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Abstract
Using techniques for modeling indices by means of func-

tional equations and resources from fuzzy set theory, the clas-
sical Balthazard index used in order to combine several degrees
of impairment is characterized in two natural ways and its use
is criticized. In addition some hints are given on how to study
better solutions than Balthazard's one for the problem of com-
bining impairment's degrees.
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1 Introduction. The problem of the global
degree of impairment.

Given a person with two (independent) impairments whose correspond-
ing degrees of impairment are known, how can the global degree of im-
pairment be determined? (See e.g. [3], [10], [14]). This is a problem of
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evident medical, social and legal relevance. To the best knowledge of
the authors, except for Victor Balthazard (1872 - 1950) for the case of
two impairments [3], there has been no approach to the problem from
the mathematical point of view. This is the intention of the present
paper: the critical study of mathematical formulas appropriate to com-
bining several degrees of impairment to achieve a global degree. The
interest in this problem was awaked by a juristic analysis recently made
by J. Fargas [9].

Any formula intending to solve this problem should be obtained
based on clearly expressed and previously accepted criteria which nec-
essarily would lead to it. When adopting such a formula, the corre-
sponding criteria are accepted independently of the fact that they may
be known or not. In the latter case the criteria are implicitly used any-
time the formula is applied to a particular case. It becomes apparent
that if the conditions of that particular case do not correspond to the
criteria supporting the formula, then it has been incorrectly applied or
de facto, misused. This can generate situations which may be consid-
ered as unjust and therefore may lead, and in fact have lead (see [5],
[4], [16]) to Courts of Justice pleading for a correction of the result.
The decision of a Court of Justice, that is always based on arguments,
against the result given by the formula in a particular case, is not nec-
essarily a decision against the formula, but clearly a decision against
the use of the formula in that particular case. A negative decision of
a Court of Justice should warn the designer of such a formula to re-
view the criteria to see whether they are clear enough not to have been
misunderstood. At the same time a negative judgement represents a
counterexample pointing out that there are at least doubts on the gen-
eral validity of the formula. These considerations constitute a strong
motivation to mathematicaly study the problem, looking for explicit
mathematical principles that are equivalent to, or at least imply, the
formula.

A ¯rst evident problem is that a formula adopted to calculate the
combined degree of two impairments may not be valid for the case of
more than two impairments, or if it were valid, but given as a table
with a strong limit in precision, then the table is not acceptable. This
is a simple practical problem and a solution will be presented in the
next section. It may however have a much deeper conceptual relevance
as will be discussed in section 4.
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2 Balthazard's formula
Victor Balthazard, a french specialist for legal medicine introduced in
[3] a method to combine degrees of impairment, which is today referred
to as the formula or index of Balthazard. An analysis of the method
allows the following reasoning, which may have been its basis.

If someone has only a ¯rst impairment and has been assigned p per
cent as a degree of impairment, then he has (100 ¡ p) per cent free of
impairments. Would this person some time later start su®ering from
a new impairment, that is independent from the former and would for
this new impairment considered alone be assigned q per cent as degree
of impairment, then the former (100¡ p) per cent free of impairments
becomes reduced by (100 ¡ p)¢q=100. As a consequence, the global
percentage of impairment to be assigned to this person would be given
by

B(p; q) = p + (100¡ p)¢q=100 = p + (1¡ p=100)¢q

This equation may be rewritten as

B(p; q) = 100
h p
100

+
³
1 ¡ p

100

´ q
100

i

In order to simplify the notation, in what follows instead of working
with percentages, the corresponding real values in the interval [0; 1] will
be used in the same way that Balthazard did in [3]. Let a = p=100
and b = q=100. The former equation then turns into

eB(a; b) := 0:01B(p; q) = a + (1 ¡ a)¢b

The formula of Balthazard may be analyzed from several points of
view.

(i) The simpli¯ed notation makes apparent that eB(a; b) = a+b¡ab,
and represents a well known continuous t-conorm, which is called
"Prod*" [15], [12]. (Readers not familiar with t-conorms may ¯nd
their characterizing properties in the Appendix). Notice that eB
satis¯es the following: eB(a; b) = 1 i® a = 1 or b = 1 . This
is however not an exclusive property of the t-conorm eB. The
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continuous t-conorm S(a; b) = (a + b)=(1 + ab), for instance,
also satis¯es this property; it is however di®erent from eB. For a
unique characterization of eB other properties have to be speci¯ed
(see Section 3).

(ii) Since eB is a t-conorm, it is associative and commutative, i.e.,
to calculate the total degree of impairment for the hypothetical
case of three impairments it would be enough to apply eB to the
(normalized) degree of impairment of any two of them followed
by an application of eB to the obtained result and to the (nor-
malized) degree of the remaining impairment. However, when a
table is used instead of the function eB as in [10] and [14], and
moreover both the entries a and b and the values of eB(a; b) are
given with only two digits of precision, then associativity is lost.
For instance assume that a = 0:35; b = 0:75 and c = 0:41. Then

eB(a; b; c) = eB( eB(a; b); c) = eB( eB(0:35; 0:75); 0:41) =
= eB(0:8315; 041) = 0:904125

However, when the table of [10] is used, the following is obtained:

² eBtable( eBtable(0:35; 0:75); 0:41) = eBtable(0:84; 0:41) = 0:91
(rounding by increasing)

² eBtable(0:35; eBtable(0:75; 0:41) = eBtable(0:35; 0:85) = 0:90
(rounding by decreasing)

It becomes apparent that in the case of calculating the combined
degree of impairment with the table in [10], the result is not in-
dependent of the order in which the impairments are considered
(see [9]). The intuitive plausible idea of calculating the cumula-
tive degree of impairment according to the order of appearance of
the corresponding impairments is not given a fair support when
using a table with limited precision, as the one under discussion.
Since the table is commutative, it seems adviceable to use the
following procedure in the bene¯t of possibly a®ected patients::

eBtable(a; b; c) :=

Max[eBtable( eBtable(a; b); c); eBtable( eBtable(a; c); b); eBtable( eBtable(b; c); a)]



Combining degrees of impairment: The case of the index... 27

Notice that in [10] it is said that the values a, b and c may be
taken in any order and in [14] the question of ordering is not
considered. It is to be expected that in the prevailing times of
the Information Society, tables will no longer be used and will
be replaced by calculations on-line supported by an appropriate
program of the formula, which may be processed using high pre-
cision. Roundings will still take place at the last digit; this is
unavoidable; but they will be no longer relevant.

(iii) V. Balthazard, as mentioned above, introduced the formula
eB(a; b) = a + b ¡ ab for impairments that successively a®ect
di®erent functions of a patient. The formula does not seem to
be in general applicable when a second impairment may be some
kind of consequence of the ¯rst one. Thus in [5] a court decision
states that due to the fact of a second impairment being a conse-
quence of the ¯rst, the combined degree of impairment should be
Min(1; a+ b) instead of a+ b¡ ab. (By the way, Min(1; a+b) is
known as the t-conorm of ÃLukasiewicz and is given the symbolic
expression W ¤(a; b).) For similar reasons, in [4] the combined de-
gree of impairment based on a+b¡ab is not approved and for two
particular cases, combined degrees of impairment are given, that
correspond to results that would have been obtained by applying
the t-conorms (a + b)=(1 + ab) and Max, respectively.

(iv) A probabilistic analysis allows to show, at least indirectly, the
non-applicability of the formula of Balthazard when the second
impairment is not independent of the ¯rst one. Let A and B be
two discrete random variables, whose probabilities correspond to
the degrees of two impairments respectively. Then

P rob[(A = ®)or(B = ¯)] =

Prob[(A = ®)] + Prob[(B = ¯)]¡ Prob[(A = ®)and(B = ¯)]:

In the case that the variables A and B may be considered statis-
tically independent, it follows

P rob[(A = ®)or(B = ¯)] =
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Prob[(A = ®)] +P rob[(B = ¯)]¡ Prob[(A = ®)]:Prob[(B = ¯)]:

Thus in this statistical context, the product of probabilities may
be subtracted from the sum, when the random variables A and
B (representing the ¯rst and second impairments, respectively)
may be considered as statistically independent. Notice that by
letting Prob[(A = ®)] = a and P rob[(B = ¯)] = b, the formula
a+b¡ab represents the probability of a disjunction. This aspect
will be considered again below.

(v) Notice that the (normalized) degrees of impairment may be con-
sidered to be values of membership functions of fuzzy sets on a
given population [13], [17]. In this context, if H1 denotes the
¯rst impairment (as a predicate), H1 is its corresponding fuzzy
set and i denotes an individual with that impairment, then the
value of a equals ¹H1(i). Similarly, if H2 denotes the second im-
pairment and H2 is its fuzzy set, then b = ¹H2(i). It follows that
for the individual i,

eB(a; b) = ¹H1(i) + ¹H2(i)¡ ¹H11(i)¢¹H2(i):

This expression however, corresponds to ¹H1[H2(i), where the
union [ of the fuzzy sets H1 and H2 is calculated with the t-
conorm Prod*. It may be concluded that in this context, the
formula of Balthazard expresses something that does not seem
to be related to the problem of calculating a global degree of
impairment. It expresses the degree with which an individual i
has a degree of impairment with respect to the ¯rst impairment
or a degree of impairment with respect to the second one. It
expresses through "i is in H1 or i is in H2 ", the degree of the
disjunction of two gradable statements "i is H1" (i has H1) and
"i is H2" (i has H2).

(vi) Balthazard's reasoning as presented earlier in this section, ac-
cepts still another interpretation, di®erent from the former one
(v). The original (normalized) formula eB(a; b) = a + (1 ¡ a)¢b
may be given the following expression:

eB(a; b) = Min[1; a + (1¡ a)¢b];
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which under the notation for fuzzy sets and the t-conorm of
ÃLukasiewicz becomes

eB(a; b) = W ¤[¹H1(i); (¹0H1(i))¢¹H2(i)]:

With this expression, eB(a; b) denotes the degree of membership
to the fuzzy set H1[(H1

0\H2), when the union [ is calculated by
means of W¤, the t-conorm of ÃLukasiewicz, the intersection \ is
calculated with the t-norm product and the pseudo-complement
' is calculated with the negation function 1 ¡ id[0;1] [13], [17].
Hence if i belongs to a population X, in the non-dual theory of
fuzzy sets
([0; 1]X ; Product;W¤; 1¡ id[0;1]) the global degree of impairment
of Balthazard eB(a; b) corresponds to the membership degree of
i to the fuzzy set H1 [ (H1

0 \ H2), meaning the degree of (ac-
ceptance of) the statement consisting of the disjunction of two
gradable assessments: 'i has H 0

1 and (0i has H 0
2 and 0i does not

haveH 0
1). This interpretation does not appear to be "unnatural",

as the previous one in (v) and is consistent with the reasoning in
[3].

3 Characterization of the formula of Balt-
hazard

In this section, two sets of principles will be studied, which are math-
ematically equivalent to those implied by the formula of Balthazard
eB = P rod¤ to calculate the combined degree of impairment of two
independent impairments. Obviously, the main focus of interest falls
on theoretical principles which are interpretable in the context of the
problem under discussion and may contribute to characterize Balthaz-
ard's solution. This will clarify criteria which are implicitly accepted
when using Balthazard's formula; particularly by responsible authori-
ties, as in the case of the Spanish Administration [14] or the American
Medical Association [10]. This will also contribute to progress in the
critical analysis of this solution as well as to suggest alternative possi-
bilities, as it is done in the French legislation [7] (which considers the
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index of Balthazard only as a reference) or in Italy [18], where other
possible formulas are mentioned.

Let S : [0; 1]£ [0; 1] ! [0; 1] be a function which given two degrees
of impairment a and b, determines the global impairment S(a; b). It
seems natural to require that S should satisfy principles or algebraic
properties easily understandable. For instance:

(P1) Principle of immutability under inexistence of new impairments:
S(0; a) = S(a; 0) = a:

(P2) Principle of incremental coherence with respect to changes in
the degrees of impairment: For any a; b; c 2 [0; 1] with a + c < 1,
S(a + c; b)¡ S(a; b) = S(c; b)¡ S(0; b). This condition states that the
increment of the index when a degree of impairment grows, directly
depends on this growth.

(P3) Principle of invariance of the index with respect to the order
the impairments: S(a; b) = S(b; a).

(P4) Principle of total impairment: S(1; 1) = 1.

The four principles given above are independent from each other.
To show this, it is su±cient to give four functions such that each one
of them satis¯es a di®erent set of three principles, but does not satisfy
the fourth one.

² 1st function:S(x; y) = x¢y satis¯es (P2), (P3) and (P4), but does
not satisfy (P1).

² 2nd function: S(x; y) = Min(1; x + y) satis¯es (P1), (P3) and
(P4), but does not satisfy (P2). (See numerical example in Ap-
pendix).

² 3rd function: S(x; y) = y if x; y 2 (0; 1), otherwise S(x; y) =
Max(x; y). This function satis¯es (P1), (P2) and (P4), but does
not satisfy (P3).

² 4th function: S(x; y) = x+ y¡ 2xy satis¯es (P1), (P2) and (P3),
but does not satisfy (P4).
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The following theorem shows that the index of Balthazard is char-
acterized by the four given principles.

Theorem 3.1 A function S : [0; 1]£[0; 1]! [0; 1] satis¯es (P1), (P2),
(P3) and (P4) i® S(a; b) = a + b¡ ab for all a; b in [0; 1].

Proof. From (P1) and (P2) follows that for all a; b and x in [0; 1],

S(a + x; b) = S(a; b) + S(x; b) ¡ b

Then:

S(a + x; b) ¡ b = S(a; b)¡ b+ S(x; b) ¡ b:

Let b be ¯xed and de¯ne f : [0; 1] ! R, such that f(z) = S(z; b) ¡ b.
The function f is positive, bounded by 1 and satis¯es the classical
equation of Cauchy f (a + x) = f(a) + f(x) for all a; x in [0; 1] and
a + x · 1. Therefore [1], there exists a constant K, more properly
K(b), whose value depends on the selected ¯xed value of b, such that
f(z) =K(b)¢z, from where

S(a; b) = K(b)¢a+ b

since K(b)¢a = S(a; b) ¡ b.
According to (P3), the principle of commutativity, the following holds:

K(b)¢a+ b = K(a)¢b+ a

and by substituting a = 1,

K(b) = (K(1)¡ 1)b+ 1:

Then,

S(a; b) = K(b)¢a + b = [(K(1) ¡ 1)b+ 1]a+ b = a+ b+ (K(1) ¡ 1)ab:

Finally from (P4), S(1; 1) = 1, follows that K(1) = 0, leading to

S(a; b) = a+ b¡ ab

which is the formula of Balthazard.
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The reciprocal is quite simple, since (P1), (P3) and (P4) are prop-
erties of any t-conorm. (P2) is obtained by construction. For all a; b
and c in [0; 1] with a + c < 1.

S(a + c; b) = (a + c) + b¡ (a+ c)b = a+ c+ b¡ ab¡ cb =

(a + b¡ ab) + (b+ c¡ cb)¡ b = S(a; b) + S(c; b) ¡ S(0; b):

The assertion follows. ¤
Three alternative principles are discussed below.

(P1) Principle of immutability under inexistence of new impairments:
S(0; a) = S(a; 0) = a for all a in [0; 1]. (The same ¯rst principle of the
former group).

(P2*) Principle of incremental linearity with respect to changes in
the degrees of impairment: For any a; b; c 2 [0; 1] with a + c · 1,
S(a + c; b) ¡ S(a; b) = ®c + ¯, where ® = ®(a; b) and ¯ = ¯(a; b) are
arbitrary functions on a and b with range [0; 1].

(P4*) Principle of absorption of the largest degree of impairment:
S(1; b) = 1 for all b in [0; 1].

These three principles are equivalent to the solution S = P rod¤.
Similarly as in the former case, it is simple to show that these principles
are independent of eachother.

Theorem 3.2 A function S : [0; 1] £ [0; 1] ! [0; 1] satis¯es (P1),
(P2*) and (P4*) i® S = P rod¤.
Proof. It is obvious that S = Prod¤ satis¯es (P1) and (P4*) since it
is a t-conorm. With respect to (P2*),

S(a + c; b)¡ S(a; b) = a + c + b¡ (a + c)b¡ [a + b¡ ab] =

a + c+ b¡ ab¡ cb¡ a ¡ b+ ab = c ¡ cb = (1¡ b)c

i.e., (P2*) is satis¯ed with a = (1 ¡ b) and b = 0.
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For the reciprocal case, it is assumed that S satis¯es the three
principles. From (P2*) with c = 0 follows that b = 0 and with both
a = 0 and c = 1, (i.e. a + c = 1) follows that S(1; b) ¡ S(0; b) =
®¢1 ¡ 0 = ®. With (P1) and (P4*), ® = 1¡ b. Therefore with (P2*)
and any a and b in [0; 1] it is enough to take c = 1¡a (which of course
is in [0; 1]) to obtain

S(a + c;b) ¡ S(a; b) = S(1; b) ¡ S(a; b) = ®c + ¯ = ®c = ®(1¡ a)

and again with (P4*),

S(a; b) = S(1; b) ¡ ®(1¡ a) = 1 ¡ ®(1¡ a)

and since ® = 1¡ b, then S(a; b) = a + b ¡ ab. ¤

Corollary 3.3 For functions S : [0; 1] £ [0; 1] ! [0; 1] the four prin-
ciples (P1), (P2), (P3) and (P4) and the three principles (P1), (P2*)
and (P4*) are equivalent.

Notice that by setting b = 1 it becomes obvious that (P4*) implies
(P4). Furthermore (P2*) implies (P2). (P2) requires S(a + c; b) ¡
S(a; b) = S(c; b)¡S(0; b). The left hand side, with (P2*) equals (1¡b)c.
The right hand side can be written as S(0+ c; b)¡S(0; b), which with
(P2*) also gives (1¡ b)c.

4 Comments beyond Balthazard's solu-
tion S = Prod¤

Recall that both sets of principles equivalent to the solution S = Prod*
lead to S(a; b) = 1 if and only if a = 1 or b = 1. This means that, in
terms of percentages, a combined value of 100% can only be obtained if
at least one of values to be combined is already 100%. This might even-
tually be considered unfair in the context of combining impairments.
In this case, (P2) and (P2*) could be replaced by another principle, like

(P2**) S(a; b) = 1 if and only if (a + b) > 1.

The set of principles (P1), (P2**), (P3) and (P4) turns out to be
equivalent to the solution S(a; b) =Min(1; (a+b)). In [7] this solution



34 C. Alsina, E. Trillas & C. Moraga

is called "additive" and, as mentioned earlier, it corresponds to the t-
conorm of ÃLukasiewicz and is denoted by W ¤. It is well known [2], [12]
that for all a; b in [0; 1] Prod¤(a; b) · W ¤(a; b). Since Prod¤(a; b) =
W ¤(a; b) only in the case that a = b = 1 or a¢b = 0, then except
for these cases, it is always Prod¤(a; b) < W ¤(a; b). Therefore a table
based on W ¤(a; b) would provide higher values than in the table in [10],
[14]. For instance from the combination of 35% and 60%, the following
would be obtained:

² Prod¤(0:35; 0:60) = 0:74, which corresponds to 74%

² W ¤(0:35; 0:60) = 0:95, which corresponds to 95%

The new table would represent the function

B(p; q) = 100¢Min(1; (p + q)=100) =Min(100; p + q)

for any p; q in [0; 100]. The values obtained with the table could be
in many cases strongly larger than those obtained with the original
table [10] (see [9]) and moreover, associativity could be lost due to the
limited precision bounded by two digits.

If the values obtained with W ¤ would be considered to be too high,
other continuous t-conorms greater than P rod¤ but smaller than W ¤

could be considered. One such t-conorm is

S(a; b) = (a+ b)=(1 + ab)

which for the former case gives S(0:35; 0:60) = 0:95=1:21 = 0:79
(rounded to two digits). However it is fair to mention that S(a; b) = 1
if and only if Prod¤(a; b) = 1, hence, if and only if a = 1 or b = 1.

It should be noticed that some experts consider that 100% -(or
normalized 1)- should only correspond either to death or a state of
complete lethargy (Coma) [7], [18], [9]. Therefore to comply with this
position, S should satisfy the following requirement:

S(a; b) = 1 if and only if Max(a; b) = 1:

From a more general point of view, it seems adequate to make a
critical appreciation of the use of t-conorms to combine degrees of im-
pairment. As shown in section 2 (v), degrees of impairment may be
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considered as values of fuzzy sets and t-conorms are the operations
which realize the linguistic disjunction "or" (i.e., the union of fuzzy
sets [17]). Therefore, if the degrees of impairment are combined with
a t-conorm S , then S(a; b) gives a numerical value to the fact that
"an individual i has an impairment with degree a or another one with
degree b" (for a given disjunction, which may or may not be intuitively
understandable). This clearly does not seem to be the intention of
the corresponding authorities, neither should be the numerical inter-
pretation that "an individual i has an impairment with degree a and
another one with degree b" (for a given conjunction). The problem is
neither of disjunction nor of conjunction: it is a problem of aggregation
according to some previously accepted principles.

Therefore assuming that the corresponding authorities intend to
make explicit the related principles, then these should not be like (P1),
(P2), (P3) and (P4) or (P1), (P2*) and (P4*) since they necessarily
lead to the t-conorm P rod¤. Neither should they be any other criteria
leading to some other t-conorm. The reasons were discussed above.
The authorities, however, may choose from a huge family of aggre-
gation functions [6], that may well help to solve the problem, starting
from previously accepted criteria. In fact (see [18]), some authors plead
in favour of a possibility they call the "salomonic solution", given by
S(a; b) = Min(1; a + b¡ ab=2). This function satis¯es (P1), (P3) and
(P4*) but neither (P2) nor (P2*) and it is not associative. Therefore
it is not a t-conorm, even though the boundaries Prod¤ < S < W ¤

are valid. Since S is not associative it has the draw back that it can-
not be directly de¯ned for more than two degrees of impairment. On
the other hand, it has the advantage that S(a; b) = 1 if and only if
ab=2 · a+ b¡ 1.

The principles that lead to P rod¤ or W ¤ as solutions are really too
simple. The problem of ¯nding the combined value of several degrees
of impairment should follow the basic principle explained below:

(P0) There exists a list of m impairments, of which an individual may
e®ectively su®er from n · m of them, in a given order.

Then for every natural number n · m, there are functions An :
[0; 1]n ! [0; 1] of n variables, each one in [0; 1], and representing in
decimal form percentages of impairment. Furthermore these functions
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should satisfy a set of principles previously accepted and should be ag-
gregation functions, i.e., they should exhibit the following properties:

(A1) If for all 1 · i · n; xi = 1, then An(1; 1; ; 1) = 1

(A2) If for all 1 · i · n; xi = 0; then An(0; 0; ; 0) = 0

(A3) An grows with all its variables: from x1 · y1; : : : ; xn · yn follows
that
An(x1; x2; : : : ; xn) · An(y1; y2; : : : ; yn)

(A4) Max(x1; x2; : : : ; xn) · An(x1; x2; : : : ; xn) for any xj 2 [0; 1], 1 ·
j · n, where Max(x1; x2; : : : ; xn) = An(x1; x2; : : : ; xn) should
not always be the case.

Remark: (A4) is not a general requirement for aggregations, but is
stated in [14] as a requirement for a formula to combine degrees of
impairment.

It seems that the following three principles should belong to the set
of principles that should constitute the basis to solve the problem:

(P1***) Continuous functions should be used to combine several de-
grees of impairment. If not, a small variation in one degree may even-
tually lead to a relatively high variation of the combined value

(P2***) If for some j; 1 · j · n; xj = 1, then An(x1; x2; : : : ; xj; : : : ; xn)
should take the value 1, i.e, An(x1; x2; : : : ; xj¡1; 1; xj+1; : : : ; xn) = 1

(P3***) If for some j , 1 · j · n, xj = 0, then the value of
An(x1; x2; : : : ; xj; : : : ; xn) equals that of the function An¡1 without
xj, i.e., An(x1; x2; : : : ; xj¡1; 0; xj+1; : : : ; xn) = An¡1(x1; x2; : : : ; xj¡1;
xj+1; : : : ; xn)

It should be noticed, that (A4) implies (P2***). From
Max(x1; x2; : : : ; xj¡1; 1; xj+1; : : : ; xn) · An(x1; x2; : : : ; xj¡1; 1;
xj+1; : : : ; xn) follows that An(x1; x2; : : : ; xj¡1; 1; xj+1; : : : ; xn) = 1,
since Max(x1; x2; : : : ; xj¡1; 1; xj+1; : : : ; xn) = 1. The reciprocal is
however not necessarily true.
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In the case of principles related to "commutativity" (as (P3) in sec-
tion 3) and to the global increment by a growing variation of a degree of
impairment (similar to (P2) and (P2*) in section 3), it becomes fairly
obvious that their meaning related to the problem to be solved should
be thoroughly discussed before accepting types of principles like, for
instance:

(P4***) An(x1; x2; : : : ; xj; : : : ; xn) = An(x¾(1); x¾(2); : : : ; x¾(j); : : : ;
x¾(n)), for any permutation ¾ of the indices 1; 2; : : : ; n, e.g., An(x1; x2;
: : : ; xj; : : : ; xn) = An(xj; x2; : : : ; x1; : : : ; xn)

(P5***) An(x1 + h; x2; : : : ; xj; : : : ; xn) ¡ An(x1; x2; : : : ; xj; : : : ; xn) =
An(h; x2; : : : ; xj; : : : ; xn)¡ An(0; x2; : : : ; xj; : : : ; xn), with x1 + h · 1

Since Prod¤ and W ¤ are associative, it is simple to consistently
de¯ne Prod ¤ (x1; x2; : : : ; xj; : : : ; xn) and W ¤(x1; x2; : : : ; xj; : : : ; xn),
which satisfy (A1) through (A3), thus being aggregations. Furthermore
they satisfy (A4), (P4***) and, with adequate constraints (in the case
of W*), (P5***). Hence they give a solution to the general problem
of combining degrees of impairment. However (P4***) is a matter of
high controversy, since the order of appearance of impairments may be
of great relevance (see e.g. [5]).

5 Conclusions

The index of Balthazard, which has been used to develop (restricted
precision) tables to combine degrees of impairment [10], [14], is equiv-
alent to sets of well de¯ned principles as shown in section 3. Due to
their mathematical equivalence with the index, such principles are im-
plicitly accepted when using the index, even if the principles are not
explicitly declared.

The only principle explicited in [14] refers to the requirement that
the combined degree of two impairments a and b should be strictly
greater than the Max of these degrees. However, the fact that eB(a; b) >
Max(a; b) follows, on the one side, from the principles that lead to eB
being a t-conorm (as is the case with eB = Prod¤) and, on the other
side, represents such a general property, that allows for many other
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possible solutions and leads non necessarily to the index of Balthazard.
Similarly, the property S(a; b) = 1 if and only if Max(a; b) = 1 does
not lead to the index eB.

The non-associativity of the table in [10] -reproduced in [14] with-
out further explanations- contributes uncertainty in the case of pa-
tients with more than two impairments. It seems mandatory, that the
instructions to operate with the table illustrate the kind of rounding to
be used in the case of more than two degrees of impairment, or that a
solution as the one disclosed in section 2 (ii), (see also [9]), is adopted.
(Recall, however, the closing remark of section 2 (ii)).)

Even though the extension via associativity of a t-conorm S to a
function S(a1; : : : ; an) with more than two variables is an aggregation
function (as shown in section 4) and furthermore is strictly larger than
the function Max(a1; : : : ; an), there are many other n-dimensional ag-
gregation functions An : [0; 1]n ! [0; 1] such that An(a1; : : : ; an) >
Max(a1; : : : ; an), which are available to the corresponding authorities.
Because of this, and of the fact that neither commutativity nor associa-
tivity seem to be properties naturally bounded to the combination or
aggregation of degrees of impairment, a review of the underlying prin-
ciples is adviceable. Such a review may or may not con¯rm the sets
f(P1), (P2), (P3), (P4)g or f(P1), (P2*), (P4*)g and should indeed
be done previously to adopting an aggregation method or a formula to
combine degrees of impairment, be it either a general one or a person-
alized one.

It is scienti¯cally non-acceptable, technically risky, legally uncer-
tain and therefore a source of con°icts, to assign a computing pro-
cedure which is not clearly based on explicit principles, that allow
understanding what is obtained in each case, i.e., understanding the
meaning of An(a1; : : : ; an). It is not a surprise that the many court
trials originated by the application of the index of Balthazard (see [4],
[5], [16] as minimal sample of the many examples available on the Web)
have lead to partial reconsiderations, as in [18], [9] or to the rejection
of any general mathematical procedure, as in Germany [4].

It may ¯nally be concluded, that there seem to be enough reasons
for authorities, medical associations or insurance companies that might
have rather uncritically adopted the formula of Balthazard and, par-
ticularly, its table form, to take proper actions allowing experts in the
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process of aggregation of numerical information to reconsider the the-
oretical problem of calculating the combined grade of several degrees
of impairment. This seems possible to be done, as discussed in section
4. It remains however an interesting open problem, which according
to the authors is typical of what is called "fuzzy modeling" [11].
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7 Appendix
De¯nition: A function S : [0; 1]£[0; 1] ! [0; 1] is a continuous t-conorm
if it is associative, commutative, continuous and monotone increasing
in both arguments, and furthermore has two special elements:

² Neutral element 0. S(0; a) = a, for any a 2 [0; 1]

² Absorbent element 1. S(1; a) = 1, for any a 2 [0; 1]

A more compact de¯nition may be given [2]. A function S : [0; 1] £
[0; 1] ! [0; 1] is a continuous t-conorm if it is associative, continuous
and monotone increasing in both arguments, and has an absorbent
element 1.

Illustration that Min(1; x+ y) does not satisfy (P2) for all x; y 2
[0; 1].
(P2) states that for any a; b; c 2 [0; 1] with a + c · 1, S(a + c; b) ¡
S(a; b) = S(c; b) ¡ S(0; b).
Let z 2 (0; 1] be such that x+ z · 1; y + z · 1 but x + y ¸ 1. Then
in the case of Min(1; x+ y), (P2) would read

Min(1; x + y + z)¡Min(1; x+ y) = Min(1; z + y)¡Min(1; 0 + y):

The left hand side reduces to 1¡ 1 = 0 meanwhile the right hand side
gives z + y ¡ y = z, i.e., z = 0 would be the condition for (P2) to be
satis¯ed; but since z was chosen to be di®erent from 0 the contradiction
shows that (P2) does not hold for wide ranges of x; y and z.


