
Mathware & Soft Computing 10 (2003) 43-56

Fuzzy Systems and Neural Networks XML

Schemas for Soft Computing∗

A.R. de Soto, C.A. Capdevila and E.C. Fernández

Escuela de Ingenierías Industrial e Informática

Universidad de León. 24071 León, España

ddears@unileon.es, conrado.andreu@wanadoo.es, ddeecf@unileon.es

Abstract

This article presents an XML[2] based language for the specification of
objects in the Soft Computing area. The design promotes reuse and takes
a compositional approach in which more complex constructs are built from
simpler ones; it is also independent of implementation details as the definition
of the language only states the expected behaviour of every possible imple-
mentation. Here the basic structures for the specification of concepts in the
Fuzzy Logic area are described and a simple construct for a generic neural
network model is introduced.

Keywords: Soft Computing, Fuzzy Systems, XML, Software Compo-
nents, Neural Networks.

1 Introduction

iXSCL, which stands for Extensible Soft Computing Language, is an XML vo-
cabulary for the specification of common objects in the Soft Computing area. The
first version of the language[5] only considered Fuzzy Systems[13][12] and described
concepts like linguistic variables, fuzzy rule bases or fuzzy rule systems. One of the
objectives of the design is to facilitate the addition of constructs from other areas;
in this article a generic neural network model is defined and added to the language.

Possible applications include the integration of soft computing techniques into
web resources and the exchange of specifications in a common XML based for-
mat; the EDAB project, for example, produces iXSCL specifications of fuzzy rule
systems using extraction algorithms that can be later translated into software com-
ponents for the Enterprise Java Beans Platform.

XML techniques used in this project include XML Schemas[3] and XSL Trans-
formations[1]; the former define a class of XML documents, much like old DTDs

∗ This work has been partially supported by project TIC2000-1420 of the Spanish National
R+D+I Plan and project 2002/29 of the Regional Spanish Government, Junta de Castilla y León

43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41782592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


44 A.R. de Soto, C.A. Capdevila & E.C. Fernández

did, but introduce interesting Object Orientation and Relational Data Bases con-
cepts. XSLT are transformations between documents. Their most common use is
the visualization of XML data, but they are here applied to the validation of spec-
ifications. Although XML Schemas include some constructs to express conditions
like uniqueness or existence, XSLT has more expressive power.

The Fuzzy Systems related part of this project owns a lot to the XFL3 language[9].
A related work on the application of XML to Fuzzy Systems can be found in[10]
and other specification languages in fuzzy logic include FTL[11] and Fril[4].

The next section introduces the iXSCL language and comments on its main
constructs. The discussion on Fuzzy Systems is supported by some UML diagrams
that model the concepts and small fragments of sample documents; it starts with
the definition of linguistic variable types, rule bases and bindings, which are then
used to construct a fuzzy block. Then map and layout are introduced as key con-
cepts for composition and for the extension of the language; the defuzzification
block is shown as an example of a new building block. Finally, a generic model for
a neural network is described and encoded to provide another type of block.

The last sections contain some comments on the extension of the language and
implementation independence, which are both objetives of the design.

2 The iXSCL Language

Our main objective is to provide an implementation independent vocabulary for
the specification of the common objects found in the Soft Computing area. Syn-
tax and semantics are defined using XML techniques such as XML Schemas and
XSL Transformations, and formal documentation provides the missing information.
This completes the definition of the language.

Every processing of iXSCL documents must follow that definition, which states
nothing about implementation details such as programming languages or software
architecture. We could have an Enterprise Java Beans component which, given
some data, produces a definition of a fuzzy rule system; another application, run-
ning in another platform and developed in C++, could use that definition to provide
execution of the fuzzy rule system.

The whole design adopts a compositional approach; ’fuzzy rule bases’, ’bindings’
and ’linguistic contexts’ are combined to define a ’fuzzy block’, which in turn can
be considered a primitive building block mapping a set of inputs to outputs. These
blocks are then used again to compose other components, like a ’fuzzy rule system’.

2.1 Fuzzy Systems

2.1.1 Linguistic Contexts

The language includes the linguistic variable and crisp variable types. These are
defined into linguistic contexts which act as name spaces; contexts are them-
selves organized into a tree–like structure. A simple addressing scheme is used
in iXSCL documents to locate variable types, following a file system metaphor
in which contexts act as directories and types as files; for instance, an attribute



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 45

0,..,*

+ name

VariableType

MembershipFunctionUnaryOperator

LinguisticVariableTypeCrispVariableType UniverseOfDiscourse

DiscreteInterval

+ min

+ max

+ units

+cardinality

ContinuousInterval

+ min

+ max

+ units

LinguisticContext

+ name

parent

children

0,..,*

LinguisticTerm

1,..,*

+ label+name

+type

Modifier

Figure 1: Linguistic Contexts

"/box/corner/Pressure" could represent the "Pressure" variable type in context
"corner", inside context "box".

Crisp variable types represent values of common types found in programming
languages, like floats, integers and enumerations.

Linguistic variable types carry an associated universe of discourse and one or
more linguistic terms. The first version of the language considered two types of
universes of discourse, continuous intervals on the set of real numbers and their
discrete counterparts for a given cardinality.

Each linguistic term has a label, a membership function and optional linguistic
modifiers. Modifiers are classified into internal and external [6] and defined using
unary operators. For example, the operator power (f(x) , xw) is used here to
construct an external modifier very for label high:

<term label="high">
<modifier type="external" name="very">

<operator xsi:type="power">
<w>2.018287</w>

</operator>
</modifier>

</term> Linguistic Modifier

The XML Schema states that power is an unaryOperator which has a real



46 A.R. de Soto, C.A. Capdevila & E.C. Fernández

parameter, represented in XML documents as a child element w. Formal documen-
tation completes the definition with the expression f(x) , xw.

Using abstract types like unaryOperator allows for type substitution in the XML
document and addition of new features[8]. A core set of membership functions
and operators is defined in the XML name space of the language using abstract
base types membershipFunction, unaryOperator and binaryOperator ; XML Schema
definitions include those abstract types so that instance documents can carry any
derived type, like the power operator.

2.1.2 Fuzzy Rule Bases

A fuzzy rule base represents part of the knowledge associated with a set of fuzzy
rules; it is an enumeration of rules which contain antecedents, consequents, con-
nectives, etc. Rule bases are used as templates that will be later resolved into real
objects to reuse the rule base for the definition of different fuzzy blocks. Param-
eters include linguistic variable names, terms, modifiers, connective operators and
hedges.

There is one type of fuzzy rule, absoluteRule which carries a real valued weight,
antecedent and consequent. Antecedents are made up of compositionalUnits : atomic
fuzzy propositions, hedges and connectives. Atomic fuzzy propositions associate a
linguistic term, with one or more optional linguistic modifiers applied to it, and a
linguistic variable name; they represent expressions like "X1 is very high" or "X2
is not dangerous". Compositional units can themselves be modified by linguistic
hedges and composed using connectives, like in "approximately, X1 is high and
X2 is near" which uses hedge approximately and connective and. Consequents are
limited in this version of the language to single fuzzy propositions and real valued
expressions like "X1 is 4.23".

<rule xsi:type="absoluteRule" weight="+0.872">
<antecedent>

<hedge name="approximately">
<composition connective="and">

<proposition variable="X1">
<modifier>very</modifier>
<label>high</label>

</proposition>
<proposition variable="X2>

<label>near</label>
</proposition>

</composition>
</hedge>

</antecedent>
<consequent>

<expression variable="Z1">
<value>4.23</value>

</expression>



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 47

Composition

+ connective

Hedge

+ name

CompositionalUnit

This doesn’t show
up in the schema.

AbsoluteRule

+ weight

FuzzyRule

+ name + name

RuleBase
1,..,*

Proposition

Expression

+ variable

+ value

2,..,*

Proposition

+ modifiers (optional)

+ variable name

+ term label

{xor}

consequent

consequent

antecedent

Figure 2: Fuzzy Rule Bases

</consequent>
</rule> Absolute Fuzzy Rule

The rule base plays the role of a template with parameters that must be asso-
ciated with concrete objects; for example, suppose "X1" appears in the rule base
associated with the term "high" and its modified version "very high". All these
"X1", "high" and "very high" are considered just parameters. In order to obtain a
working fuzzy block "X1" must be associated with a real linguistic variable, "high"
with one of its terms and "very" with a modifier. See 2.1.5.

2.1.3 Bindings

In order to complete the specification of a fuzzy block from a rule base all the
parameters must be associated with real objects; bindings provide operators for
every connective named in the rule base, as well as implication and aggregation
operators.

<bindings name="BX1">
<connective name="and">

<operator xsi:type="bounded-prod"/>
</connective>
<hedge name="approximately">

<operator xsi:type="power">
<w>2.442231</w>

</operator>



48 A.R. de Soto, C.A. Capdevila & E.C. Fernández

</hedge>
<implicationOperator>

<operator xsi:type="max"/>
</implicationOperator>
<aggregationOperator>

<operator xsi:type="sum"/>
</aggregationOperator>

</bindings>
Bindings

Bindings carry a different type of knowledge than fuzzy rule bases, and can also
be reused to define fuzzy blocks.

UnaryOperator

Implication Aggregation

BinaryOperator

Hedge

name

name

Connective

0,..,*0,..,*

FuzzyOperator

Bindings

Figure 3: Bindings

2.1.4 Layouts

Every block that extends the abstract type map can be used in a layout to construct
another block; the actual definition of a layout uses an operation, like "serial" or
"parallel" composition to perform the mapping, but other operations represent-
ing iteration or conditional processing will be considered in next version of the
language.

A layout using the "serial" operation takes and ordered list of maps and accepts
bindings between the input of a block and the output of any of the preceding blocks.
The "parallel" operation states that there are no bindings between its blocks and
therefore they could be working in parallel. When defining new operation types,
their behavior must be defined in the documentation.

The obtained layout is itself a map and can be used as a building block in
another layout.

Both fuzzy block and defuzzification block are examples of maps, but other
blocks can be added to the language extending the abstract base type map. For
example, new blocks for neural networks could be combined with existing fuzzy



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 49

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

Parallel layoutParallel layout

Serial layout

Figure 4: Internal Structure of a Simple Layout

logic–based ones to construct hybrid layouts; each map exposes the type of input it
needs and the output it provides, thus allowing for type checking when it is bound
to another component. When needed, new blocks could also be defined to adapt
different variable types.

Figure 5 shows Map as a black box with a set of typed input and output vari-
ables. The Layout is a kind of map built from other maps through the application
of an operation, like parallel or serial composition, that determines which bindings
between outputs and inputs are legal.

1 <layout name="Serial Composition">
2 <parameters>
3 <input name="level-A1" type="/sensors/Level"/>
4 <input name="level-A2" type="/sensors/Level"/>
5 <input name="warning" type="/sensors/Warning-level"/>
6 </parameters>
7 <operation xsi:type="serial"/>
8 <block name="FB1" ref="FuzzyBlock-1">
9 <link from="Input/level-A1" to="X1"/>

10 <link from="Input/level-A2" to="X2"/>
11 </block>
12 <block name="FB2" ref="FuzzyBlock-2">
13 <link from="FB1/Z1" to="X1"/>
14 <link from="FB1/Z2" to="X2"/>
15 </block>
16 <block name="Output">
17 <link from="FB2/Z1" to="warning"/>
18 </block>
19 </layout>

Layout

This fragment defines a layout with two inputs, level-A1 and level-A2, and one
output warning, using a serial composition of two maps. Each layout has always



50 A.R. de Soto, C.A. Capdevila & E.C. Fernández

The operation determines
which bindings are possible.

Operation Binding

Layout

+ name+ name

1

input

0,..,*
output0,..,*

from

block

1,..,n

VariableMap VariableType

{ compatible }

to

0,..*

Figure 5: Maps and Layouts

two dummy maps, named Input and Output, which are used to refer the inputs
and outputs of the layout.

2.1.5 Fuzzy Blocks

A fuzzy block results from the association of a fuzzy rule base template with bind-
ings and linguistic variables ; it is a complete specification of a functional block
that uses linguistic variables as inputs and outputs. The XML Schema fuzzyBlock
type extends the abstract base type map so that it can be used in layouts.

The fuzzy block element contains the information to substitute the parameters
in its rule base with real objects: variables, terms and modifiers are explicitly
associated with a type in a linguistic context; operators are associated by means
of a previously defined bindings element.

For example, "X1" could be used to define input variable "left-sensor-tempera-
ture" of type "/sensors/Temperature" (context sensors, variable type Temperature)
with term "hot" acting as "high" and modifier "very" bound to "extremely". This
would give rules like "if left-sensor-temperature is high then...".

Another fuzzy block with the same rule base could be obtained by using "/tank/Wa-
terLevel" and "dangerous" instead, to define input variable "water-level"; rules
would then be "if water-level is dangerous then...".

The same procedure must be applied to hedges and connectives, to resolve
"and", for instance, into a fuzzy operator and the hedge "approximately" into
another, using bindings.



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 51

FuzzyBlock

RuleBase

<<template>>

LinguisticVariableType

<<parameter>>

LinguisticVariableTypeLinguisticVariable

+ name

<<parameter>>

Operator

Map

+ name

0,..*

input

0,..,*
output0,..,*

RuleBase

<<parameter>>

LinguisticVariable

<<derive>> 1,..,n

<<bind>>

1,..,n

Bindings

1,..,n

Operator
<<bind>>

<<bind>>

Figure 6: Fuzzy Blocks

<fuzzyBlock name="FB1"
bindings="BX1"
ruleBase="RB1">
<parameters>

<input name="left-sensor-temperature"
type="/sensors/Temperature"/>

<input name="right-sensor-temperature"
type="/sensors/Temperature"/>

<output name="blockage"
type="/car/wheels/Blockage"/>

</parameters>
<bindings>

<variableParam parameter="X1"
value="left-sensor-temperature">
<termParam parameter="high"

value="hot">
<modifierParam parameter="very"

value="extremely"/>
</termParam>

</variableParam>
... other variables ...

</bindings>
</fuzzyBlock>

Fuzzy Block



52 A.R. de Soto, C.A. Capdevila & E.C. Fernández

2.1.6 Defuzzification Blocks

The composition of blocks associates inputs and outputs; for example, a layout
with a serial operation on two fuzzy blocks ties the inputs of the second block with
outputs from the first one, but this should only be allowed when the types involved
are compatible. The language can be extended to include other variable types and
blocks, and many of these blocks will work on crisp inputs. The defuzzification
block applies defuzzification operators to a set of linguistic variables to obtain crisp
values; it is used as an adapter between fuzzy outputs and crisp inputs.

The defuzzification block extends the abstract type map and is defined by a list
of bindings: input, defuzzification operator and output. A default operator can be
included.

2.1.7 Fuzzy Rule Systems

The fuzzy rule system is finally defined by either a layout combining one or more
fuzzy blocks or a single fuzzy block. Once again the result is a mapping from inputs
to outputs, but it comes closer to the idea of a working, self–contained unit that
could be translated into a software component.

2.2 Neural Networks

The abstract base type map provides the common view of a processing block with
typed inputs and outputs; some examples of such blocks are the fuzzy rule system
and defuzzification block. Here a generic neural network is defined as a new type of
map, thus adding a new building block to the language. Both inputs and outputs
of the network are considered vectors of real numbers, of vectorOfReals variable
type.

The model describes the architecture of a neural network as a set of intercon-
nected layers, and each layer as a set of interconnected processing nodes. The
whole network computes until a given stop criterion is met, like reaching a maxi-
mum number of iterations or stability; each layer works either in synchronous or
asynchronous mode. All the nodes in a synchronous layer are computed at the
same time, and therefore their outputs are not propagated to other nodes inside
the layer untill the whole computation is done. In an asynchronous layer all the
nodes are fired in random order, and their outputs taken into account for the next
node inside the layer. For example, layers in an MLP (multilayer perceptron) can
be either synchronous or asynchronous, as there are no connections between nodes
in each layer, but a layer in a Hopfield network would yield different results for each
mode. Processing nodes defined so far include artificial neurons and bias nodes.

This model does not address operations like training or testing the network,
it only includes the necessary information to compute its outputs given a set of
inputs.



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 53

2.2.1 Layers and Processing Nodes

The iXSCL schema defines two processing node types: the classic artificial neuron[7]
and bias nodes. The nonLinearNeuronNode carries an activation function, weights
and optional named tags. Tags can be used to associate attributes to the neuron,
like a label in a self–organizing map. Bias nodes provide a constant output of a
given real value.

Nodes are defined inside a layer, which also describes the set of connections
between them. A signalFlow element declares where are the inputs of every node
taken from and which nodes provide the outputs of the layer; a simple syntax is
used in which iN represents the n–th input of the layer, oN its n–th output, and
the id of a node its output. The whole layer is given a synchronous or asynchronous
model with a model attribute.

<layer id="lattice" nInputs="3" nOutputs="3" model="asynchronous">
<processingNodes>

<node id="n1" xsi:type="nonLinearNeuronNode" nInputs="5">
<activationFunction xsi:type="thresholdActivationFunction">

<min>0.0</min>
<max>1.0</max>

</activationFunction>
<weights>

0.123124124 0.259528285 0.87721231
0.1928123 0.12938241

</weights>
<tags>

<tag name="label">Class A1</tag>
</tags>

</node>
<!-- other nodes: n2, n3 -->

</processingNodes>
<signalFlow>

<inputs node="n1">i1 i2 i3 n2 n3</inputs>
<inputs node="n2">i1 i2 i3 n1 n3</inputs>
<inputs node="n3">i1 i2 i3 n1 n2</inputs>
<outputs>n1 n2 n3</outputs>

</signalFlow>
</layer>

Layer

2.2.2 Networks

In order to describe a neural network a set of layers is defined, and connections
between them declared using a signalFlow element. This element is similar to the
one inside each layer, but here name:oN represents the n–th output of the name
layer. The description is completed with a stop criterion which can be either a
fixed number of iterations or stability.



54 A.R. de Soto, C.A. Capdevila & E.C. Fernández

<neuralNetwork name="Hopfield">
<parameters>

<input name="input-vector" type="/sensors/NoiseSample"/>
<output name="output-vector" type="/levels/NoiseLevel"/>

</parameters>
<networkLayers>

<layer id="lattice" nInputs="3" nOutputs="3">
<!-- definition of this layer -->

</layer>
</networkLayers>
<signalFlow>

<inputs node="lattice">i1 i2 i3</inputs>
<outputs>lattice:o1 lattice:o2 lattice:o3</outputs>

</signalFlow>
<stopCriterion xsi:type="stability"/>

</neuralNetwork> Network

3 Extensions

As the language targets an active area of research some techniques from XML
Schemas, like name spaces and abstract types, are used to facilitate extensions[8].

Consider the addition of a binary operator; the new XML Schema type must
extend the abstract base type binaryOperator in the iXSCL name space and reside
in its own name space; the content model will include the XML needed to define an
instance of this operator, and the associated documentation will state the formal
definition of the operator and its parameters.

4 Implementation Independence

By choosing XML we get a platform neutral language, based on accepted open
standards. XML Schemas and XSL Transformations are both core technologies of
XML that are used here to define and validate specifications, and we already have
the tools to access its contents. We need a way to complete the definition of the
language in order to avoid misinterpretations.

We are using formal documentation that completes the model contained into
the schemas and transformations. Consider, for example, a triangular membership
function associated with a linguistic term; both schemas and transformations will
be used to assert that every instance of this construct has three elements, named
’a’, ’max’ and ’b’, containing ordered real numbers. Any implementation of the
language must be able to verify this and extract the associated values, and it will
probably do so using some standard API like DOM or XPath; what a ’triangular
membership function’ is and the correct interpretation of those values to define it
are given in the formal documentation.



Fuzzy Systems and Neural Networks XML Schemas for Soft Computing 55

5 Conclusions

The iXSCL language definition is not closed; future versions will improve it and
include objects from other areas. The management of versions is a problem that
must still be approached; even though extensions are possible the language should
keep a meaningful and stable core.

XML is gaining ground and there is a lot of ongoing work to produce software
tools that take advantage of it, many using Java and thus being more platform
independent.

As we have mentioned before, more than one implementation of the iXSCL
language is possible, and XML documents are platform independent. This facili-
tates the integration of heterogeneous distributed systems, from lightweight mobile
clients to an IDE running on a workstation.

The software of the EDAB project is an example of application for the language.
EDAB seeks to provide a solution to the management of fuzzy rule systems in a
distributed and heterogeneous environment, and to do so through software com-
ponents. It contains, for example, elements for the automatic extraction of fuzzy
rules from data, the analysis and compilation of fuzzy rule systems specifications
into a working component or the execution of queries against those components
using data bases.

The project also includes the development of an IDE, where a set of JavaBeans
are being developed to define specifications through a graphical interface.

iXSCL is the common language in which those software components communi-
cate: an extraction component, for example, applies an algorithm to a set of data
and produces an specification of the fuzzy rule system; this is an XML document
which can be later analyzed and compiled into another software component which
implements the fuzzy rule system.

References

[1] XSL transformations (XSLT) version 1.0. Technical Report REC–xslt–
19991116, W3C (MIT, INRIA, Keio), November 1999.

[2] Extensible markup language (XML) 1.0 (second edition). Technical Report
REC–xml–20001006, W3C (MIT, INRIA, Keio), October 2000.

[3] XML schema part 0: Primer. Technical Report REC–xmlschema–0–20010502,
W3C (MIT, INRIA, Keio), May 2001.

[4] J.F. Baldwin, T.P. Martin, and B.W. Pilsworth. Fril – Fuzzy and Evidential
Reasoning in Artificial Intelligence. Research Studies Press Ltd., 1995.

[5] A.R. de Soto, Conrado A. Capdevila, and Eva Cuervo Fernández. An xml
vocabulary for soft computing. In Third EUSFLAT Conference, pages 645–
650, Sep 2003.



56 A.R. de Soto, C.A. Capdevila & E.C. Fernández

[6] A.R. de Soto, E. Trillas, and M.J. Herrero. Antónimos y modificadores lingüís-
ticos. In VII Congreso Español sobre Tecnologías y Lógica Fuzzy, pages 7–14,
Sep 1997.

[7] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
International, Inc., 1998.

[8] The MITRE Corporation and the xml-dev list group, http://www.xfront.com-
/BestPracticesHomepage.html. XML Schemas: Best Practices, 2002.

[9] F.J. Moreno-Velo, S. Sánchez-Solano, A. Barriga, I. Baturone, and D.R. López.
A specification language for fuzzy systems. Mathware and Soft Computing,
VIII(3):239–253, 2001.

[10] Klaus Turowski and Uwe Weng. Representing and processing fuzzy informa-
tion — an XML–based approach. Knowledge–Based Systems, 15(1–2):67–75,
2002.

[11] Constantin von Altrock. Fuzzy Logic and NeuroFuzzy in Business and Finance.
Prentice Hall, 1997.

[12] Lotfi A. Zadeh. Outline of a new approach to the analysis of complex systems
and decision processes. IEEE Transactions on Systems, Man, and Cybernetics,
SMC–3(1):28–44, January 1973.

[13] Lotfi A. Zadeh. Soft computing and fuzzy logic. IEEE Software, 11(6):48–56,
November/December 1994.


