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Abstract

Designing classifiers may follow different goals. Which goal to prefer

among others depends on the given cost situation and the class distribution.

For example, a classifier designed for best accuracy in terms of misclassifica-

tions may fail when the cost of misclassification of one class is much higher

than that of the other. This paper presents a decision-theoretic extension

to make fuzzy rule generation cost-sensitive. Furthermore, it will be shown

how interpretability aspects and the costs of feature acquisition can be ac-

counted for during classifier design. Natural language text is used to explain

the generated fuzzy rules and their design process.

1 Motivation

There are many approaches for solving classification problems using fuzzy tech-
niques, e. g. clustering, neuro-fuzzy or tree-oriented approaches [1, 2, 3, 4]. The
usually applied criterion is to minimize the average classification error. This ap-
proach may not be suitable for problems with both overlapping classes and asym-
metric costs of wrong decisions (”decision cost”) [5, 6, 7]. If there is no error-free
solution for such a problem, trying to reduce misclassifications does not necessarily
lead to the solution with the lowest decision cost. This consideration of costs is well
established in crisp and fuzzy decision-making [7, 8, 9, 10], but only few approaches
include costs in classifier design [11, 12].

Apart from the decision costs, other aspects may influence the design process
of a classifier. The cost of the acquisition of data used for classification (”classifier
cost”) and the interpretability of the classifier may be relevant during classifier
design and application [13].

In this paper, an approach for generating fuzzy classifiers considering decision
cost, classifier cost, and interpretability will be proposed. To evaluate the de-
signed classifier, decision-theoretic measures are used in all design steps, i. e. a
tree-oriented rule generation with subsequent pruning to generate generalized rules
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and a selection of cooperating rules for a final rule base. The average cost per
decision is the only performance measure.

The paper is structured as follows: Section 2 presents the design process,
decision-theoretic measures, and interpretability aspects. In Section 3, a simple
example and the resulting rule bases are discussed for different cost situations.

2 Rule generation and evaluation

2.1 Fuzzy system

A data set for supervised learning with N examples, features xl[k] (k = 1, . . . , N, l =
1, . . . , s) and one observed output variable y[k], labelled Bi (i = 1, . . . , my) is as-
sumed. The fuzzy system to be generated contains rules of the following general
structure:

Pr: IF x1 = A1,Rr
︸ ︷︷ ︸

partial premise Pr1

AND . . . AND xs = As,Rr
︸ ︷︷ ︸

partial premise Prs
︸ ︷︷ ︸

premise Pr

THEN y = Cr, r = 1, . . . , rmax

and a default rule Rrmax+1 : ELSE y = Crmax+1.
The premise Pr consists of a conjunctive (AND) combination of partial premises

Pr1, . . . , Prs. The linguistic term Al,Rr can be a (primary) linguistic term Al,i (i =
1, . . . , ml) of the feature xl or a disjunctive (OR) combination of some neighboring
or all linguistic terms of xl, called derived linguistic term [14, 15]. In the case of all
terms, this partial premise has no influence on the rule activation and is omitted
in the presentation of the rule. Each rule conclusion Cr consists of one linguistic
term B̂j . A maximum defuzzification chooses the best decision B̂j that results
from feature values and the generated rule base.

2.2 Criterion and probability estimation

2.2.1 Decision cost

The criterion used here originates from decision theory [16]. The expectation of the
cost per decision L̂T composed of decision cost L̂D and classifier cost per decision
LC is estimated using a cost matrix L with elements L(B̂j |Bi) and the probabilities
of the decision-class combinations:

L̂T = LC +

my∑

i=1

my∑

j=1

L(B̂j |Bi) · p̂(B̂j ∧ Bi)

︸ ︷︷ ︸

L̂D

. (1)

L(B̂j |Bi) denotes the cost of decision B̂j given the actual class Bi and p̂(B̂j ∧Bi) is
the estimated joint probability of this decision-class combination. To differentiate
between the evaluation of the tree, a single rule, or the whole rule base, the joint
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probability can be estimated for the whole data set or part of it only (see Sec-
tions 2.3-2.5). Here, this measure is used to rank features during tree induction,
single rule evaluation, or rule base selection.

The cost-optimal conclusion Cr for a generated rule with the given premise Pr

is:

Cr = argmin
B̂j

my∑

i=1

L(B̂j |Bi) · p̂(Bi|Pr), (2)

where p̂(Bi|Pr) denotes the estimated conditional probability of the class y = Bi

within the examples that are covered by the premise Pr.

2.2.2 Classifier cost

The classifier cost for feature xl per data set LC,l includes both fixed LC,l,fix

and variable costs LC,l,var. The fixed costs consist of the investment (engineering,
asset cost e. g. for sensors and microcontrollers, and commissioning) prorated to
the number of years the equipment is in use and the estimated operational fixed
costs per year (e. g. staff, maintenance, energy, reduced availability of the device
due to sensor failures). The fixed costs arise whether the equipment is in use or
not. In contrast, the variable costs are directly related to the generation of a single
example (e. g. consumable material). Thus, the classifier cost per data set LC,l is
the sum of the total fixed costs divided by the number of examples per year NTest

and the variable costs:

LC,l =
LC,l,fix

NTest

+ LC,l,var. (3)

If LC,l is not precisely known, a rough estimation is reasonable to rank different
features in a qualitative way. In addition, virtual costs like interpretability aspects
and user preferences may be included.

The overall classifier cost includes the costs of all features used in at least one
rule premise. With XP representing the set of indices l of the employed features,
the total feature cost LC summarizes to:

LC =
∑

l∈XP

LC,l − LCD,l(XP ). (4)

The costs may be reduced by LCD,l, if other features are used simultaneously [17].
For example, the cost of a feature is smaller, if another feature based on the same
sensor information has already been chosen and there is no need for another sensor.

Considering the classifier cost in the design process leads to classifiers using
mostly the features with a reasonable cost-information ratio (see example in Sec-
tion 3). Additional information from the design process may indicate that certain
rules are not selected due to high feature costs. This is illustrated by the explana-
tion text presented in Section 2.6.

2.2.3 Probability estimation

All probabilities of fuzzy events are estimated by counting membership values in
learning data and solving constrained optimization problems [14, 18]. As an exam-
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ple, the probabilities p̂(Pr), p̂(Bi), p̂(Bi|Pr), p̂(Bi ∧ Pr) are estimated by:

p̂(Pr) =
1

N

N∑

k=1

µPr
(x[k]), p̂(Bi) =

1

N

N∑

k=1

µBi
(y[k]) (5)

E = min
RB|P

‖RB|P ·µµµP
︸ ︷︷ ︸

µ̂µµB

−µµµB‖2
F (6)

s. t. RB|P ≥ 0my×(rmax+1), 1T
my

RB|P = 1T
rmax+1

with RB|P = (( p̂(Bi|Pr) )) ∈ [0, 1]my×(rmax+1),

µµµP =(( µPr
(x[k]) )) ∈ [0, 1](rmax+1)×N ,

µµµB =(( µBi
(y[k]) )) ∈ [0, 1]my×N ,

p̂(Bi ∧ Pr) =p̂(Bi|Pr) · p̂(Pr).

The matrix µµµP refers to the rule activations µPr
(x[k]) of the r-th rule for the

k-th example and the matrix µµµB to the class assignment µBi
(y[k]). In case of

µµµy ∈ {0, 1}my , the problem is ”crisp”. In case of µµµy ∈ [0, 1]my , it is a fuzzy classifi-
cation problem. The matrix RB|P is used to estimate the conditional probabilities
p̂(Bi|Pr) by minimizing the quadratic error E.

The joint probability p̂(B̂j ∧Bi) of the combination of decision B̂j and class Bi

is estimated from the learning data set by

p̂(B̂j ∧ Bi) =
∑

r∈(Cr=B̂j)

p̂(Bi|Pr) · p̂(Pr). (7)

The constraints
my∑

i=1

my∑

j=1

p̂(B̂j ∧ Bi) = 1,

rmax+1∑

r=1

p̂(Pr) = 1, (8)

are met by the optimization of (6) and the inference scheme proposed in [15]. This
inference scheme computes µPr

(x[k]) by using the product as conjunctive opera-
tor for membership values µAl,Rr

(xl[k]). The bounded sum is used as disjunctive
operator for the derived terms. A correction is made for overlapping premises.

The membership functions for each linguistic term Al,i are designed (e. g. by us-
ing fast heuristic methods with a fixed number of terms and triangular membership
functions like clustering or similar sample frequencies for each term) independent of
the cost matrix. An optimization of the membership functions upon the completion
of the design process may further reduce the expected cost per decision.

2.3 Generation of decision trees

The proposed rule generation process of a fuzzy system consists of three steps.
After the generation of decision trees, the extracted rule hypotheses are pruned
and, finally, a rule base is selected. This design scheme was already proposed
in [18] to minimize classifier errors. In this paper, cost-sensitive measures will be
integrated in this scheme.
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In the first step, one or more decision trees are induced. In each node of these
trees, (2) is used to determine the best decision for the examples in the node.
Afterwards, the feature xl leading to minimal expected costs estimated with (1)
is chosen to split the data set. To estimate this cost, an auxiliary ”rule base”,
consisting of r = 1, . . . , ml rules with premises Pr = Al,r and conclusions found
by (2), is used. (1) is evaluated only for the examples in the node. Consequently,
(1) is evaluated for all examples only in the root node of the decision tree. In the
case of all conclusions Cr being equal, there is no further cost reduction splitting
the tree, and the node is set to a terminal node with the conclusion Cr.

Otherwise, the algorithm creates ml new nodes. The algorithm terminates
when all nodes are terminal nodes. The probabilities p̂(Bi|Pr), p̂(Pr), p̂(Bi) in (2)
and (7) are estimated only for the Nnode examples in the actual node.

In order to obtain a comprehensive rule set, additional decision trees with dif-
ferent features in the root node are induced by step-wise discarding of the best
features of previous trees.

Figure 1: Example of tree generation, misclassifying B1 is more expensive than B2,
parameters of membership functions (dotted lines), grey: 0.5 α-cut as an approxi-
mate visualization of the region for probability estimation

The induction algorithm employed here is similar to the popular ID3 algo-
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rithm [19] and several methods for fuzzy decision tree induction [11, 20, 21, 22]. In
contrast to these methods, the feature relevance (1) is used to choose features for
decision nodes taking different decision costs into account.

2.4 Rule pruning

The rule hypotheses for the following pruning process are extracted from the ter-
minal nodes of the decision trees. Fig. 1 shows the generation of a decision tree
for the example explained in detail in Section 3. There are two overlapping classes
with asymmetric costs of misclassification. The cost of misclassifying B1 is set to
ten times the cost of misclassifying B2. Thus, the default decision in the root node
is B1.

Some work has already been done on cost-sensitive pruning of decision trees [23].
Pruning the whole tree by taking back several splits can not remedy the sub-
optimal selection of features in the first stages of tree generation. For this reason,
we decided not to prune the whole tree, but the rule candidates extracted from
the terminal nodes of the trees. The extracted rules are generalized one after
the other. As long as there is an improvement of the rule evaluation, candidates
for a generalization are generated by adding disjunctions with neighboring terms
(e. g. P5 : x1 = A14 OR A15 AND x2 = A25) or deleting partial premises (e. g.
P2 : x2 = A25) (see Fig. 2 for an example). The pruning options are indicated
by arrows. In each step, the best alternative of the rule and pruning candidates
is accepted. If there is no further improvement, the rule is saved and the next
candidate is pruned.

Figure 2: Pruning of the rule hypothesis R1: IF x1 = A14 AND x2 = A25 THEN
ŷ=1. First step: P5 is accepted, second step: P5 is accepted (renumbering of rules
for each pruning step).

The evaluation criterion for single rules is also based on (1). Likewise during tree
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generation, criterion (1) can be evaluated for the whole data set or part of it. An
optimal single rule covers all examples of one class (rate of detection: p̂(Pr|Cr) →
1), but none of the other classes (rate of misclassification: (1− p̂(Cr |Pr)) → 0). In
addition, the classifier cost for the information used in the rule premise Pr should
be less than the cost reduction of the rule.

In many classification tasks, more than one rule is necessary to cover all exam-
ples of at least one class in a reasonable sense. Trying to cover all examples of a
non-compact class with one premise may lead to a high number of misclassifica-
tions. In many applications, a compromise between a low rate of misclassification
and a high rate of detection has to be found. This compromise depends on the cost
of misclassifications. However, during rule generalization it is even more important
to avoid misclassifications, because other rules with the same conclusion may exist.

To determine the set of examples for the evaluation of (1), two simple ap-
proaches exist. Either all examples or only those examples covered by the premise
are considered. Both approaches are not suitable for the compromise discussed
above. Suppose misclassifying B1 is much more expensive than misclassifying B2.
Then, the premises P1 and P2 shown in Fig. 3 and the negated premises P̄1 and
P̄2 have the same conclusion C1, C1̄, C2, C2̄ = B̂1. For the compromise discussed,
the premise P2 is better than P1, because P2 covers more examples of B1 and both
premises have no misclassifications. However, the result of (1) will be equal for both
premises, but depend on the examples used for evaluation L̂D = L(B̂1|B2) · p̂(B2)
(for all examples) or L̂D = 0 (for all examples in the premise). Thus, both ap-
proaches can not distinguish between the two premises P1 and P2.

Figure 3: Pruning with criterion (1) for the rules R1 (premise P1) and R2 (premise
P2): All examples or only premise; Misclassifying B1 is more expensive than B2

Therefore, (1) is calculated using all examples covered by the premise (cost of
the premise) or belonging to the class of the conclusion and to the negated premise.
For the latter examples, the decision of the negated premise is considered, because
they might be misclassified by another premise with a different conclusion (potential
cost). If the premise and the negated premise have the same conclusion, the second
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best decision Cr̄(2nd) is taken. This is a pessimistic estimation of the potential cost.
To evaluate a pruning candidate, LD,r is computed as follows:

L̂D,r =

my∑

i=1

[L(Cr|Bi) · p̂(Bi|Pr)]

︸ ︷︷ ︸

cost of the premise

+ p̂(Cr |P̄r) ·

{
L(Cr̄|Cr) for Cr 6= Cr̄

L(Cr̄(2nd)|Cr) for Cr = Cr̄
︸ ︷︷ ︸

potential cost

(9)
This approach prefers the rule R2 to R1, because the examples not covered by P1

increase the potential cost of R1.
As the rules extracted from the tree are processed successively, the features

already used in other rules are not known. Therefore, the classifier cost is not
considered in the pruning process, as this would lead to oversimplified rules with
too few features.

2.5 Rule base selection

Starting with the default rule and its resulting cost per decision, a rule base is
chosen from the pool of pruned rules. Rules are added step by step, such that (1)
computed for all examples is minimized. The conclusion of the default rule for all
examples not yet covered by a premise can be fixed either manually to a decision
B̂j or automatically set by (2) (with p̂(Prmax+1) = 1 − p̂(

⋃rmax

r=1 Pr)). Overlapping
premises are handled by the algorithm in [15]. Using one of these options, the
algorithm tends to use the ”ELSE” rule for one class. Suppose a problem with two
compact classes and one premise covering one of the classes is already selected for
the rule base. No cost reduction will result from the selection of another premise
to cover the other class.

To force the algorithm to select premises for all classes, a third possibility is to
introduce a rejection class B̂my+1 as conclusion of the ”ELSE” rule. The examples
in the rejection class are not assigned to a specific class and the cost of the decision
B̂my+1 is the mean value of the lowest and second lowest cost of each class:

L(B̂my+1|Bi) =
1

2
· ( min

j with B̂j 6= arg minj L(B̂j|Bi)
L(B̂j |Bi) + min

j
L(B̂j |Bi)). (10)

With this cost of the rejection class, the choice of a rule that assigns examples of
the rejection class to the cheapest decision leads to a cost reduction. The cost of
the rejection class is higher than the cheapest decision. On the other hand, it is
cheaper to leave examples in the rejection class than to misclassify them. The cost
of the rejection class is lower than any misclassification. Thus, the algorithm tends
to find at least one rule for each class Bi. At the end of the design process, the
examples that are still assigned to the rejection class are turned back into the ELSE
rule with an automatically fixed conclusion. The algorithm stops when no further
rule reducing (1) is found. To avoid large rule bases, a threshold for improvement
can be defined.

It is important to state that due to the suboptimal results of all three design
steps (tree induction, pruning, rule base selection), the final rule base will be sub-
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optimal in general. The suboptimality is due to the step-by-step processes in all
three design phases. However, a concurrent complete search over all possible rules
and rule bases is not practicable for real-world problems with many features due
to the combinatorial explosion of the search space.

Apart from the decision cost L̂D, the classifier cost per decision LC is integrated
in the criterion (1). The question arises in which design steps classifier cost should
be considered? Only those features should be used for classification, whose costs
are lower than their reduction of the decision cost. During tree induction and rule
pruning, (1) is evaluated only for a part of the examples and, thus, it is not known
whether a feature will be used for one or more rules in the final rule base. Splitting
the tree or generalizing a pruning candidate, however, may depend on the cost of an
additional feature. Hence, the classifier cost is considered only when (1) is evaluated
for the whole data set, i. e. during rule base selection. Consideration of classifier cost
in tree induction may lead to oversimplified rules when the development of rules
terminates before the possible reduction of the decision cost during specialization
(tree induction) and pruning (deleting subpremises instead of adding terms) is
reached.

Alternative approaches which partially integrate classifier cost in tree induction
and pruning will be investigated in future research.

Table 1 summarizes the design process.

Table 1: Cost criterion during design phase.

Design
step

Rule premises Examples Cost

1. Tree ml: one feature, N (1)

Root node all terms with LC = 0

1. Tree ml: additional feature, Nnode (1)

Other nodes all terms with LC = 0

2. Pruning 2: rule premise, N(x = Pr∨y = Cr) (9)

negated premise with LC = 0

3. Rule base rmax +1: rule premises, N (1)

selection negated premise with rejection

class (10)

2.6 Interpretability and explanation of fuzzy rules

One definition of interpretability may be the following: ”Interpretability is the
degree to which one can assign qualitative meaning to an instrument’s quantitative
scores” [24].

Regarding our fuzzy system, interpretability means that human beings are able
to understand the behavior of the fuzzy system when inspecting the rule base [18,
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25]. The fuzzy rules generated usually are displayed in a technical manner (see
Section 2). For interpretability it is more useful to express them in natural language
text, as presented in [26]. In this text, the feature and class names, linguistic terms
and frequency information gained during the design process (e. g. rate of detection)
are combined with predefined text blocks.

In addition to the explanation of the rule base itself, an automatically created
explanation text on the rule base’s design process is presented. This explanation
is helpful to interpret the cost-sensitive fuzzy system generated, as classification
accuracy is not necessarily the consequence of the cost-sensitive design process (see
example in Section 3).

For the explanation of the design process, the following information is consid-
ered to be interesting for interpretation:

• General information:

– The best decision and the expected cost when no classifier is designed
and a default decision is set,

– the decision-theoretic design parameters.

• Rule-specific information:

– The cost reduction and the rate of detection for each selected rule,

– the feature cost corresponding to the rules,

– overlapping rules with the same conclusion.

• Further information:

– The best decision for examples not covered by the premises,

– the final expected cost per decision for classification,

– the cost reduction of the classifier compared to a default decision,

– the reason for the rejection of certain rules.
Estimation of the cost of a default decision is based on the class distribution in the
learning data set. It is the best decision in (2) for all examples (1). The expected
cost of a designed classifier can be compared with the default cost. Especially in
the case of high feature cost (e. g. very expensive sensors), a classification might
not be useful as far as money is concerned. Likewise, the reason for the rejection
of promising rules is often related to high feature cost.

To create the explanation text, a protocol of relevant information and prepared
text blocks are used. For a detailed example, the reader is referred to the next
section.

3 Example

The method will be explained by a simple illustrative example with my = 2 classes
and s = 4 features. The class B1 (abnormal) with N1 = 60 examples is non-
compact and consists of two subclasses B1a, B1b. This subdivision is not labelled
in the learning data set. The class B2 (normal) contains N2 = 300 examples.
The examples of both classes are produced by a constant mean value x̄i(B1a) =
[2.5, 3, 1, −2.5], x̄i(B1b) = [−2, 2, 1, 2], and x̄i(B2) = [1, 2, 1, −1] with
an additional non-correlated normal-distributed noise. The third feature x3 is not
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useful for classification, as the mean values for both classes are identical. The fourth
feature x4 is highly correlated with x1 and gives almost redundant information only.

The feature costs of x1−x4 (classifier cost) are LC,l =
(
0.15 0.07 0.05 0.03

)
.

There is no discount for simultaneous use of features: LCD,l(XP ) = 0. The decision
cost matrix is

L =

(
0 L(B̂1|B2)

L(B̂2|B1) 0

)

, min(L(B̂1|B2), L(B̂2|B1)) = 1 (11)

LRatio = L(B̂2|B1)/L(B̂1|B2) (12)

where the decisions B̂j are given in the rows and the actual classes Bi are listed in
the columns.

The results of the proposed method for different ratios LRatio (12) are shown in
Fig. 4. Here, estimated probabilities of misclassifications p̂(B̂2 ∧ B1), p̂(B̂1 ∧ B2),
the rate of misclassification p̂(error), decision cost L̂D, classifier cost LC , total
cost L̂T , and the number of rules in the rule base are compared for three different
approaches. The rule bases of all three classifier types are evaluated by (1) with (11)
and the given feature costs (Table 2, Type 3). In the design phase, however, only
Types 2 and 3 use the cost matrix in (11) and only Type 3 includes the feature cost
(see Table 2). For Type 1 LRatio = 1 is used in the design process. For comparison
of the three cost approaches both decision cost and classifier cost are taken into
account (see Figure 4). Some resulting rule bases are shown in Table 3.

Table 2: Cost parameters during the design phase.

Classifier LRatio (12) LC,l

Type 1 fixed to 1
(

0 0 0 0
)

Type 2 0.05 - 20
(

0 0 0 0
)

Type 3 0.05 - 20
(

0.15 0.07 0.05 0.03
)

Type 1 always generates the same solution, because it does not use the different
misclassification costs. This leads to high decision costs at very small and very high
values of the cost ratio in comparison to the other types. In addition, the classifier
uses both redundant features x1 and x4, resulting in high classifier cost.

The main difference between the classifier designs in Type 2 and Type 3 com-
pared to Type 1 is the acceptance of different pruning candidates, resulting in mis-
classifications as shown in Fig. 5 and Table 3. The selected rules are differentially
generalized. Type 3 selects more generalized rules with less features to minimize
classifier cost. Type 2 and Type 3 avoid more expensive misclassifications in un-
certain situations and set these estimated probabilities to zero or close to it. As
a consequence, both types accept higher probabilities of cheaper misclassifications
to reduce the decision cost.

In addition, Type 3 is able to reduce the classifier cost by preferring the cheaper
feature x4 compared to the more expensive feature x1 which contains almost the
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Figure 4: Estimated probabilities of misclassifications p̂(B̂2 ∧ B1), p̂(B̂1 ∧ B2) and
rate of misclassification p̂(error), decision cost L̂D, classifier cost LC , total cost L̂T ,
and number of rules in the rule base rmax (top down) as functions of the decision
cost ratio LRatio for different cost approaches. For comparison purposes, classifier
cost LC are calculated for all three cost approaches using the values of Table 2
Type 3.
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same information and partly by skipping x2 with some loss of information. It
reduces classifier cost without a significant increase in decision cost. Some small
differences for LRatio ≈ 10 in L̂D between Type 2 and Type 3 (Type 3 causes
less misclassifications using less features) are caused by the suboptimality of our
approach. In combination with the reduced number of features used, the rule bases
of Type 3 tend to consist of less rules. As expected, none of the classifiers uses
feature x3. In Table 3 the rule bases created for Type 1 (LRatio = 1) and Type
2/3 (LRatio = 19) are shown.

Figure 5: Selected rule base, a) Type 1 LRatio = 1 (only Rules 1 and 3), b) Type
3, LRatio = 19, R∗

2 (left): Displays approximately the examples of R2, as x4 is
negatively correlated with x1

The results can also be displayed as Receiver Operating Characteristics (ROC)
[6]. The commonly used threshold parameter is replaced by the cost ratio LRatio.
The ROC-Graph for the detection of the samples of class B1 shows depending
on LRatio the relation between the incorrectly classified examples of class B2

(p̂(B̂1|B2)) and the correctly classified examples of class B1 (p̂(B̂1|B1)). Fig-
ure 6 shows this ROC-Graph. As the resulting rule bases are identically equal
for 0.05 ≤ LRatio ≤ 0.25 there is only one point in the ROC-Graph for these
classifiers.

An example of an automatically created explanation text is given in the follow-
ing box. It refers to the example for Type 3 with a cost ratio LRatio = 19 and
included classifier cost.
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Table 3: Created rule bases for the different cost approaches. Type 1: design phase
with LRatio = 1, evaluation with LRatio = 19. Type 2 and 3: LRatio = 19 for design
phase and evaluation. Misc.: Misclassifications, Ex.: Examples, rules are sorted by
the selection order of the rule base.

R Nr. Misc./Ex. IF THEN
Type 1, LRatio = 19, LD = 1.28, LC = 0.25 : (LRatio = 1, LD = 0.08, LC = 0.25)
R1 39 /339 x1=A12 OR A13 OR A14 y = B2

R2 22 / 52 x2=A24 OR A25 AND x4=A41 OR A42 y = B1

R3 0 / 16 x1=A11 y = B1

R4 ELSE y = B1

Type 2, LRatio = 19, LD = 0.35, LC = 0.25 :
R1 179 /233 x2=A23 OR A24 OR A25 y = B1

R2 9 /229 x1=A12 OR A13 y = B2

R3 0 / 16 x1=A11 y = B1

R4 6 /225 x2=A21 OR A22 OR A23 . . .
AND x4=A42 OR A43 OR A44 y = B2

R5 80 /115 x1=A14 OR A15 y = B1

R6 ELSE y = B1

Type 3, LRatio = 19, LD = 0.49, LC = 0.1 :
R1 179/233 x2=A23 OR A24 OR A25 y = B1

R2 6 /225 x2=A21 OR A22 OR A23 . . .
AND x4=A42 OR A43 OR A44 y = B2

R3 ELSE y = B1

The best default-decision for this problem without rule selection is B1. This
decision causes an expected average cost per decision of 0.83. To determine
the cost of examples that are not covered by a premise a rejection class with
the cost (9.5 0.5) was used. Thus, the rule base selection starts with expected
cost per decision of 1.99. Feature cost have been considered during rule base
selection.
Rule R1 was selected, because it reduces the expected cost of misclassification
from 1.99 to 0.82 per decision. The cost of the feature used for the selected rule
is 0.07 (x2). Thus, the total cost per decision is 0.89. Rule R1 covers approx.
90 % of class B1.
Rule R2 was selected, because it reduces the expected cost for misclassification
from 0.82 to 0.64 per decision. The costs for the features used for the selected
rules are 0.1 (x2 and x4). Thus, the total cost per decision is 0.74. Rule R2

covers approx. 73 % of class B2.
For the examples that are not covered by a premise the decision with the lowest
cost is B1. As expected cost per decision incl. feature cost follows 0.59. The
difference to the estimated cost in the last search step is due to the cost of the
rejection class. The designed classifier reduces the expected cost per decision
by 29 %.
Rule R4 was not selected, because the additional feature x1 causes a cost of
0.15 per decision. It is more expensive then the reduction of the expected cost
for misclassifications of 0.07.
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Figure 6: Results for Type 2 displayed as ROC-Graph. p̂(B̂1|B1) corresponds to
the true positive rate and p̂(B̂1|B2) corresponds to the false positive rate.

4 Conclusions

The proposed method fully integrates decision-theoretic measures in the data-based
design of fuzzy rule-based classifiers. Different cost types (decision cost, classifier
cost, or other virtual cost e. g. related to interpretability) have been integrated
in the classifier design process. Most alternative methods ignore these costs or
only change rule conclusions for given premises, depending on costs. By means of
an illustrative example, it was shown that in applications with asymmetric costs
of misclassifications and classifier costs, this approach can reduce the total cost
per decision. In such applications, the method proposed often reduces costs in
comparison to other methods.

The explanation text proposed for the cost-sensitive design process improves
interpretability of the created rule bases.
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[12] S. Beck, R. Mikut, J. Jäkel, G. Bretthauer, Decision-theoretic approaches in
fuzzy rule generation for diagnosis and fault detection problems, in: Proc. 3rc
International Conference in Fuzzy Logic and Technology (EUSFLAT 2003),
2003, pp. 558–563.

[13] P. Turney, Types of cost in inductive concept learning, in: Proc. Workshop
On Cost-Sensitive Learning at the 17th International Conference on Machine
Learning (WCSL at ICML-2000), Stanford University, California, 2000, pp.
15–21.
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