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Abstract

Fuzzy clustering extends crisp clustering in the sense that objects can

belong to various clusters with different membership degrees at the same

time, whereas crisp or deterministic clustering assigns each object to a unique

cluster. The standard approach to fuzzy clustering introduces the so-called

fuzzifier which controls how much clusters may overlap. In this paper we

illustrate, how this fuzzifier can help to reduce the number of undesired local

minima of the objective function that is associated with fuzzy clustering.

Apart from this advantage, the fuzzifier has also some drawbacks that are

discussed in this paper. A deeper analysis of the fuzzifier concept leads us to

a more general approach to fuzzy clustering that can overcome the problems

caused by the fuzzifier.

1 Introduction

Clustering is an exploratory data analysis technique and is applied in the data
analysis process at a state where no precise model of the data is known. Therefore,
it is necessary that the clustering process is self-guided as far as possible and will
avoid unsuitable clustering results that do not reflect the structure of the data set
properly.

Most fuzzy clustering techniques aim at minimizing an objective function that
usually has a number of undesired local minima. After briefly reviewing the basic
principles of fuzzy clustering, we illustrate in section 2, why fuzzy clustering can
reduce the number of local minima in comparison to crisp clustering. However, the
objective function associated with fuzzy clustering can sometimes also be mislead-
ing. We discuss and analyze some of the drawbacks of fuzzy clustering in section
3. Based on the analysis provided in section 3 we propose new approaches to
fuzzy clustering to overcome these drawbacks in section 4 and conclude the paper
with some recommendations for the implementation of the proposed algorithms in
section 5.
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2 Why Fuzzy Clustering

The most common approach to fuzzy clustering is the so called probabilistic clus-
tering with the objective function

f =
c
∑

i=1

n
∑

j=1

um
ijdij (1)

that should be minimized under the constraints

c
∑

i=1

uij = 1 for all j = 1, . . . , n, (2)

and uij ∈ [0, 1] for all i ∈ {1, . . . , c} and all j ∈ {1, . . . , n}.

It is assumed that the number of clusters c is fixed. We will not discuss the
issue of determining the number of clusters here and refer for an overview to [4, 10].
The set of data to be clustered is {x1, . . . , xn} ⊂ IRp. uij is the membership degree
of datum xj to the ith cluster. dij is some distance measure specifying the distance
between datum xj and cluster i, for instance the (quadratic) Euclidean distance
of xj to the ith cluster centre. The parameter m > 1, called fuzzifier, controls
how much clusters may overlap. The constraints (2) lead to the name probabilistic
clustering, since in this case the membership degree uij can also be interpreted as
the probability that xj belongs to cluster i.

The parameters to be optimised are the membership degrees uij and the clus-
ter parameters that are not given explicitly here. They are hidden in the distances
dij . Since this is a non-linear optimisation problem, the most common approach
to minimize the objective function (1) is to alternatingly optimise either the mem-
bership degrees or the cluster parameters while considering the other parameter
set as fixed. Of course, there are other strategies to minimize the objective func-
tion. However, the alternating optimisation scheme seems to be the most efficient
algorithm for this objective function.

In this paper we are not interested in the great variety of cluster shapes (spheres,
ellipsoids, lines, quadrics,. . .) that can be found by choosing suitable cluster pa-
rameters and an adequate distance function. (For an overview we refer again to
[4, 10].) We only concentrate on the aspect of the membership degrees.

Taking the constraints in equation (2) into account by Lagrange functions, the
minimum of the objective function (1) with respect to the membership degrees is
obtained at [2]

uij =
1

∑c

k=1

(

dij

dkj

)
1

m−1

, (3)

when the cluster parameters, i.e. the distance values dij , are considered to be
fixed. (If dij = 0 for one or more clusters, we deviate from (3) and assign xj with
membership degree 1 to the or one of the clusters with dij = 0 and choose uij = 0
for the other clusters i.)
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If the clusters are represented by simple prototypes vi ∈ IRp and the distances
dij are the squared Euclidean distances of the data to the corresponding cluster
prototypes as in the fuzzy c-means algorithm, the minimum of the objective func-
tion (1) with respect to the cluster prototypes is obtained at [2]

vi =

∑n

j=1 um
ij xj

∑n

j=1 um
ij

, (4)

when the membership degrees uij are considered to be fixed. The prototypes are
still the cluster centres. The cluster prototypes are simply the weighted centres of
gravity where the weighting is based on the membership degrees.

The fuzzy clustering scheme using alternatingly equations (3) and (4) is called
fuzzy c-means algorithm (FCM). As mentioned before, more complicated cluster
shapes can be detected by introducing additional cluster parameters and a modified
distance function. Our considerations apply to all these schemes, but it would lead
too far to discuss them in detail.

However, we should mention that there are alternative approaches to fuzzy
clustering than only probabilistic clustering.

Noise clustering [5] maintains the principle of probabilistic clustering, but an
additional noise cluster is introduced. All data have a fixed (large) distance to the
noise cluster. In this way, data that are near the border between two clusters, still
have a high membership degree to both clusters as in probabilistic clustering. But
data that are far away from all clusters will be assigned to the noise cluster and have
no longer a considerable membership degree to other clusters. Our investigations
and our alternative approaches fit also perfectly to noise clustering.

We do not cover possibilistic clustering [13] where the probabilistic constraint is
completely dropped and an additional term in the objective function is introduced
to avoid the trivial solution uij = 0 for all i, j. However, the aim of possibilistic
clustering is actually not to find the global optimum of the corresponding objective
function, since this is obtained, when all clusters are identical [15].

Another approach that emphasizes a probabilistic interpretation in fuzzy clus-
tering is described in [7] where membership degrees as well as membership probabil-
ities are used for the clustering. In this way, some of the problems of the standard
FCM scheme can be avoided as well. However, this approach assumes the use of
the Euclidean or a Mahalanobis distance and is not suitable for arbitrary cluster
shapes as in shell clustering.

Before we take a closer a look at the problems caused by fuzzy clustering, we
will examine the advantages of fuzzy clustering over crisp clustering. Of course, one
of the main advantages of fuzzy clustering is the ability to express ambiguity in the
assignment of objects to clusters. But apart from this, experimental results prove
that fuzzy clustering seems also to be more robust in terms of local minima of the
objective function. Although we cannot give a general proof that fuzzy clustering
is more robust than deterministic (crisp) clustering, we can at least support this
conjecture by analyzing some examples in detail.

Crisp clustering uses the same objective function (1) including the constraints
specified in (2). However, instead of allowing the membership degrees uij to assume
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Figure 1: An undesired clustering result

values between 0 and 1, crisp clustering reduces the choice to either zero (not
assigned to the corresponding cluster) or one (fully assigned to the corresponding
cluster). In this case, the fuzzifier m has no effect at all. For crisp clustering the
update equation (3) for the membership degrees is replaced by simply assigning
each data vector xj with membership degree one to the cluster i to which it has the
smallest distance dij and choosing membership degree zero for the other clusters.

Figure 1 shows a simple artificial data set which we will use to illustrate one
of the problems of crisp clustering. When we randomly initialise the cluster proto-
types, the hard c-means algorithm (HCM) [6] – using the same form of the cluster
prototypes and the same prototype update equation as FCM, but assuming crisp
memberships uij ∈ {0, 1} – tends to converge in almost 30% of the cases to the
cluster partition and the prototypes indicated in the figure. This is definitely an un-
desired result. Although in the remaining 70% of the cases, HCM will converge to
the desired clustering result, this example shows that the HCM objective function
has – at least in this case – undesired local minima to which the alternating opti-
misation scheme might be attracted in a non-neglectable number of cases. When
we carried out the same experiment with FCM with fuzzifier m = 2, we always
obtained the desired prototypes located in the centres of the three spherical data
clusters.

The undesired clustering result in figure 1 is obviously a local minimum of the
HCM objective function. The left-most prototype is closer to the two data clusters
on the left-hand side and all data from them are assigned to this prototype. Once
the other two prototypes are too far away from the two data clusters on the left-
hand side, they can only share the data from the one data cluster on the right-
hand side. This means, in all cases where the randomly initialised prototypes are
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positioned in such a way that one of them is somewhere in the left half of figure
1 and the other two are positioned more to the lower right part, the alternating
optimisation scheme will end up in this undesired local minimum. In this case the
two prototypes on the right-hand side in figure 1 will never get a chance to capture
one of the data points of the two data clusters on the left-hand side.

Why does the same effect not occur with FCM? The update equation (3) never
yields zero membership degrees except for the case that the distance of a data
object to a cluster prototype happens to be zero. For FCM this can only occur,
when the coordinates of the data object coincide with the prototype coordinates.
This means that all data (almost) always influence all prototypes. So even in the
case that a single prototype captures the two data clusters on the left-hand side
of figure 1, these data will still slightly attract the other two cluster prototypes in
the FCM alternating optimisation scheme, in contrast to the HCM scheme where
the other two prototypes will take no notice of the data in the two clusters on the
left-hand side. Therefore, in the FCM case the two data clusters on the left-hand
side seem to have enough power to attract a second prototype to them, even if
there is one prototype very close to them and the other two are quite far away. So
it seems that the introduction of [0, 1]-valued membership degrees in FCM has a
smoothing effect on undesired local minima in the objective function of HCM.

Unfortunately, we cannot illustrate this effect by looking at the objective func-
tion in the HCM and FCM case. The free parameters in these objective functions
are the cluster prototypes and the membership degrees, the latter ones being also
constraint. From the derivation of the alternating optimisation scheme (see for
instance [2, 10]), we know how to choose the membership degrees, when we fix the
cluster prototypes. This applies to crisp and fuzzy clustering. Therefore, in order
to reduce the number of free parameters in the objective function, we can replace
the membership degrees uij by the corresponding update equation. For example,
in the case of FCM the objective function becomes

f =

c
∑

i=1

n
∑

j=1







1

∑c

k=1

(

‖xj−vi‖2

‖xj−vk‖2

)
1

m−1







m

‖ xj − vi ‖
2

with the free parameter vectors v1, . . . , vc ∈ IRp. In the example shown in figure 1
this means that we have c = 3 and p = 2, i.e. three prototype vectors v1, v2, v3 each
one having two components. All together we can think of an objective function
with six free parameters, too many to graphically illustrate it.

In order to understand the smoothing effect of fuzzy membership degrees on
undesired local minima in the objective function, we consider a simplified clustering
problem. First of all, we restrict ourselves to a one-dimensional data set (p = 1).
An objective function with two free parameters leads already to three-dimensional
landscape as its graphical representation. However, to create a similar effect as in
figure 1, we need at least three clusters. So even in the case of one-dimensional
data, we already end up with at least three free parameters, making a graphical
representation of the objective function impossible. Nevertheless, we can still con-
struct an illustrating example, when we assume that we have three clusters, but
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Figure 2: An extremely simple data set

Figure 3: Objective functions for Ncluster = 50, Nnoise = 10 of HCM, FCM with
m = 2 and FCM with m = 3 (left to right)

one of them is a noise cluster.
We consider a data set of the structure illustrated in figure 2. In each of the

intervals [−1, 1] and [4, 6] we place Ncluster equidistant data points and in the
interval [9, 11] we put Nnoise equidistant data points, where Ncluster ≫ Nnoise. So
we have two data clusters centred around 0 and 5 as well as some noise data near
10.

In figure 3 the objective functions for the data set with Ncluster = 50 and
Nnoise = 10 are illustrated. The noise distance was set to δ = 5. The leftmost
diagram shows the objective function for HCM, the middle one for FCM with
m = 2 and the right-most one for FCM with m = 3. The values on the x- and
y-axis determine the (one-dimensional) coordinates of the two cluster prototypes.
A darker colour in each diagram indicates a lower (better) value of the objective
function.

First of all, it is obvious that the objective functions must all be symmetric
with respect to the main diagonal. When we exchange the two cluster prototypes,
the value of the corresponding objective function will be the same. In all dia-
grams we can see strong local minima at approximately (0, 5) and (5, 0). This is
exactly what we expect: The prototypes are correctly positioned into the centres
0 and 5 (or vice versa) of the data clusters. However, in addition to these desired
(global) minima, there are other undesired local minima, namely at approximately
(0, 10), (5, 10), (10, 0), (10, 5). For these local minima one prototype covers one of
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Figure 4: Objective functions for Ncluster = 100, Nnoise = 10 of HCM, FCM with
m = 2 and FCM with m = 3 (left to right)

the data clusters, while the other prototype is mislead to the noise cluster. The
alternating optimisation scheme starts with a random initialisation somewhere in
these diagrams and will then slide down to the corresponding (usually the closest)
local minimum of the objective function. From figure 3 it can been seen that the
four undesired local minima are present in the HCM objective function, two of
them gone in the case of FCM with fuzzifier m = 2 and all of them completely
vanish for FCM with fuzzifier m = 3.

Figure 4 shows this effect even stronger, when the density of the data clusters
is increased by setting Ncluster to 100, while keeping the other parameters as in
figure 3.

3 Bad Effects of the Fuzzifier

In the previous section we have seen that fuzzy clustering has advantages over
hard clustering, at least for the examples we have discussed. This is mainly due
to the fact that in fuzzy clustering we allow the data to have some influence on a
prototype, even though they might only be assigned to the corresponding cluster to
a small degree. As we have mentioned already in the previous section, the standard
(probabilistic) fuzzy clustering approach even leads to the effect that all data have
influence on all cluster prototypes, no matter how far they are away from them.

Figure 5 shows an undesired side-effect of the probabilistic fuzzy clustering
approach. There are obviously three data clusters. However, the upper cluster has
a much higher data density than the other two. This single dense cluster attracts
the cluster prototype of the lower left data cluster so that this prototype migrates
completely into the dense cluster. Even the prototype covering the data cluster in
the far right is slightly drawn in the direction of the dense cluster. This effect will
even happen, when we position the cluster prototypes in the corresponding centres
of the data clusters. Although each single data object in the dense cluster has only
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Figure 5: Clusters with varying density

a small membership degree to the prototypes of the other clusters, there are so
many data objects in the dense cluster that they still manage to attract the other
prototypes.

Another counterintuitive effect of probabilistic fuzzy clustering occurs in the
following situation. Assume we have a data set that we have clustered already.
Then we add more data to the data set in the form of a new cluster that is far
away from all other clusters. If we recluster this enlarged data set with one more
cluster as the original data set, we would expect the same result, except that the
new data are covered by the additional cluster, i.e., we would assume that the
new, well separated cluster has no influence on the old ones. However, since we
never obtain zero membership degrees, the new data (cluster) will influence the old
clusters.

This means also that, if we have many clusters, clusters far away from the centre
of the whole data set tend to have their computed cluster centres drawn into the
direction of the centre of the data set.

These effects can be amended, when a small fuzzifier is chosen. The price for
this is that we end up more or less with hard clustering again and even neighbouring
clusters become artificially well separated, although there might be ambiguous data
between these clusters. And even a small fuzzifier will still lead to the effect that
all data have a certain influence on all clusters.

As we have mentioned in the previous section, the fuzzifier has no effect, when
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we consider crisp clustering (uij ∈ {0, 1}). Therefore, the most obvious generalisa-
tion from crisp to fuzzy clustering is not to use a fuzzifier at all, i.e. choose m = 1
for the fuzzifier. However, it is well known [2] that in this case even though we
allow membership degrees between zero and one, a (local) minimum of the ob-
jective function can only be obtained, when we stick to crisp memberships. This
was probably the main motivation for introducing the fuzzifier in the first step.
Looking at the fuzzifier from a more general point of view, we have to deal with
the objective function

f =

c
∑

i=1

n
∑

j=1

g(uij)dij (5)

under the constraints (2). In fuzzy clustering we have

g : [0, 1] → [0, 1], u 7→ um.

In other words, the fuzzifier is a special transformation function g applied to the
membership degrees within the objective function. In [11] a detailed general anal-
ysis of the required properties and the effects of such a transformation function
g was carried out. We need the following result from [11] here. When we want
to minimize the objective function (5) under the constraints (2) with respect to
the values uij , i.e., we consider the distances as fixed, the constraints lead to the
Lagrange function

L =

c
∑

i=1

n
∑

j=1

g(uij)dij +

n
∑

j=1

λj

(

1 −

c
∑

i=1

uij

)

and the partial derivatives

∂L

∂uij

= g′(uij)dij − λj . (6)

At a minimum of the objective function the partial derivatives must be zero, i.e.
λj = g′(uij)dij . Since λj is independent of i, we must have

g′(uij)dij = g′(ukj)dkj (7)

for all i, k at a minimum. This actually means that these products must be balanced
during the minimization process.

The balance equation (7) explains immediately, why we (nearly) never obtain
zero membership degrees in standard fuzzy clustering. Since in this case we have
g(u) = um and therefore g′(u) = m · um−1, we obtain g′(0) = 0. Satisfying the
balance equation (7) with at least one value uij = 0 means that all other products
g′(ukj)dkj must be zero as well. This can only be obtained in the rare case, when
we have dkj = 0 for some k or when we set all ukj to zero. But the latter case is
not in accordance with constraint (2).

The balance equation can also be understood in another way. Assume, we
do not know the explicit solution for the uij-values for the chosen transforma-
tion g in the alternating optimisation scheme. In order to minimize the objective
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function we might start with some ”good” first guess for the uij-values. We can
then compare the products occurring in the balance equation. When we have
g′(uij)dij < g′(ukj)dkj , we know the following (assuming that g′ is continuous).
When we increase uij by some very small value ε > 0 and decrease ukj by ε (main-
taining constraint (2) in this way), the value of the objective function will change
approximately by the following value:

∆f ≈ ε · g′(uij)dij − ε · g′(ukj)dkj = ε · (g′(uij)dij − g′(ukj)dkj) < 0.

Thus increasing uij and decreasing ukj slightly leads to a decrease in the objective
function and therefore to a better solution. At the end of the following section we
will develop a clustering algorithm that is based on this idea exploiting the balance
equation.

4 Replacing the Fuzzifier

This section is devoted to possible alternatives for the transformation g(u) = um

used in standard fuzzy clustering. In [14] the alternating optimisation scheme is
changed into an alternating (cluster) estimation scheme. The cluster prototypes
are still computed according to the update equation, whereas for the membership
degrees fixed functions depending only on the distances are prescribed. Thus the
idea of the objective function is completely dropped in favour of a purely heuristic
algorithm. This makes sense in the context of building fuzzy models with restricted
types of fuzzy sets. However, the price to be paid is loosing the interpretability of
the objectives the clustering has to meet in terms of the objective function as well
as some proven convergence properties [1, 3, 9].

In this paper we want to maintain the idea of the objective function and gen-
eralise the transformation function g. It is obvious that g should be increasing (a
higher membership degree leads to an increase in the objective function) and that
we want g(0) = 0 and g(1) = 1. Finally, from the balance equation (7) we can
see the following. For a minimum in the objective function we should have in any
case (also guaranteed by the requirement that g is increasing) g(uij) ≤ g(ukj), if
dij ≥ dkj holds. In order to avoid crisp clustering, the balance equation tells us
that g′ must also be increasing.

There is also a technical constraint for g. The alternating optimisation scheme
is already a price that we have to pay for the non-linearity of the objective function
in the parameters to be optimised. In order to keep the computational complexity
feasible, it is important that we can find the minimum of the objective function
with respect to the considered parameter set (either the membership degrees or the
cluster prototype parameters) in each single step of the alternating optimisation
scheme directly.

In [11] it was proposed to use the quadratic transformation

g(u) = αu2 + (1 − α)u, (0 < α < 1) (8)
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leading to

uij =
1

1 − β





1 + (ĉ − 1)β
∑

k:ukj 6=0
dij

dkj

− β



 (9)

as the update equation. This update equation requires to determine first which ukj

should be non-zero. ĉ is the number of clusters for data object xj to which xj has a
non-zero membership degree. The clusters with non-zero membership degrees are
determined in the following way. (For a mathematical derivation see [11].) For a
fixed j we can sort the distances dij in decreasing order. Without loss of generality
let us assume d1j ≥ . . . ≥ dcj. If there are zero membership degrees at all, we know
that for minimizing the objective function the uij-values with larger distances have
to be zero. (9) does not apply to these uij-values. Therefore, we have to find the
smallest index i0 to which (9) is applicable, i.e. for which it yields a positive value.
For i < i0 we have uij = 0 and for i ≥ i0 the membership degree uij is computed
according to (9) with ĉ = c + 1 − i0.

At the first glance this seems to contradict the balance equation (7), since the
balance equation is not satisfied for those j with uij = 0. However, we should
mention that (6) is not valid for the case uij = 0. Therefore, the balance equation
applies only to those uij with uij 6= 0.

The main structural difference between the standard transformation in fuzzy
clustering gstandard(u) = um (with m > 1) and the quadratic transformation g in
(8) can be found in the derivative at zero, namely g′standard(0) = 0, whereas g′(0) =
1 − α > 0. This explains again the effect, why in standard fuzzy clustering zero
membership degrees (nearly) never occur, whereas the quadratic transformation
g in (8) allows zero membership degrees. Consider a data object xj and assume
without loss of generality that d1j ≥ . . . ≥ dcj holds. We know that at least the
membership degree to the closest cluster c cannot be zero. Taking into account
that g′ is increasing, the highest possible value for the balance equation (6) for j is

dcj · g
′(1) = dcj · (1 + α). (10)

When we consider a cluster i that is further away from xj than the closest cluster
c, the smallest possible value for the balance equation is

dij · g
′(0) = dij · (1 − α). (11)

If (11) yields already a larger value than (10), we can immediately conclude that
uij = 0 must hold. In other words,

dcj

dij

<
g′(0)

g′(1)
=

1 − α

1 + α
(12)

implies uij = 0.
As an example, let us choose α = 0.5. This means that the right-hand side of

(12) is 1/3. If the closest cluster to data object xj is cluster c with distance dcj ,
then xj will have zero membership degree to any other cluster whose distance is at
least three times as big as dcj . Therefore, data objects that are close to one cluster
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will not influence the prototypes of clusters far away from it. In the case of noise
clustering data that are far away from all clusters (and therefore relatively ”close”
to the noise cluster), will have no influence on the proper clusters.

When we insert the transformation (8) into the objective function

f =

c
∑

i=1

n
∑

j=1

g(uij)dij

= α
c
∑

i=1

n
∑

j=1

u2
ijdij + (1 − α)

c
∑

i=1

n
∑

j=1

uijdij

= αfFCM,m=2 + (1 − α)fHCM,

we can see that this objective function represents a convex combination of the FCM
objective function with fuzzifier m = 2 and the HCM objective function. In this
sense, this approach tries to combine the advantages of fuzzy and crisp clustering
and to avoid their disadvantages.

In [12] an exponential transformation

g : [0, 1] → [0, 1], u 7→
1

eα − 1
(eαu − 1) (13)

was proposed, leading to the update equation

uij =
1

αĉ



α +
∑

k:ukj 6=0

ln

(

dkj

dij

)



 .

As in (9) ĉ is the number of clusters for which data object xj has non-zero member-
ship degrees. The clusters to which xj has zero membership degree are determined
analogously as in the case of (9).

When we compute the characteristic value (12) for the transformation (13), we
obtain

g′(0)

g′(1)
= e−α.

Finally, we present a new approach to fuzzy clustering that uses a piecewise
linear transformation that exploits the balance equation directly. We consider a
piecewise linear transformation of the structure shown in figure 6. We assume that
the horizontal axis is divided into T (T = 3 in figure 6) intervals of equal length:
0 = u0 < u1 < . . . < uT = 1 with ut+1 − ut = 1/T . On each of these intervals
the transformation is linear. On the interval [ut, ut+1] the transformation is a line
segment with g(ut) = gt and g(ut+1) = gt+1. We require that g′ is increasing where
it is defined, i.e. everywhere, except at u0, . . . , uT . Therefore, the line segments
must become steeper from left to right, i.e.

gt − gt−1 < gt+1 − gt. (14)
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Figure 6: A piecewise linear transformation

Instead of taking derivatives to obtain the update equations for the uij when
using the piecewise linear transformation function, we exploit the idea of using the
balance equation at the end of section 3. Since g′ is not continuous, the balance
equation cannot be satisfied exactly. A simple heuristic strategy to implement the
balancing idea would be the following. We consider a data object xj and sort
the distances in decreasing order: d1j ≥ . . . ≥ dcj . We start with ucj = 1 and
u1j = . . . = uc−1,j = 0. Now we compare the values from the balance equation, i.e.

gT − gT−1

1/T
dcj and

g1 − g0

1/T
dij .

When we decrease ucj by 1/T and increase uij by 1/T instead, the objective func-
tion will be changed by the value

∆f = (g1 − g0)dij − (gT − gT−1)dcj .

This means, if (gT − gT−1)dcj > (g1 − g0)dij holds, then ∆f will become negative
and the objective function will be decreased. In this case we would decrease ucj

and increase uij by 1/T .

In principle, we could continue this balancing scheme, until the value of the
objective function can no longer be decreased. However, this is not very efficient
from the computational point of view. Instead, we apply the following scheme.

For a data object xj we first set all values uij = 0. We then carry out T
steps. In each step one of the uij-values will be increased by 1/T . (Some of the
uij-values might be increased more than once.) Assume we have already carried
out t steps (t = 0 in the beginning). Assume uij has reached the value us ∈
{0, 1/T, 2/T, . . . , 1}, after we had carried out the t steps. Increasing uij from us to
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us+1 = us + 1/T leads to an increase of the value of the objective function of

∆f = (gs+1 − gs)dij . (15)

We now increase this uij-value (i = 1, . . . , c) by 1/T for which (15) yields the
smallest value and continue with the next step in the same way until we have
finished all T steps.

We can also show that this procedure minimizes the objective function, when
we fix the dij (the cluster centres in case of FCM). Consider a data object xj . Note
that we can treat the data objects independently, when we update the membership
degrees. Since our membership transformation is piecewise linear, for a minimum
of the objective function we should choose the membership degrees from the set
{0, 1/T, 2/T, . . . , 1}. Otherwise applying our trade-off concept, we could further
reduce the value of the objective function. We prove by induction over t that in
each step

c
∑

i=1

g(uij)dij (16)

(with fixed distances dij) is minimized under the constraint

c
∑

i=1

uij =
t

T
(17)

and, of course, requiring uij ∈ {0, 1/T, 2/T, . . . , 1}. For t = 0 this is obviously
true. For the induction step, let us assume as the induction hypothesis that (16)
is minimized by our procedure in all steps including step t. We now have to show

in the induction step that this also holds for step (t + 1). Let u
(t)
ij denote the

membership values we obtain after step t of our procedure. In our procedure only

one of the values u
(t)
ij is changed (increased by 1/T ), when we go from t to (t + 1).

Without loss of generality, let us assume that u
(t+1)
1j = u

(t)
1j +1/T and u

(t+1)
ij = u

(t)
ij

for i > 1.
Now assume that we do not minimize (16) in step (t + 1) anymore, i.e. there is

a configuration ũij satisfying the constraint (17) with

c
∑

i=1

g(ũij)dij <

c
∑

i=1

g
(

u
(t+1)
ij

)

dij . (18)

In this case we must have g(ũ1j) < g
(

u
(t+1)
1j

)

. Otherwise, according to (14) we

obtain

g

(

ũ1j −
1

T

)

d1j +

c
∑

i=2

g(ũij)dij < g

(

u
(t+1)
1j −

1

T

)

d1j +

c
∑

i=2

g
(

u
(t+1)
ij

)

dij

=
c
∑

i=1

g(u
(t)
ij )dij ,
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saying that we did not minimize (16) in step t which is a contradiction to the

induction hypothesis. Because of g(ũij) < g
(

u
(t+1)
ij

)

and since the ũij and the

u
(t+1)
ij both must obey (17), there must exist an index i ∈ {2, . . . , c} with ũij >

u
(t+1)
ij . Without loss of generality let us assume ũ2j > u

(t+1)
2j , at least by 1/T ,

since ũ2j , u
(t+1)
2j ∈ {0, 1/T, 2/T, . . . , 1}. Taking (17) and our iterative procedure

into account, we have

(

g (ũ2j) − g

(

ũ2j −
1

T

))

d2j ≥

(

g

(

u
(t)
2j +

1

T

)

− g
(

u
(t)
2j

)

)

d2j

≥

(

g

(

u
(t)
1j +

1

T

)

− g
(

u
(t)
1j

)

)

d1j .

With these inequalities and our induction hypothesis implying

c
∑

i=1

g
(

u
(t)
ij

)

dij ≤ g

(

ũ2j −
1

T

)

d2j +

c
∑

i=1,i6=2

g(ũij)dij

we finally obtain

c
∑

i=1

g
(

u
(t+1)
ij

)

dij =

(

g

(

u
(t)
1j +

1

T

)

− g
(

u
(t)
1j )
)

)

d1j +

c
∑

i=1

g
(

u
(t)
ij

)

dij

≤

(

g

(

u
(t)
2j +

1

T

)

− g
(

u
(t)
2j

)

)

d2j +

c
∑

i=1

g
(

u
(t)
ij

)

dij

≤

(

g (ũ2j) − g

(

ũ2j −
1

T

))

d2j +

c
∑

i=1

g
(

u
(t)
ij

)

dij

≤ g(ũ2j)d2j +
c
∑

i=1,i6=2

g(ũij)dij

=

c
∑

i=1

g(ũij)dij

which contradicts (18). This completes the induction proof.
Thus we can guarantee for convergence of our algorithm for the part of the

alternating optimization scheme, when membership degrees are updated. At least
for algorithms like FCM and the Gustafson-Kessel algorithm [8] convergence can
also be guaranteed for the update scheme of the cluster prototypes [1, 9].

When we use the piecewise linear transformation, we will not obtain arbitrary
membership degrees between zero and one, but only the values 0, 1/T, 2/T, . . . , 1.

With the piecewise linear transformation we can directly adjust how much a
cluster further away from a data object should be influenced by this data object in
comparison to a closer cluster. We can also avoid zero-membership degrees as they
occur in standard fuzzy clustering, if this is desired. We simply have to choose
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Figure 7: Clustering result using transformations

g1 = 0, so that the membership degrees will always be at least 1/T (unless we
have more than T clusters). HCM can be viewed as a special case of our balancing
algorithm with T = 1.

Using a piecewise linear transformation has the advantage that various prop-
erties of the clustering algorithm can be controlled at the time. We can control,
when zero membership degrees should occur (for which relative distances), and
we can also adjust how strong clusters should overlap. The first property is con-
trolled by the form of the transformation near zero, the second by the form of the
transformation near one. Although the approach using a piecewise linear transfor-
mation is computationally less efficient than the ones with quadratic or exponential
transformations, we gain more flexibility. The quadratic and the exponential trans-
formation both have only one parameter to control zero membership degrees and
cluster overlap at the same time. Using the piecewise linear transformation, we can
control both properties almost independently. However, in order to keep the num-
ber of parameters small and the computation feasible, T should be chosen small.
(We recommend T < 10.) In order to control zero membership degrees and cluster
overlap at the same time, T = 3 is already sufficient and should work in most of
the applications.

It should be mentioned that our fuzzy clustering algorithms with the quadratic,
exponential as well as the piecewise linear transformation can cope with the data
set shown in figure 5 and find the expected (correct) cluster centres as shown in
figure 7.
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5 Conclusions

We have discussed some advantages and disadvantages of probabilistic fuzzy (in-
cluding noise) clustering. It seems that the non-zero membership degree property
of probabilistic clustering has a smoothing effect on undesired local minima of the
objective function as we have illustrated in section 2. However, the same property
causes also problems in fuzzy clustering as we have shown in section 3. These bad
effects can be avoided by the modified transformations replacing the fuzzifier that
we have discussed in section 4. Nevertheless, there seems to be a certain trade-off
between the good and bad effects of fuzzy clustering. We have seen that our ap-
proach using the quadratic transformation can be viewed as a combination of HCM
and FCM. In this sense we have to find a compromise between the smoothing effect
on undesired local minima and the bad effects of non-zero membership degrees. In
order to increase the speed of convergence and to avoid undesired local minima, we
recommend to initialise our algorithm with the result from a standard probabilistic
(or better noise) clustering analysis.
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