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1. INTRODUCTION

In the early eighties of last century Haff (1981, 1982) published seminal work on what |
recently proposed to call the matrix Haffian. See Neudecker O6aff applied this
matrix to various multivariate problems involving central Wishart variates. Relevant is
a differentiablesquarematrix functionrF (X), shortlyF, which depends onsymmetric
matrix X. Both matrices have the same dimension.

A strategic ole is being played by a square matfix= (d;j) of operatorsl;; := % (1+&))
%, whered;; is the Kronecker delt@dji = 1,8;; = 0 wheni # j). Haff used the symbol

D, not. The matrixd applied toF yields the matrix HaffiaflF. In parallel work on

the kindredscalarHaffian | proposed to use the symlo(Neudecker, 2004) in order

to avoid confusion with the so-called duplication matrix which naturally cropped up in
that context. Neudecker (2000presented a link betweenF anddF, the differential

of F.

Haff (1981) gave a fundamental identity based on the matrix Haffian involving a diffe-
rentiable, not necessarily square, matrix function whose argument was a central Wishart
variate. This Fundamental Identity (FI) was used to find expected values of occasion-
ally complicated functions of a central Wishart variate. See also Haff (1982) for further
results.

In the present paper we shall revisit Haff's seminal oeuvres, review some of his results,
and give new derivations using the link betweéh anddF.

We shall also consider other applications, drawing heavily on work by Legaulte@igu®
(1974), Gigere & Styan (1978) and Styan (1989).

2. THE FUNDAMENTAL IDENTITY

Haff (1981, Section 2, (4)) presents the following Fundamental Identity (FI) which
holds under mild conditions on the input matrix, viz

1) EF1Z 7R = 28R 0R + 2 (EFJ0F) + (n—m-1)ERS R

with S~ Wp(Z,n), n> m+ 1 andF; := K(9) (i = 1,2). As usual€ is the expectation
operator.

In Haff’s presentatiorr, () is of dimensionp x m (mx qg). We shall havep = q=m,
henceF, F, SandO are all square of dimension. This will do for our purposes.
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3. THE LINK BETWEEN OF AND dF

In Neudecker (2008) the following theorem was proved.

Theorem 1

For the differentiable matrix function (X) of symmetric X:
dF =P'(dX)Q implies OF = %PQ+ %(trP)Q,

where dF and dX are differentials of F and X.

In the sections to follow we shall apply Haff’s Fl and our Theorem 1 to a wide collection
of matrix functions of a central Wishart variate. We shall thereforeSisstead oiX to
denote the argument matrix. See Magnus and Neudecker (1999) on matrix differentials.

4. APPLICATIONSI

In this section we reconsider results given by Haff (1981). We shall occasionally use
partitioned matrix Haffians. These were also developed by Haff (1981, Section 2). For
a survey see the Appendix of this paper.

Theorem 2
€Si12=(N—M)3112 and E£S,7S =353,
St Si2

h 2:=S1— 1S, S=
where 312 1= 51— 51255, S1 <521 S

and mp ;= m—my.

> ,My X my is the dimension of 3,

>11.2 is defined accordingly.

Proof
. 0
We takeF; = Iy, andF, = < Slgz 0 > It is known that
gl_ < qll-z _q11-2812$21 >
~S,$1Si1, St

FurtherS;,1 and=~! are expressed analogously3g., andS.
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Haff’'s Fl in partitioned form yields two equations, viz

(i) Z112€S112 = (My+ 1)l + (N—m— 1)l

011511
(i) Zp225 LESI12 = (M +1)€SE S+ (n—m—1)€S,1Sy, asOF, = ( 115112

U21S11.2

1
011S11.2 = E(ml +1)lm,

and

1
Da1Si12 = =5 (M + 1S3 S

0
0

For details see Corollary 4 (1 & 4) of the Appendix. Solving the two equations yields

the result.
a

Theorem 3
C{(Sﬂ.z)”— ,(811.2)k|} =(n—mp) {(211-2)”( (Z112) ) + (Z112) j (Z122)5 }:

where(S11.2);; is the if" element of §.,. Further C(-) denotes the covariance.

Proof

JExSioEi 0
TakeF; = Iy andF, = ( S1t2 "E)Sm ! . >,With Ejx being thejk™" basis matrix

of dimensionm; x my. Haff's Fl in partitioned form yields two equations of which we
need only one, viz

511ES112EkS112Ei =  2€011S11.2EjkS11.2Eii +
+ (n—m-1)EEKS11.2E.
From Corollary 5(1) of the Appendix emerges that
2011S112EjkS112Bi = (M +1)(S112)wEji + (St12) i Exi+
+  (S12.2)kjEii-
Taking expectations and using Theorem 2 (first part) yields
ES112EkS112Ei = (M +1)(n—mp) (Z11.2)y Z12.2Eji+
(=) (Z11.2); Z11.2Ei + (N— M) (Z12.2)j Z112B0i +
(n—=m—1)(n—my) (X11.2) Z11.2E;ji,

+ o+
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and finally after taking the trace
&(S112)ij (S112)w = (n—mp)? (Z112)ij (Z122)i9 +
+ (n—nmy) {(le-z)ik (Z11.2) ) + (Z112) j (Z122)5 }

from which the result follows.

Theorem 4
C(B},B) = (n—mo— 1)1 (Z11.0);; T3,

where B := S,7'S; and B; is the 1 column of B. Again Q) denotes the covariance
matrix.

Proof

Write B, = S,;Sxn6. ThenC(B/,B/}) = £S,791Ei;S12S; — 25, £21Eij L1255, by
virtue of Theorem 2 (second part).

Take then
m- (0 Sud 1S12S55
0 0

0 Ei; S12S,4
Hence€S 1/ =¢ < 1” 252 ) )
0 =S, S1EiS12S,5
With F; = Iy the Fl yields
. ( 0 211251126 S125); >
0 —Z33%n%1i,S12EiS12Sy
0  OnSioE 1
:28( 115112 |1512$21 >+
0 U21S11.2Ei S12S,5

0 Eij 1
+(n—m—l)8< 11812S2 L >
0 =S, 31EiS125,5

We then get the following two equations:

() €2115S112EiS12S,, = 280118110E;S15S,, +
+ (N—m-1)EE;|S12S,7,

191



(ii) €553 501%11,5112EiS12S = —2€021S112Ei;S12S,, +
+ (N—m—1)€S,;SEiS12S);

From () we derive
€8112EijS12S5 = (N— Mp) 211265 £10%5,
by Lemma 1 (1) of the Appendix and Theorem 2 (second part).

Insertion in (i) leads to
(i) (N—Mp) 23 T01Eij 100 +
+2€ 021811261 S12S,5 = (N— M— 1)€S,391Ei S5,
We use the approach used earlier to find now
) 11 o1 1 le = 1
021811260 S12S,5 = 2(511-2)|1 S 2(m1+ 1)S,; $1EijS12S,5 -

In fact we applied Corollaries 4 (4) and 2(3) of the Appendix to $pli{S; 1.2E;j slzszl
into two portions.

Hence 2021511261} S12S55 = &(S11.2)ijSoa —
—(M+ 1S, $nEi;S12S,5 = (N—Mp)(N—mp— 1) 1 (Z11.2); T —
— (M + 1) €S, S1Ei;S12S55 s
by Corollary 7 of the Appendix and Theorem 6 in Section 5.

Substitution in {ji) leads to
€S,3$1EijS12S,5 = (N—Mp— 1) (Z11.2);; Tp5 + 253 013 T12753,

from which the result follows immediately.

This completes Section 4.
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5. APPLICATIONSII

In this section we shall consider results presented by various authors (including Haff),
occasionally usinglifferentmethods. We shall derive them by using matrix Haffians as
advocated by us.

We shall start with some easy often well-known examples to exhibit the powerfulness
of the method. They all involv€ ~ Wy (Z,n), n > m+ 1.

Theorem 5
ES=nZ.

Proof
TakeF; = I, F2 = Sin the Fundamental Identity.

ClearlydS= Im(dS)lm, hencedS= 1(m+ 1)Iyn by Theorem 1. Then by the FL~1S=
(m+21)Im+ (n—m—1)In= nly, hence€S= nZ. We usedlly, = 0.

O
Theorem 6
estl=(n-m-1)1xz L
Proof
TakeF; = F» = Im. This yields through the FE=! = (n—m—1)£S%, asOlym = 0.
O

Theorem 7
ESAS=n?IAS 4+ nZA'S 4 n(trA3)z,

where A is a constant matrix.

Proof

Take F; = I, andF, = SAS Hence by the FIZ"1£SAS= (m+ 1)AES+ A'ES+
L(rAES) I+ (N—m—1)Ip+ (N—m— 1)AES= n?AS + nA'S + In(trAS)Im.

We applietd SAS= | m(dS)AS+ SAAS)Im, henceISAS= L (m+1)AS+IA'SHL(IrAS)Im.

Also Theorem 5 was used.
a
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Corollary 8

(1) € =n(n+1)22+n(tr5)s.
(2) £(S®9Y) =N?(2®Z) + NKmm(Z® ) + n(vecs)(vecs)'.
(3) E(S®S =n(n+1)Ze X+ ZglmlnZg.

Proof
(1) is obvious. (2) follows by vectorization, viz
E(S®SvecA = n?(Z® Z)vecA+ n(Z® I)vecA’ + n(vecT)(vecs)' vecA

= M(Z®IZ)vecA+n(Z® Z)KmnvecA + n(vecs)(vec) vecA
= n?(Z® Z)vecA + nKmm(Z @ Z)vecA+ n(vecs)(vecs)'vecA,

whereKymis a commutation matrix.

This equality holds foany A We prove (3) by using the relati®® S=W,,(S® S)Wn,
and the equalitie&mmWm = W andW vecZ = 341, whereZq is a diagonal matrix
displaying the diagonal af and 1, is a column vector consisting af ones.

For these and other properties of the Hadamard product see, e.g. Neudecker, Liu and
Polasek (1995).
Theorem 9

ESASt=nn-m-1)"ZAs - (n—m-1) A - (n—m—1)"Y(trA) I,

Proof
TakeF; = SAandF; = I, Hence by the FESAS 1 = 2(E0A'S)' + (n—m—1)ESAS Y,
which yieldsnzAZ ! = A" 4 (trA)lm+ (n—m— 1)ESAS L. We useddAS= A'(dS)Im
hencedA'S= 1A+ 3 (trA)Im.

O
Coroallary 10

esAs=nn-m-1)" 1 AS - (n—m-1) A — (n—m—-1) YtrA)In.
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Proof

Transpose the result of Theorem 9 and repkacky A (A by A').

Corollary 11

1) &S2SH=nn-m-1)"=Zxz - (n—m-1)"Kmnm— (n—m—1)"}(vecly) (vecly)'.
2 &sesSH=nn-m-)Zest-(n-m-1)"Un—- (n—-m-1)"11,1.

Proof

As before. Us&\V, Wi = I,

Theorem 12

(1) SSJ'S: I’IZO'ijZ-l- nZ(Eij + Eji)z

) €sjSt=n(n-m-1)"10;;z 1 - (n—m-1)"Y(Ej + Ej)

(3) &sisS=n(n-m-1)"165 — (n—m-1)"YEj + Ej)
where § = (S71) ..

Proof

(1) Premultiply in Corollary 8 (2) the expressiéfiS® S) by e{ ® I, and postmultiply
by €j @ Im. Use(& @ Im)Kmm=Im®@ €, (€ @ Im)ve& = Zg andZe @ €/Z = 2 3.

(2) Subject Corollary 11 (1) to the same treatment.

(3) Follows from (2) immediately.

Corollary 13

(1) E(rAS9S=n?(trAZ)= + nZ(A+A)Z
(2) EtrA9S  =n(n—m—-1)~YtrAZ)Z 1 - (n—m—-1)"}A+A)
(3) E(trASHS=n(n—m—-1)"YtrAZ"H)Z — (n—m—-1)"YA+A).
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Proof

Use trAS= Z a;,-s,—,Z ajjEj =A
1] 1]

Finding&(trAS 1)S 1 is not so easy. We need this for gettidg§ *AS .

We shall accomplish this in stages.

Theorem 14
Forz=1In:

errsHst=mn-m n-m-1)"tn—m-3) {mnh-m-2)+2}n.

Proof
We apply the FI withF; = I, andFp = AS L.
We then get by employing Theorem 1:
(h—-m-1)"'A=—-eSIAS - e(trASHS 1+ (n—m—-1)eSIAS L.

Expected values of the expresside$)?, s's!, isll, sisk, (s1)2, digk andsisd have
to be determined, wheigj,k andl are distinct.

This will be done by choosing appropriate value#\of
(i) A= Ej yields the equation

(h—-m-1)"E =-¢SESt-¢dst+ (n—-m-1)¢eS st
Pre(post)multiplication b;j(e),€(€)), €j(e)) ande, (&) yields

e =mnm-m-1)"Yn-m-3)7*

es'si =0
(1) e(8h?=(n—m-2)"1ed'sl!
2) eskdl = (n—m—-2)~teg'<

(if) A= Ej leads to the equation

(n—-m-1)7'g; = —eS'E;jSt-&diS - (n—m-1)eS7IE; S
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Pre(post)multiplication bg(e;) yields
ijv2_ 1 igj 1 -1
&) = E(n— m—1)és's! — E(n— m—1)"",
which in combination with (1) gives

&) = (n—=m(n-m-1)"n-m-3) L
edish = (n—mn-m-1)"(n-m-2)(n—m-3)"L

Pre(post)multiplication b (ex) yields
eslgk — %m_ m—1)esi sk
which in combination with (2) gives
edidl = edkdl = 0.
Finally, pre(post)multiplication bg, () leads to
eskd! 4+ edid — (n—m—1)esks!

which implies -
esigd =,
as all these terms are identical.

We conclude that )
edist — dilm+ 2d2E;j;

€ISt = dy(Ej+Ej)
with

m
As dilm+ 2d2Ej ) = (mdy + 2d2) 11y, the theorem has been proved.
Z (
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Theorem 15
Forz=1In:
EASHS T =(n-m n-m-1) t(n—m-3) L [A+ A+ (N—m—2)(trA)ly) .

Proof

Write trAS™L = > ais + ; aijs!.
| i1#]
Hence &(trAS )S 1 = )3 ai8§i§1+;aj8§j§1
] i)
= Z aji (dilm+ 2d2Ej) +; aijd2(Eij + Eji)
] 17]
= di(trA)Im+2d2}y aiEi +d2; ajj Eij +d2; aij Eji
1 i1#] 17]
= dl(trA)lm—}—dzZ aijEij-i—dzZ ajj Eji
] ]

= di(trA)lm+d2(A+A).
]

Having found€&(trAS1)S-1 with = = I, we can finally determiné(tr AS-1)S- for
scale parametet # |,
Theorem 16

When S~ Wr(Z,n) then
EtrASHS = (n-m~(n-m-1)"{(n—m-3)~L
[ZYA+A) T T (n-m=-2)(rAs )z L.
Proof
WhenS~ Win(Z,n) thenS = $-2S52 ~ Wiy(Im, n).
Hence E(rAS 1St = g(trs2As 251535152
—dps 3 {Z*%AZ*% +5IANT 3+ (n—m— 2)(trZ*%AZ*%)Im] 55
=d [T HA+A)Z 1+ (n—m-2)(rA= 1= 1], by Theorem 15.
0
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Having obtained this result we now present

Theorem 17
e(SIAS Y =T AT T 4+ dp [ZIAE T 4 (rAT T2

where
di:=(mn-m~n-m-1)"n-m-2)(n—-m-3)~1

Proof

TakeF; = Im andF, = AS™L. We getdFR = —AS 1(dS)S! which implies
OF; = leangr %(

5 rAsS Hs .

Applying the Fl we get
sleast=—_esiAsi_grAS S+ (n—m-1)esiAS L
Using Theorems 6 and 16 we arrive at
(n—m—1)"12"1A7 1 4+ dps LA+ A)Z 1+ dy(trAZ 1)z 2
=(h—m—-1)eSIAS_¢sIAS L
Hence by transposition:
(N=m—-1)"1E AT 1 4 dp 1A+ A)Z 1+ dy(trAZ- 1)z -1
=(n-m-1)E&SAS IS IAS L
The first equation we rewrite as
(n—m-1)ESIAST=(n—m-1)" Iz A 1+ dpz LA+ A)Z 1+
+di(rAZ 1z 1+ eSTAS T = (n—-m—-1)"1Z 1A 14
+0Z YA+ A)Z 4 d (rAZ Y+ (n-m—- 1) 72 IAT 14
+do(n—m-1)"IZ 1A+ A) T+ di(n—m-1)"YrAs )z -1+
+(n—m-1)"lesIASL
Hence
(n—m(n-m-1)"n-m-2)ESAS I =d;(n—m)(n—m—-1)"H{trAz 1)z 14+
+di(n—m)(n—=m—-1)"Yn-m-2)z A 1+
+da(n—m)(n—m—1)"Y(n-—m-2)z A1
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which proves the theorem ds = (n— m— 2)d,.

Corollary 18

1) &Stes?) = diZterl+dKnm(Zteoz b+
dp(vecz 1) (vecz 1y

(2 &SteSth = (di+d)Z oI T+ d(Z ) glnly(Z Y)g.
(3) €S2 = (dh+dp)Z 2+dy(tr=-1)z 1

+

with dy:=(n-m)~n-m-1)"*n-m-2)(n-m-3)~!
(n—m-—

dr:=(n-mn-m-1)"*
di+d:=(n-—mn-m-3)~L

3)~1, hence

Proof
As before.
Theorem 19
ESASBS = n[Z(nA+A') + (trAZ)Im| Z[(NB+ B')Z + (trBZ)Im] +
+ nIBZ(A+A)Z+nIBZ(nA+A)Z+
+ n{trAZ(nB+B')Z}Z
Proof

TakeF; = Iy andF, = SASBSThe Fl yields the equality
s 1¢SASBS- 26[1SASBS- (n—m—1)EASBS
It is easy to see that
20SASBS- (n—m—1)ASBS = nASBS+A'SBS-
+ B'SAS+ (trASBS+ (trASBSIm.
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Its expected value is equal to
N3ASBZ + n?ASB'S + n?(trBX)AS + n?A'ZBI+
+nAZB'S +n(trB)A'S + n?B'SA'S + nB'ZAS +
+n(trAS)B'E + n?(trAX)BZ + nBE (A + A') I+
+n[ntrAZBZ + trAZB'Z + (tr AZ)(tr BZ) ]I .

We used Theorems 1 and 7, and Corollary 13 (1). Premultiplicatiob Agd some
rearranging yields the result.
O

Corollary 20

(1) ESAS =n[Z(NA+A) + (IrAD)Im Z[(N+ 1)Z + (trZ)Im] +
+n(n+1)(trAZ2)3 + nZ?[(n+ 1)A' + 2A]5.

(2) ESAS=n[(N+1)Z+ (trZ) Iy Z[(NA+ A)Z + (tr AZ) | ] +
+n(n+1)(rA>2)Z + nZ [(n+ 1)A’ + 2A] 32

(3) &SP =n(n?+3n+4)Z3+2n(n+1)(tr2)z%+
+n[(tr2)2+ (n+ 1)trs?] =.

(4) &(S®S)=r(N+1)I®I2+ M (tr2)Z@ =+ n(n+ 1)(vecs)(vecz?) +
+n(n+1) (225243228 %) Kmm+ N(tr2)(Z® 2)Kmm+ n(n + 1) (vecz?)(vecs) +
+n(trZ)(vec)(vecs) +2n?® 3.

(5) E(SOS) =n(M+3n+4HZeZ?+n(n+1)(r2)ze 3+
+N(tr £) ZgLmlinZg + NN+ 1) Zg1ml, 235 4+ n(n+ 1) Z31n 15 Zq.

Proof

(1) ReplaceB by Iy, in Theorem 19.

(2) ReplaceA by I, andB by A in Theorem 19r transpose Corollary 20 (1) and
interchanged andA’ in the result.

(3) ReplaceA by Iy, in Corollary 20 (1) or (2).

(4) Vectorize Corollary 20 (2) and omit véc This goes as follows. Vectorization of
the LHS expression leads &S® S?)vecA.
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Vectorization of the RHS expressions yields
{nlm® [(N+ 1)+ (tr2)Z] } {(Z@ Im) (N2 + Kenm) +
+n(trX)(vec)(vecs)'} vecA + n(n+ 1) (vecs)(vecz?)'vecA+
+n(n+ 1)(vecz?)(vec) vecA+

+n(Z2® Z) {(n+ 1)Kmm+ 21,2} VEcA.

We then cancel vek.
(5) Follows from (4) immediately, see e.g. Corollary 8 (3).

Theorem 21

(1) €sjS=r?(n+1)0;j2%+n2(tr3)oj; =+ n(n+ 1)ZE;; 3%+
+N(trI)ZE;Z+n(n+1) (£ + ZE;22) +
+n(tr2)ZE;i Z +n(n+ 1)2%E;2 + 2n (22)”. b3

2 € (Sz)ij S=n?(n+1) (22)” S+ r2(tr2)oi =+ n(n+ 1)2E;; 22+

+n(n+1) (ZEji 24 ZzEji )+ n(trZ)ZEji Z+n(n+ 1)22Eij 2+
+n(trZ)ZEij 2+ 2n0ij22

Proof
(1) Premultiply in Corollary 20 (4) the expressi8(S® S?) by € ® I, and postmultiply

by j ® Im. UseKmm(& ® Im) = Im® g anda’ @ b= ba.
(2) Pre(post)multiply in Corollary 20 (4) the expressti$® S?) by Im@ € (Im® €j).

Usea®b' =ab.
Corollary 22
(1) E(rASS? = m?(n+1)(trAZ) =2 + n2(trAZ) (tr2) 3+

+n(n+1)ZAS2 + n(tr2)ZAS + n(n+ 1) (F2A'S + ZA'T2) 4 n(tr2) A+
+n(n+1)32A3 + 2n(trA3?)z
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(2) E(trAS)S=n?(n+1)(trAZ?)Z + n2(trAZ) (tr2) =+
+n(n+1)ZAZ2 + n(n+ 1) (FA'Z2 4+ 22A’) + n(trI)ZAZ+
+n(n+ 1)Z?A3 + n(tr2)ZAS + 2n(trAz)z?

Proof
Use trAS= ) ajj §; and ajEj=A
P
O

This has brought us to the end of the article. We want to mention that Theorem 6
and Corollary 18 (3) have been given by Haff (1982). Legault-€igy1974) derived
Theorems 5, 6, 7, 9, 15, 17 and Corollary 18 (3) in a completely different way.

For Theorems 5, 6, 7, 17 (far= 1) see also Gigere and Styan (1978).
Corollary 10 and Theorems 9 and 17 can also be found in Styan (1989).

For completely different proofs of Theorem 7 see Ghazal and Neudecker (2000) and
Neudecker (200€).

Corollaries 8(1) and 20(3) have been established by de Waal and Nel (1973) using a
different method.
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APPENDI X
Partitioned matrix Haffians

Occasionally we meet with lower-dimensional (not necessarily square) matrix functions
of a symmetric matrix.

Examples ar&;;, X112 1= X11 — X12X55 X1, X535 Xo1 andXa1.2 Ejk X11.2E5i, whereE
is the jk™ unit matrix of appropriate dimension, and

X X
X — ( 11 12 ) ‘
Xo1 X22
The submatriceX;; andXj are usually of dimensiom; x ny andmy x m, respectively
with my +m; =m.

The application of the Fundamental Identity and of Theorem 1 is then not clear-cut. It
is obvious thab(l‘l1 depends 0iX11, X11.2 depends 011, X12 andXoo (with X2 = X5,)
etc.

We can immediately finﬁ]llxl‘ll, 011X11.2 and011X11.2Ejk X112 (whenEj; is squa-
re), because operator and operand have equal dimensions in all these cases,wiz.
.

Finding e.g. 012PX11.2Q, [2oPX11.2Q and O21PX;1.2Q (where the generic constant
matricesP andQ have such dimensions that operators and operands fit and the products
are square) is not trivial.

The application of the Fl and of Theorem 1 will be greatly facilitated by partitioning of

the operatof], viz as
O 0
0- < 11 12 > _
Uz1 U2z

As [0 is symmetric, the off-diagonal block matricBs, and[; satisfy(p; = 00,. The
symmetry oft] follows from the circumstance that thg" scalar element dfl is

1 0 .
E(1%—&;)E (i,j=1,...,m)

]

Haff (1981, Lemma 3) presented a collection of useful results on partitioned Haffians.
We shall summarize these, in a streamlined and sometimes generalized form. The
proofs will be very similar to those of Haff’s Lemma 3.
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Lemmal
, 1 1
1. 011PX11Q = EPQ-f- E(tl’P)Q
1
2. O15P'X10Q = EPQ

1
3. 012P' X210 = E(tr P)Q,

where P and Q are generic constant matrices.

Proof

1. Apply Theorem 1 witiX andF replaced byX1; andP'X;1Q respectively.

2. Take
0 0 0 0 0 0
F= X = :
P 0 Q 0 P'X12Q

P 0
ClearlydF = % ( Q ) .

o

0 0

/

AsF = ( D12P0X12Q g ) , the result follows.
3. Take
(o »)*(5 0)=(rxe o)
0o P 0 o PX1Q 0
1 Q 0
ThenOF = = (trP
en 2(tr )( 0 0 ) and
, 1
012P"%21Q = 5(” P)Q.

Corollary 2

1 1
1. 0P’ X20Q = EPQ+ E(tl’ P)Q
2. 01P'X1Q = %PQ

1
3. 021P’X12Q = E(tr P)Q.
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Proof

/
2.TakeF:<O P>X<0 Q).
0 0 0 0

P 0 0 0
3. TakeF = X .
(5 o)x(o o)

We shall now consider some special results.

Corollary 3

1 1
DuP'Xi'Q = —5X4'PXy Q- 5 (trPXy )Xoy

N 1
. D12P"X2X5'Q = EP><221Q

N 1 -
. D12PXorX ' Q = E(tlr P)X;1'Q

B 1. _ 1 _ _
. D11P %1 X7'Q = —§X111X12PX111Q— E(trPxﬂlxlz)xle

/n —1 1 -1
. D12P'X51%01Q = E(tlr PX::HQ
_ 1,

- O1P' XM X%12Q = ExlllPQ

~ 1.4 1 o
. O2P' X551 %01Q = —Exzzlpxzzlxﬂcg— E(tr PX55H) %55 %21Q

Proof

o g M w DN

ConsidedP'X;1Q = P'(dX1)Q = —P' X (d%11) X7 Q.
Replace the® by —P'X;;* andQ by X;'Qin Lemma 1 (1).
Replace by X,;'Qin Lemma 1 (2).

ReplaceQ by X;;'Qin Lemma 1 (3).

Replace?’ by P’ X, in 1 of this corollary.

Replace®’ by P'X5, in Lemma 1 (3).

Replace®’ by P'X;;* in Lemma 1 (2).
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7. Replacélys by o, X1t by X5, andQ by X21Q in 1 of this corollary.

Note. Haff’s Lemma 3 €) is a special case of 5 in this corollary.

Corollary 4

1 1
1. D11P/X11.2Q = EPQ+ é(tr P)Q
/ 1 -1 1 -1
2. 012P"X11.2Q = _EPXZZ X21Q — E(tr PX5, X21)Q
3. OP'X = Lo pxeix 1 - -
. O2oP'X11.0Q = %2z X21 %55 X21Q + 2(trPX22 X21)X55 %X21Q

1. 1 _
4. Op1P'X112Q = —§x221x21PQ— S(tr P)X55-%21Q

Proof

1. As onlyXj; varies this result equals that of Lemma 1 (1).
2. This follows from Lemma 1 (2 & 3 combined).

The reason is that nodiX; 1.2 = —(dX12) Xy Xo1 — X12X,5-d%01. Hence we replace
Qby —X53'%21Qin 2 andP’ by P'X12X55" in 3 and add the resulting two expressions
together.

3. This follows from Corollary 2 (1). Now
dX112 = —X12(d X550 ) Xo1 = X12X55 (A %02) X X1

Hence we replacE’ by P'X12X,,+ andQ by X»,"X1Q in 1.
4. This follows from Lemma 1 (4 & 5 combined).

The reason is thadXq1.2 = —(dX12)Xo5-Xo1 — X12X,5-d%e1. Hence we substitute
—X55X%21Q for Qin 4 and—P'X;2X,;* for P/ in 5 and add the resulting two expres-
sions together.

O
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Corollary 5

1 1 1 1
1. 011P'X112Q%11.0R= > PQX112R+ > (trP)QX11.2R+ EQ'X11-2PR+ > (trP'X112Q)R

1 1 _
2. D1oP'Xa1.2Q%1.0R= —3 PXo5 X21QX11.2R— EQ’xn.szzzlme—

1 B 1 -
=5 (IrPXp3 Xo1Q' Xa1.2)R— S(IrPX; Xo1)Q%12R
1 B 1 N -
3. OooP'X11.0Q%11.0R= Ex221x21P><221x21Qx11.2R+ E(tlr PXo5 X01) Xos X21Q X 1.2R+
+1xo1x Q' X11.2PX5HX R+}(trP S X01Q X11.2) X5 Xo1R
5 %22 X21Q X112 X5 Xo1 > Xoo X21Q' X11.2) X505 Xo1
1 1 _
4. O91P' X11.0Q%11.0R= — §X221X21PQX11~2R 3 (trP) X221X21QX11.2R—
1 1 _
- §X221X21Q'X11-2PX11-2R -5 (tr Q@ X11.2P) Xp5 Xo1X11.2R
Proof

1. Using Theorem 1 we conclude from
dP'X112Q%11.2R = P'(dX11) QX%11.2R+ P'X11.2Q(dX11)R

that the identity holds.

2. This is proved in the same way as Corollary 4 (2). The expres3i¥im.»QX;1.2R
is split into P'X11.2(Q%11.2R) and (P'X11.2Q)X11.2R. We then make the following
substitutions in Corollary 4 (2)(i) P remainsP, Q becomedQX11.2R and (ii) P
become®)' X;1.2P, Q becomeR.

This yields the result.

3. This is proved in the same way as Corollary 4 (3). We make the same substitutions
as previously.

4. The proofis similar to that of Corollary 4 (4).
The same substitutions are used as above.

Lemma6
€ (SZ:L)ij Siz2 = (N—mp)& (Szl)ij 2112
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Proof

Take )
Fi=Ilm and F= ( (SZ)U'SILLZ 0 >
0 0
Then . )
_1 (%2 )ij 21129112 0
SR = ) . . ’
—(S2) 22 Z1%y35812 0O
Dll (gzl) i S.Ll~2 0
OF =
DZl (gzl) ij SI|_1-2 0
and

1 (S53),Im 0
S'R= .
- (SZl)ij $21521511-2 0
Hence by the Fl we get
€ (gzl)” ZI11.2811-2 = (ml+ 1)8 (Szl)u Iml + (n_ m-— 1) (3521)”- Iml
= (n_mZ)S (Szl)ijlml’

by virtue of Lemma 1 (1). This yields

€ (SZ:L)ij Siz2 = (N—mp)& (%21)”— 2112

Corollary 7
€(S12®Sy) = (N— M) 21120 ES,)-

Proof

Immediate from Lemma 6.

210



