory are used except the notion of the mem-
bership functions, and thus this model could be regarded as a classical one only
with a specific probability measure.

The problem of testing hypotheses with fuzzy data is also considered by Son,
Song and Kim [29]. In many situations it is hard to find the uniformly most
powerful test based on the Neyman-Pearson lemma or such a test does not even
exist. To overcome these difficulties the locally most powerful test which maximizes
the slope of the power function of the test at a certain desired point has been
suggested. Son, Song and Kim present a reformulation of the generalized Neyman-
Pearson lemma and propose a construction of the locally most powerful test for
the fuzzy information system. Their paper has all weak points analogous to those
discussed above. The reader may also have an impression that the considered
problems could be solved on the basis of the traditional probability theory and the
use of fuzzy sets is a little bit artificial.

5 Testing fuzzy hypotheses

The problem of testing fuzzy hypotheses has been considered independently by
many authors. In their papers, techniques specific to fuzzy sets are widely used,
contrary to the results described in the previous section. Therefore, new problems,
non-existent in the traditional statistical approach, arise.

5.1 Bayesian approach

Delgado, Verdegay, and Vila [6] consider the Bayesian approach to the problem of
testing fuzzy hypotheses. They use the Representation (Decomposition) Theorem
and transform the original fuzzy hypothesis H to the problem of crisp hypotheses
testing on a family of α-cuts

Hα = {θ ∈ Θ : µH(θ) > α}, α ∈ [0, 1];

H =
⋃
α

αHα,

where µH : Θ → [0, 1] is a membership function of the hypothesis H.
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As a result of this simple and natural transformation we arrive, however, at a
fuzzy decision. To deal with this problem Delgado et al. proposed to consider the
following quantity

α0 = sup{α : Hα is accepted}.
The value of α0 describes a maximal α-cut for which the hypothesis is accepted.
In their paper Delgado et al. considered two types of hypotheses. First, one-sided
hypotheses defined by a membership function

µH(θ) =

 0, θ < θ0
Γ(θ), θ0 ≤ θ < θ1
1, θ ≥ θ1

where Γ : R → [0, 1] is a continuous non decreasing (non increasing) function
such that Γ(θ0) = 0, Γ(θ1) = 1 (or Γ(θ0) = 1, Γ(θ1) = 0). Secondly, two-sided
hypotheses defined by a membership function

µH(θ) =
{
M

(
θ0−θ

a

)
, θ ≤ θ0

M
(

θ−θ0
a

)
, θ > θ0

where a ∈ R+, M : R → [0, 1] is a non increasing smooth function such that
M(0) = 1 and limx→∞M(x) = 0.

The solution proposed by Delgado et al. has the virtue of simplicity. But
it has its shortcomings: disregarding alternative hypotheses and considering only
situation with a single observation.

Another approach was proposed by Saade and Schwarzlander [27]. They con-
sider the problem of testing a crisp null hypothesis H0 : θ = θ0, where θ is the
expected value of the Gaussian distribution, against a fuzzy alternative H1 : θ =
θ0 +a, where a is a normal triangular fuzzy number. Similarly in Saade [26] a fuzzy
null hypothesis H0 : θ = θ0 + b, where b is also a triangular fuzzy number, is con-
sidered. In both cases the authors arrive at decisions described by fuzzy numbers.
To obtain a crisp decision they suggest to use either a ”total distance criterion”

T (a) =

1∫
0

1
2

(A′α +A′′α) dα

or ”utility ranking index”

Fu(a) =

1∫
0

ln (A′αA
′′
α) dα

where A′α = inf{x ∈ R : µa(x) ≥ α}, A′′α = sup{x ∈ R : µa(x) ≥ α}, α ∈ [0, 1].
In order to compare their test with a crisp minimax test Saade and Schwarz-

lander introduced as a preference function a ”fuzzy Bayes risk” defined as follows:

FBR =
∫
Z0

[P0c00λ0R + P1c01λ1R] dR+
∫
Z1

[P0c10λ0R + P1c11λ1R] dR
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where P0 and P1 are the prior probabilities of H0 and H1, respectively; cij , i, j = 0,
describe the loss when the i-th hypothesis is accepted when the j-th is really true;
Zi, i = 0, 1, is a subset of the space of states for which the acceptance of the
i-th hypothesis is preferred; λiR are so called fuzzy likelihood functions calculated
for this test for given fuzzy numbers a and b (i.e. λiR is a fuzzy number induced
from the fuzzy numbers a or b, respectively, by the map which is the conditional
probability density function of the data under hypothesis Hi).

The results of Saade and Schwarzlander were obtained only for a specific case:
under rather restrictive assumptions of one observation, triangular fuzzy numbers,
and the Gaussian distribution. Moreover, the authors didn’t analyze the choice
of the appropriate index to compare two fuzzy numbers. However, their results
are valuable for at least two reasons: both null and alternative hypotheses are
considered and the obtained results were applied in practical situations [28].

Both preceding methods have all advantages and disadvantages of the Bayesian
approach. Its weakest point is the necessity to know precisely a prior distribution
of the considered parameter. But it is not our purpose to discuss here the principles
of Bayesian analysis, which is a problem rather of a philosophical nature. We just
want to point out only one strange feature of the methods presented above.

Both Delgado et al. and Saade et al. assume that the prior distribution does
not depend on the level of α-cuts, so it is constant. This condition is, in our
opinion, questionable. Because for crisp observations and precisely defined prior
distribution, using well-known statistical methods one would get well-defined and
unique posterior distribution. Thus when we have precise prior information, testing
fuzzy (i.e. imprecise) hypotheses is useless. In practice, it seems more natural to
consider situations with fuzzy prior information, and then testing fuzzy hypotheses.
Such approach to Bayes estimation and reliability analysis has been adapted by
Hryniewicz [11, 14] and Nagata [23].

5.2 Classical approach

Classical, i.e. Neyman-Pearson, approach to the hypotheses testing was considered
in the paper of Watanabe and Imaizumi [33]. They propose to transform a fuzzy
problem into a set of crisp problems defined for α-cuts. For a given α-cut a classical
test problem is solved. Then the results are aggregated in a form of a fuzzy decision
R represented by a membership function

χR(0) =

{
sup

{rδ(0)=0}
µH(θ), if {θ : rδ(θ) = 0} 6= ∅

0, if {θ : rδ(θ) = 0} = ∅
χR(1) = 1− χR(0)

where

rδ(θ) =
{

0, if T (θ) /∈ K(δ, θ)
1, if T (θ) ∈ K(δ, θ) ,

T (θ) is a test statistics, and K(δ, θ) is a critical region for a given significance level
δ.
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Watanabe and Imaizumi propose also another solution in which they use a fuzzy
critical function Φ described by a membership function

χΦ(j) =

{
sup

{rδ(0)=0}
µH(θ), if {θ : rδ(θ) = j} 6= ∅

0, if {θ : rδ(θ) = j} = ∅
, for j = 0, 1.

To investigate properties of fuzzy tests they use a minimal power function defined
as

L∗δ(θ0) = inf
{θ:µH(θ)≥α,α∈(0,1]}

P{T (θ) ∈ K(δ, θ) |θ0}.

They suggest also another method of investigations with the help of a generalized
power function EθΦ defined as follows:

(EθΦ)α = EθΦα

for α ∈ (0, 1], where (·)α stands for the α-cut and the right hand side is defined by
the Aumann integral [2].

Watanabe and Imaizumi proposed a general model which covers many specific
cases, and illustrated their theoretical results with very good examples. The only
point of criticism is related to their approach to the alternative hypotheses. At first,
they set rather restrictive assumptions on the form of the alternative hypothesis,
i.e. it should belong to the set

H0 ∩

 ⋃
α∈[0,1]

αI

 ⋃
{θ:µH(θ)≥α}

ΘK,θ0




where H0 is a complement of a null hypothesis, and ΘK,θ0 is a set of alternatives
to the null hypothesis H0 : θ = θ0. But actually the construction of the test and
consequently, the result of testing, does not depend on the alternative hypothesis.

6 Testing fuzzy hypotheses using fuzzy data

This general case was considered in the book of Kruse and Meyer [19]. Practical
applications of the methodology proposed by Kruse and Meyer can be found in
the papers of Höppner [9] and Höppner and Wolff [10] devoted to control charts
in statistical quality control. Kruse and Meyer use the notion of a fuzzy random
variable introduced by Kwakernaak [20]. In this approach fuzzy observations come
from a probability distribution with a fuzzy parameter (e.g. from the Gaussian
distribution with the mean expressed as ”close to one”). Kruse and Meyer consider
also fuzzy hypotheses (both one-sided and two-sided) which are described by convex
and normal fuzzy numbers. It is easy to notice that applying the Kruse and Meyer
approach to composite hypotheses it is necessary to introduce some ordering on
the set of possible hypotheses. It stems from the fact that fuzzy numbers are not
linearly ordered. In their book Kruse and Meyer use the following order

∀α ∈ [0, 1] µ ≤ ν ⇐⇒ (inf µα ≤ inf να and supµα ≤ sup να)
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where µ, ν are two fuzzy numbers and µα, να are their α-cuts. They are, however,
not consequent, and in the case of one-sided hypotheses they don’t use this order.

Kruse and Meyer transform a testing problem to N crisp tests on the set of
α-cuts. Next, they reject the null hypothesis if at least k out of N α-levels lead to
rejection. Both k and the set of α-levels {α1, . . . , αN} ⊆ [0, 1) are chosen arbitrary
in advance. Here is the formal description of the test function:

ϕ(X1, . . . , Xn) =
{

1, if
∑
ϕi(X1, . . . , Xn) ≥ k

0, otherwise

where

ϕi(X1, . . . , Xn) =
{

1, if Tαi(X1, . . . , Xn) ∈ Kαi(δ)
0, otherwise ,

Tα, Kα are the α-cuts of the test statistics T and the critical region K (for a given
significance level δ), respectively.

The method proposed by Kruse and Meyer is very simple to apply in practice. It
is, however, open to a serious criticism. First, the choice of α-cuts and the number
k is arbitrary. Therefore, by choosing appropriate α-cuts we can accept or reject
any hypothesis. Secondly, the connection between the original hypothesis and the
final one seems to be rather loose. It is not known how to choose k, and how should
it depend on N . Moreover, it is sometimes assumed (see Höppner and Wolff [10])
that the tests on α-cuts are mutually independent; and this - in general - is not
true. Therefore, the model of Kruse and Meyer despite its nice mathematical form
of presentation is not sufficient for dealing with practical cases.

7 Other approaches

There are also a few papers, dealing with particular practical problems, in which a
necessity of testing hypotheses under the lack of precision reveals. These are papers
devoted to acceptance sampling [12, 13, 15, 24, 30], statistical process control [9,
10, 18, 21, 25, 32] or reliability analysis [11, 14, 16, 17]. However interesting, they
are not universal and in general, they might be treated as particular cases of the
situations considered above. So we do not discuss them here. But we want to
mention briefly new ideas that could be found there.

7.1 Testing hypotheses with fuzzy requirements

Ohta and Ichihashi [24] design a single-sampling inspection plans by attributes
when the producer and consumer’s risk are not exact but approximate, e.g. ”about
δ”. In fact, their problem is: given probabilities δ and β (i.e. type I error and type
II error, respectively), construct a test for the binomial parameter (i.e. find a
sample size n and an acceptance value c). But contrary to the classical situation,
probabilities δ and β are not real but fuzzy numbers now. Their idea to test
hypotheses with fuzzy requirements was applied in further papers [15, 16, 17, 18,
30]. This approach was extended by Arnold [1]. He considered statistical tests with
continuously distributed test statistic under fuzzy constraints on the probabilities
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δ and β of the errors. He also presented how to determine a test maximizing, so
called, degree of satisfaction, which is a function of the errors and a sample size.

7.2 Testing fuzzy hypotheses with fuzzy data and require-
ments

This, up till now, most general problem have been considered by Hryniewicz in [12]
and [13]. Though actually devoted to acceptance sampling, these papers contain a
statistical test for the binomial parameter. Namely, the problem is how to construct
an optimal test for vague data and imprecise admissible probabilities of both errors
(i.e. type I error and type II error). Unfortunately, even for the crisp situation,
there is no explicit solution generally. But in classical problem there exist many
approximate methods to solve it. By means of the extension principle, Hald’s
approximate solution has been ”fuzzyfied” and used for our fuzzy problem. Thus
we’ve got fuzzy critical region K. Using fuzzy addition and multiplication, we’ve
got also fuzzy test statistic T (X). As we have mentioned in Section 2, it suffices
to check, whether T (X) ∈ K, to undertake a decision. But in our case, we have
to compare actually two fuzzy numbers. As it is known, there are many different
methods for ranking fuzzy numbers. In order to find the best method for our
decision problem an extensive simulation experiment was performed [12]. The
results of simulations demonstrate rather strictly that, in general, none of the
method is the best one (which is not surprising). They also show which methods
are superior to other and which are totally unacceptable for our problem.
But the most important conclusion is that the result of a test depends strongly on
the ordering criterion. Thus it is worth pointing out that two necessary conditions
should be fulfilled. Firstly, we should fit a method of ranking, to the nature of
the problem. Secondly, this method should be chosen before a testing procedure
is started. Otherwise, any hypothesis could be accepted or rejected for the same
data, just by the appropriate selection of the ordering criterion.

8 Concluding remarks

From the overview of the existing papers on the problem of testing statistical
hypotheses in fuzzy environment it is easily seen that the results obtained yet are
not sufficient for the construction of a more general theory. In our view such a
theory should have a hierarchical structure of the form presented in Fig.1.

Statistical tests applied for practical tasks should be regarded as particular cases
of the general theory. At present this ultimate goal seems to be rather distant.
However, it should be kept in mind while building any new methodology of testing
statistical hypotheses in fuzzy environment.
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Fig. 1. The structure of a general theory of testing statistical
hypotheses in fuzzy environment.
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