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Abstract

Most published research on the comparison between medical treatment options merely compares the
results (effectiveness and cost) obtained for each treatment group. The present work proposes the
incorporation of other patient characteristics into the analysis. Most of the studies carried out in this
context assume normality of both costs and effectiveness. In practice, however, the data are not always
distributed according to this assumption. Altervative models have to be developed.
In this paper, we present a general model of cost-effectiveness, incorporating both binary effectiveness
and skewed cost. In a practical application, we compare two highly active antiretroviral treatments
applied to asymptomatic HIV patients.
We propose a logit model when the effectiveness is measured depending on whether an initial purpose
is achieved. For this model, the measure to compare treatments is the difference in the probability
of success. Besides, the cost data usually present a right skewing. We propose the use of the log-
transformation to carry out the regression model. The three models are fitted demonstrating the
advantages of this modelling. The cost-effectiveness acceptability curve is used as a measure for
decision-making.
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1 Introduction

The frequentist approximation is the one most commonly adopted to compare different
treatment options (Laskaet al., 1997, Stinnett and Mullahy, 1998, Tambouret al.
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1998, Van Houtet al., 1994, Wakker and Klaassen, 1995, Willam and O’Brien, 1996).
However, clinical research is fundamentally a dynamic process in which any study must
be considered in the context of continual updating of the state of the art. The Bayesian
method is of a dynamic nature in which initial beliefs, determined on the basis of a prior
distribution, are modified by new data, using Bayes’ theorem.A large body of literature
has been published on Bayesian methods, chief among which are texts by Berry (1996),
Box and Tiao (1973) and Gelmanet al. (1995).

Spiegelhalteret al. (1994) and Jones (1996) were the first to discuss Bayesian
approximation for statistical inference in the comparisonof health technologies. Since
then, many studies have proposed the Bayesian approach to compare treatment options
by means of cost-effectiveness analysis (Al and Van Hout, 2000, Briggs, 1999, 2001,
Heitjan, 1997, Heitjanet al., 1999, O’Haganet al., 2001, O’Hagan and Stevens, 2001a,
2001b, 2002).

Most studies carried out in this field compare the effectiveness and the costs of the
different treatment options analysed. This type of analysis assumes that the patients
sampled and subjected to a particular treatment option present similar characteristics
or, at least, that the differences between samples are not relevant to the analysis of cost
and effectiveness, and so the variations between the treatment groups are only caused
by the type of treatment applied. In the present paper, the above assumption is not made
and so, in order to obtain the true effect of the type of treatment applied on costs and
effectiveness a regression model is proposed. The use of regression models in cost-
effectiveness analysis has recently been proposed by Hochet al. (2002) and Willanet
al. (2004) under a frequentist point of view. This paper presentsthe Bayesian solution,
offering a more flexible framework for different measures of effectiveness and cost.

Sometimes effectiveness is not measured quantitatively but in a discreteway,
depending on whether or not a particular objective has been attained. Therefore, we
have developed two alternative regression models, a multiple linear regression model to
be used when the effectiveness is measured by means of a continuous variable, and a
logit discrete choice model when effectiveness is defined by a categorical variable.

Most published studies on cost-effectiveness analysis assume normality of the cost
generation distribution (Laska, 1997, Stinnet and Mullahy, 1998, Tambouret al., 1998,
Willam and O’Brien, 1996, Heitjanet al., 1999, O’Haganet al., 2001). In practice,
however, costs usually present a high degree of skewness, and so the normality
assumption is not valid. O’Hagan and Stevens (2001b) determined, from a practical
application, the importance of dealing with skewed cost data, obtaining different results
from those achieved under the assumption of normality.

The standard measure used to compare the cost and effectiveness of treatments is
the incremental cost-effectiveness ratio (ICER). Nevertheless, this measure presents
severe interpretational problems, as well as difficulties in estimating the confidence
or credibility intervals. The incremental net benefit (INB) has been proposed as an
alternative to ICER (Mullahy and Stinnett, 1998, among others). The INB of treatment
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1 (new) versus treatment 0 (actual, or control) is defined as

INB(Rc) = Rc · (µ1 − µ0) − (γ1 − γ0) = Rc · (∆µ) − (∆γ), (1.1)

whereµ’s andγ’s are the mean effectiveness and cost of the respective treatments. The
valueRc is interpreted by O’Hagan and Stevens (2001a) as the cost thatdecision-makers
are willing to accept in order to increase the effectiveness of the treatment applied
by one unit. Thus, analysing whether the alternative treatment is more cost-effective
than the control treatment is equivalent to determining whether INB(Rc) is positive. In
practice, it is not a simple matter for the decision-maker todetermine a singleRc, and so
a cost-effectiveness acceptability curve (CEAC) is constructed (Löthgren and Zethraeus,
2000). This curve provides a graphical representation of theprobability of the alternative
treatment being preferred (Pr(INB(Rc) > 0)) for each valueRc. This interpretation of the
CEAC, in terms of probability, is only possible when the Bayesian approach is adopted
(Briggs, 1999).

Section 2 presents the regression models used in this study. These are selected
depending on how the effectiveness is to be measured (qualitatively or quantitatively)
and on the cost patterns generated. Section 3 provides a comparison of the different
models created by means of a practical application using real data from a clinical trial
comparing two alternative treatments for asymptomatic HIVpatients. Section 4 presents
a discussion of the results obtained and draws some conclusions.

2 Bayesian cost-effectiveness regression models incorporating
2 covariates

2.1 Assumed normality of effectiveness and costs

Given a sample ofN individuals participating in a clinical trial, we obtained
effectiveness data (Ei) and cost data (Ci) for each patienti, i = 1 . . .N. TheseN patients
were given two different types of treatment, termed the control treatment and the new,
or alternative treatment.

The results of the clinical trial, in terms of effectiveness and costs, are not determined
only by the type of treatment received (XT), and so it is necessary to consider a series
of possible covariates that may influence the above results. Such covariates include
the patient’s age, state of health at the time of the clinicaltrial, gender and other
characteristics that depend on the type of clinical trial under analysis (X). We define
X as ann× (k+ 1) matrix of covariates, where each column (Xi) refers to one covariate.
The first column is a column of ones referring to the constant.

We seek, therefore, to explain the results obtained (Ei and Ci), as a linear
combination of thek covariates considered (the patient’s individual characteristics and
the type of treatment received). For this purpose, we propose a Bayesian multiple linear
regression model in which the perturbation term (ui or vi) is assumed to be Gaussian,
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independent and identically distributed (i.i.d) with a mean of 0 and variances ofσ2
1 and

σ2
2 respectively.

Ei = β0 + β1 · X1,i + β2 · X2,i + . . . + βk−1 · Xk−1,i + βT · XT,i + ui , (2.1)

Ci = δ0 + δ1 · X1,i + δ2 · X2,i + . . . + δk−1 · Xk−1,i + δT · XT,i + vi , (2.2)

where the vectorsβ = (β0, β1, β2, . . . , βk−1, βT)′ , δ = (δ0, δ1, δ2, . . . , δk−1, δT)′, and the
accuracy valuesτ1 = 1/σ2

1 andτ2 = 1/σ2
2 are the parameters of the model.

Thek covariates considered for which data are available need notbe explicative of
both the effectiveness and the costs, and so the above general model could be corrected
by eliminating those covariates that do not explain effectiveness and cost.

The first step to be taken in estimating the parameters is to determine the likelihood
function, both of the effectivenessℓe(E|β, τ1) and of the costsℓc(C|δ, τ2), whereE =
(E1, . . . ,EN)′ and C = (C1, . . . ,CN)′. In this stage both costs and effectiveness are
assumed to present a normal distribution, and so the likelihood functions are represented
by the following expressions:

ℓ(E,C|β, δ, τ1, τ2) = ℓe(E|β, τ1) · ℓc(C|δ, τ2), (2.3)

where
ℓe(E|β, τ1) ∝ τ

N
2
1 exp

{

−
τ1

2
(E − Xβ)′(E − Xβ)

}

,

and
ℓc(C|δ, τ2) ∝ τ

N
2
2 exp

{

−
τ2

2
(C − Xδ)′(C − Xδ)

}

.

Assuming model (2.1)-(2.2) from a Bayesian point of view, wemust specify the
prior distribution for the 2· k + 4 parameters of the model. The prior distribution
represents expert information about the set of model parameters before the sample
observations are analysed. We propose a normal/gamma form for the base prior
and assume independence between the coefficients (β, δ) and precision terms (τ1, τ2).
Obviously, the prior distributions used here are not the only possible choices and indeed,
their independent conditional conjugate form is a suitableproperty to be considered by
an expert.

π(β, τ1) = πe,1(β) · πe,2(τ1), (2.4)

π(δ, τ2) = πc,1(δ) · πc,2(τ2), (2.5)

where
πe,1(β) ∼ N(β0,V−1

1 ), and πc,1(δ) ∼ N(δ0,V−1
2 ),

and,
πe,2(τ1) ∼ G(a1,b1), and πc,2(τ2) ∼ G(a2,b2).

The symbolsN andG denote the normal and gamma distributions, respectively, and
the parametersβ0, V−1

1 , δ0, V−1
2 , a1, b1, a2 andb2, which determine the prior distribution,

are defined on the basis of the information available when the analysis begins. Thus,
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the eliciting process plays an important role, by modellingthe available empirical
or historical evidence by means of the prior distribution (Chaloner and Duncan,
1983, Chaloner, 1995, Chaloner and Rhame, 2001, Freedman andSpiegelhalter, 1983,
Kadane, 1980, Kadane and Wolfson, 1995, Kadane and Wolfson,1998, Winkler, 1967,
Wolpert, 1989).

The joint posterior distribution of the parameters (β, δ, τ1, τ2), given the data (E, C),
can be calculated from equations (2.3-2.5), using Bayes’ theorem.

π(β, τ1|E) ∝ τ
N+2a1

2 −1
1 exp

{

− 1
2

[

τ1(E − Xβ)′(E − Xβ) + (β − β0)′V−1
1 (β − β0) + 2b1τ1

]}

, (2.6)

π(δ, τ2|C) ∝ τ
N+2a2

2 −1
2 exp

{

− 1
2

[

τ2(C − Xδ)′(C − Xδ) + (δ − δ0)′V−1
2 (δ − δ0) + 2b2τ2

]}

. (2.7)

Inferences about quantities of interest must be based on these posterior distributions.
Unfortunately, these are not straightforward, thus the Gibbs sampling algorithm, in the
context of the Markov Chain Monte Carlo (MCMC) simulation seems to be the most
appropriate (Gelmanet al., 1995, Geman and Geman, 1984, Gilkset al., 1996, Tweedie,
1998).

The treatment received is defined by means of a dichotomous variable (XT) that is
assigned a value of 0 for the control treatment and a value of 1when the treatment
received is a new treatment. The parameters corresponding tothe latter variable
are simple to interpret. The coefficient of the treatment variable in the effectiveness
regression model (βT) is interpreted as the mean increment in effectiveness derived from
the new treatment in comparison with the control treatment.To obtain the cost increment
corresponding to the new treatment, it is only necessary to estimate the coefficientδT .

The posterior cost-effectiveness acceptability curve describes the probabilityof the
net benefit presenting positive values, that is, the posterior probability of the new
treatmente being preferred to the control treatment, for each of theRc considered:

Q(Rc) = Pr(INB(Rc) > 0|E,C) .

2.2 Binary effectiveness

On many occasions, the effectiveness data are not determined by a quantitative variable.
An example of this is binary effectiveness, which is measured from a dichotomous
variable{0,1} depending on whether or not a certain positive event has occurred.

Let us assumeN binary random independent variables and thatYi , . . . ,YN are
observed, whereYi follows a Bernoulli distribution with a probabilitypi of the event
occurring. This probabilitypi depends on a series of covariates that may be continuous
or discrete. Let us define a binary regression model in a generalway aspi = H(X′i β),
i = 1, . . . ,N, whereβ is a vector of unknown parameters with dimension (k + 1) × 1,
andXi =

(

1,X1,i ,X2,i , . . . ,Xk,i
)′ is the vector of the known covariates. The logit model is
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obtained when we assume thatH is the logistic distribution. For a classical description
of binary models, see Cox (1971), Nelder and McCullagh (1989), Maddala (1983) and
McFadden (1974).

We now present the application of the logit model to cost-effectiveness studies. We
describe the model corresponding to effectiveness, the cost model being identical to that
analysed in Section 2.1.

We examined a sample ofN individuals who took part in a clinical trial involving two
alternative treatments, in which the effectiveness (Ei) of each was known,i = 1, . . . ,N.

Ei ∼ Be(pi), (2.8)

where

pi =
eX′i ·β

1+ eX′i ·β
.

The first step in the Bayesian analysis requires us to consider alikelihood function
for the data, which in this case is the effectiveness. We apply the logit model, and so the
likelihood function is specified as follows:

ℓe(E|β) =
N
∏

i=1

pEi
i (1− pi)

1−Ei =

N
∏

i=1

(

exp[X′i · β]

1+ exp[X′i · β]

)Ei
(

1−
exp[X′i · β]

1+ exp[X′i · β]

)1−Ei

. (2.9)

Having defined the likelihood function, we now propose a flexible model for the
prior distribution. The normal multivariate distribution for theβ parameters is flexible
enough to include a large number of possible prior situations,

π(β) ∼ N(β0,V−1
1 ). (2.10)

Estimation of the above binary response model was carried outusing Gibbs sampling
(Carlin and Polson, 1992, Albert and Chib, 1993).

We propose the use of the difference in the probability of success between treatments
(∆p) as the measure to analyse the effectiveness. In a logit model the effect of a covariate
on the probability of success depends on the level of the independents. Under the
assumption that the sample is representative of the population, we can estimate the
difference in probabilities of success between control and new treatment for each patient.
The mean incremental effectiveness is estimated as the mean of the increase in the
probability of success for the sample. The INB can be calculated as in the previous
section where the valueRc is interpreted as the cost that decision-makers are willingto
accept in order to increase the probability of success in 1%.

2.3 Skewed cost data: the log-normal model

The cost data obtained from the data of individual patients inhealth-care economic
studies present, for the most part, a strongly asymmetricaldistribution. Another
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characteristic of many cost-effectiveness studies is the small sample size employed.
These circumstances frequently oblige us to reject the normality assumption described
in Section 2.1.

We now describe a model that reflects this skewed cost, using a non-normal
likelihood function. In this sense, Al and Van Hout (2000) described a Bayesian
approach to cost-effectiveness analysis showing how costs can be modelled underthe
assumption of a log-normal distribution. Such a distribution is a much more appropriate
way of reflecting possible cost asymmetries.

It is now necessary to reformulate the cost model using a log-normal likelihood
function, by which the cost model described in Section 2.1 is expressed as follows:

log(Ci) = δ0 + δ1 · X1,i + δ2 · X2,i + . . . + δk−1 · Xk−1,i + δT · XT,i + vi , (2.11)

where the vectorδ = (δ0, δ1, δ2, . . . , δk−1, δT)′ andτ2 = 1/σ2
2 are the parameters to be

estimated.
The likelihood function of the logarithm of the costsℓc(log(C)|δ, τ2) is:

ℓc(log(C)|δ, τ2) ∝ τ
N
2
2 exp

{

−
τ2

2
(log(C) − Xδ)′(log(C) − Xδ)

}

.

A conditional-conjugate prior distribution is thus the normal-gamma distribution
defined above:

π(δ, τ2) = πc,1(δ) · πc,2(τ2), (2.12)

where
πc,1(δ) ∼ N(δ0,V−1

2 ) and πc,2(τ2) ∼ G(a2,b2).

Under the assumption of lognormality, the parameterδT cannot be interpreted as the
incremental cost and it is necessary to search for another means of comparing the two
treatment options. In this case the ratio of the costs of the new treatment and those of
the control treatment can be described by a simple expression, one that does not depend
on the patients’ individual characteristics,

C1
i

C0
i

= exp(δT) (2.13)

whereC1
i is the cost of a patienti who has received the new treatment, andC0

i is the cost
of the same patienti when the control treatment is applied.

Therefore, values greater than 1 for exp(δT) indicate that the new treatment is more
costly than the control treatment. Thus, (exp(δT) − 1) · 100% shows the percentage
increase in costs arising from the new treatment.

In comparison with the model described in Section 2.1, the INBpresents the
following expression:

INB = (Rc) · βT − (exp(δT) − 1), (2.14)
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whereRc is interpreted as the proportion of the cost increase that the decision-maker is
willing to accept in order to increase effectiveness by one unit. Positive INB values show
a preference for the alternative treatment. As in the previous sections, we can construct
a posterior cost-effectiveness acceptability curve for each value ofRc.

3 Practical application

The data used in this section were obtained from a real clinical trial in which a
comparison was made of two highly active antiretroviral treatment protocols applied
to asymptomatic HIV patients (COSTVIR study, Pintoet al., 2000).

We obtained data on the direct costs (of drugs, medical visits and diagnostic tests), on
the effectiveness, based on clinical variables (percentage of patients with no detectable
virus load) and on health-related life-quality variables,using EuroQol-5D.

EuroQol–5D is an instrument for the self-evaluation of personal health, consisting of
five questions that investigate five aspects of health-related life quality, based on a visual
analogue scale (VAS) (Brooks, 1996).

In this exercise we compared two three-way treatment protocols. The first of these
(d4T + 3TC + IND) combines the drugs estavudine (d4T), lamivudine (3TC) and
indinavir (IND); the second treatment protocol (d4T+ ddl+ IND) combines estavudine
(d4T), didanosine (ddl) and indinavir (IND).

Two alternative measures of effectiveness were employed. The first of these was
the improvement in the patient’s life quality, measured as the improvement on a visual
analogue scale (VAS). This scale simulates a thermometer witha minimum of 0 and a
maximum of 100. The 0 represents the worst health state imaginable, and the 100, the
best.

The second effectiveness measure considered was the percentage of patients who,
at the end of the treatment programme, presented undetectable levels of viral load. The
effectiveness, therefore, can only be expressed as one of two values, either 1 if the viral
load is undetectable, otherwise 0.

Table 1 summarises the statistical data obtained. The d4T+ ddl + IND treatment
is more costly than the d4T+ 3TC + IND treatment, by an average of 164.82 euros.
When the VAS variation is used as the measure of effectiveness, the d4T+ ddl + IND
treatment is more effective because, on average, the patients who received this treatment
experienced an improvement in their life quality of 4.94 units, while those who were
given the d4T+ 3TC + IND treatment only experienced a VAS improvement of 4.56
units. However, if the percentage of patients experiencinga reduction of the viral load to
undetectable levels is used as the measure of effectiveness, then a better result is obtained
for the d4T+ 3TC + IND group (68%) than for those who received the alternative
treatment (66%).
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Table 1: Statistical summary of costs (in euros) and effectiveness (change in VAS and
percentage of patients with undetectable viral load).

d4T+ 3TC+ IND d4T+ ddl + IND

Statistical measure Cost Change in % with Cost Change in % with
VAS undetectable VL VAS undetectable VL

Mean 7142.44 4.56 0.68 7307.26 4.94 0.66

Stan. Devn. 1573.98 15.17 0.47 1720.96 13.98 0.48

N N0 = 268 N1 = 93

3.1 Assumption of normality in effectiveness and in costs

In this section, the increase in the VAS is used as the measureof the effectiveness of
each treatment protocol. For this purpose, we applied the model described in Section
2.1, taking into account the effectiveness and cost of the treatment given to each patient,
the individual characteristics of each patient and his/her clinical situation at the moment
of the clinical trial.

The model’s explanatory variables are theage, thegender(value 0 if the patient is
male and value 1 for a female) and the existence of any concomitant illness (cc1with a
value of 1 if a concomitant illness is present, otherwise 0; and cc2with a value of 1 if
two or more concomitant illnesses are present, otherwise 0). The concomitant illnesses
considered were hypertension, cardiovascular disease, allergies, asthma, diabetes,
gastrointestinal disorders, urinary dysfunction, previous kidney pathology, high levels
of cholesterol and/or triglycerides, chronic skin complaints and depression/anxiety. Also
included in the model was the time (in months) elapsed since the start of the illness
until the moment the clinical trial was performed. Finally, we included a dichotomous
variable (trat) that was assigned a value of 1 if the patient received the (d4T + ddl +
IND) treatment protocol and a value of 0 if the (d4T+ 3TC + IND) treatment was
applied. The linear model of the effectiveness and the costs, for thei-th patient is

Ei = β0 + β1 · agei + β2 · genderi + β3 · cc1i + β4cc2i + β5 · starti + βT · trati + ui , (3.1)

Ci = δ0 + δ1 · agei + δ2 · genderi + δ3 · cc1i + δ4cc2i + δ5 · starti + δT · trati + vi . (3.2)

3.1.1 Priors

For a fully Bayesian analysis, we must specify priors for theparameters of interest. The
COSTVIR study was carried out in 1999 and it is not practical nowto try to elicit the
prior information. For the purpose of our illustrative analysis, we look at the reasoning
behind the design of the study as an indication of what prior information we can use.
For HAART regimens, there were no indications of differences in effectiveness because
of age or gender. However, they showed better results for patients with concomitant
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illnesses and for patients in the early stages of the illness. The d4T+ ddl+ IND treatment
was expected to be on average more effective than the d4T+ 3TC+ IND treatment but
with a prior interval of probability large enough to includenegative values.

In cost terms, it was expected that the age, the fact to be female and the months
of illness increase cost of HAART therapies. No effect of the existence of concomitant
illnesses in cost was expected. Higher cost was expected forthe treatment d4T+ ddl +
IND.

Mean and interval of probability were asked to the experts inan elicitation process
to obtain the prior mean and variance of the parameters of interest. Diffuse information
is assumed for the precision terms. Then, the prior elicitation is implemented by using
the following parameter assignments:

β0 = (0,0,0,5,10,−0.5,2), V1 = diag(1010,1,1,6.25,6.25,0.01,2.25),

δ0 = (0,10,200,0,0,5,200), V2 = diag(1010,25,2500,625,625,6.25,2500),

a1 = 0.5, b1 = 0, a2 = 0.5, andb2 = 0.

3.1.2 Results

For all models, simulations were done using WinBUGS (Spiegelhalteret al., 1999). A
total of 50000 iterations were carried out, after a burn-in period of 10000 iterations. The
codes are available from authors upon request. Table 2 showsthe posterior estimation
of the parameters.

Table 2: Posterior statistics and symmetrical interval of probability at 95% (normal
model).

Mean Standard deviation 95% CI

β0 0.9514 3.9213 (-6.6991, 8.6842)
β1 0.05458 0.1072 (-0.1549, 0.2629)
β2 -0.3023 0.8701 (-2.0084, 1.3882)
β3 3.5431 1.4382 (0.7186, 6.3673)
β4 9.5387 1.7963 (6.0183, 13.0518)
β5 -0.005698 0.008184 (-0.02176, 0.01038)
βT 1.4080 1.1471 (-0.8494, 3.6707)

δ0 6673.4 194.9 (6287.3, 7052.7)
δ1 9.1532 4.6151 (0.0483, 18.2076)
δ2 199.31 48.36 (103.84, 293.35)
δ3 2.4683 24.7677 (-46.2720, 50.9167)
δ4 -1.0110 24.9816 (-49.7648, 48.3937)
δ5 1.0614 0.8412 (-0.5928, 2.7221)
δT 198.80 48.56 (103.39, 293.91)

Let us begin by analysing the effectiveness model. The age and gender coefficients
(β1 andβ2) are not statistically relevant, which means that these covariates do not affect



F. J. Vázquez-Polo and M. A. Negrı́n-Hernández 97

the final results for effectiveness. The existence of concomitant illnesses favoursan
increase in the patient’s VAS, as shown by the positive signs of the corresponding
coefficients. The months elapsed between the start of the illness and the moment of
the clinical trial do not seem to affect the final effectiveness results.

The βT coefficient indicates the incremental effectiveness of the new treatment.
The coefficient has a value of 1.4080, which indicates that the patients who received
the three-way treatment (d4T+ ddl + IND), under conditions ofceteris paribus,
reported an increase in their health state evaluation an average of 1.4080 units greater
than the patients who were given the alternative treatment.Nevertheless, the 95%
probability interval includes both positive and negative values, and so we cannot claim
that the difference between the two treatment protocols, with regard to effectiveness, is
statistically relevant. From the posterior marginal distribution of theβT coefficient, it
can be said that there exists a probability of 88.8% that the (d4T+ ddl+ IND) treatment
is more effective than the (d4T+ 3TC+ IND) treatment.

With regard to costs, we found that the (d4T+ ddl + IND) treatment is more
expensive than the alternative, by an average of 198.80 euros, with an interval of
probability of (103.39, 293.91).

The incremental cost-effectiveness ratio is calculated as the ratio of the increasesin
cost and effectiveness (δT /βT). In the present study, the ICER was found to be 290.21.
Figure 1 shows the joint posterior distribution of the incremental costs and effectiveness
measured.

Figure 1: Joint posterior distribution of costs and incremental effectiveness (normal model).
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In addition to the ICER, we obtained the value of the incremental net benefit (INB).
Figure 2 shows the probability that the INB is positive for every possible value ofRc,
that is, the cost-effectiveness acceptability curve.

Figure 2: Cost-effectiveness acceptability curve (normal model).

At a willingness to pay of 141.89 euros or more, the decision-maker prefers the
alternative treatment (d4T+ 3TC+ IND), because the probability of this preference is
greater than 50%.

3.2 Binary effectiveness

We now consider the possibility of the effectiveness being measured by means of a
binary variable, that is, the percentage of patients who, given a certain treatment option,
achieve undetectable levels of viral load.

Table 1 shows that 68% of the patients achieved undetectablelevels of viral load with
the (d4T+ 3TC + IND) treatment, versus 66% of those given the (d4T+ ddl + IND)
treatment. We now apply the logit regression model described in Section 2.2. This model
enables us to determine whether the differences between the two treatment groups are
due to the treatment itself or to individual characteristics of the patients.

The odds ratio (OR) is the most common measurement used to compare the
probability of success between two categories of a qualitative variable in a logit model
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(Deeks, 1998). Its main advantage over alternative measurements comparing treatments
is its ability to measure independently of individual patient characteristics. Thus, when
two categories 1 and 0, of a dichotomous variables are compared, indicating here the
type of treatment received, the odds ratio is obtained as therelative probability of the
success ratio between categories. Thus the final value obtained does not depend on the
remaining individual patient characteristics:

OR=

p1
i

1− p1
i

p0
i

1− p0
i

= exp(βT) , (3.3)

wherep1
i is the probability of success of a patienti who has received the new treatment,

andp0
i is the probability of success of the same patienti who has received the control.

Values greater than 1 for the odds ratio reflect a preference for the new treatment,
as the relative probability of improvement is greater than in the case of the control
treatment. The odds ratio has a very intuitive practical consideration, and the decision-
maker who has a good statistical training should have no problem to assess it. We
propose to use this feature in the elicitation process as shown in the following.

3.2.1 Priors

We include prior information about the value of the coefficients of the logit model.
However, the coefficients have not a natural interpretation to be elicited. Forthat reason
we asked the experts the prior beliefs about the mean and variance of the odds ratio for
each covariate.

Assuming that the prior distribution of the vector of coefficientsβ is normal, the
prior distribution of the odds ratio is log-normal. Thus, we can elicit the prior mean and
variance using the following relationship:

βk ∼ N(β0
k,V

−1
1k,k

) ⇐⇒ ORk = exp(βk) ∼ log-N(OR0
k,V

−1
ORk,k

),

where log−N denotes the log-normal distribution and the two first momentsare:

E[ORk] = OR0
k = exp(β0

k + V−1
1k,k
/2),

Var[ORk] = V−1
ORk,k
= exp(2· β0

k + V−1
1k,k

) · (exp(V−1
1k,k

) − 1).

The experts have prior information about the mean and variance of odds ratios.
Solving the previous system of equations we can obtain prior information about the
coefficientsβ.

Before the study was carried out, the experts expected lowerprobabilities to achieve
undetectable viral load for women (odds ratio of 0.8), patients with concomitant
illnesses (odds ratios of 0.7 and 0.5 forcc1 and cc2) and for each additional month
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of illness (odds ratio of 0.8). It is necessary to comment on the different signs of the
coefficient for concomitant illnesses for the two measures of effectiveness considered.
The HAART regimens improve the quality of life of the patientswith concomitant
illnesses attenuating the effect of these illnesses. However, the existence of these
concomitant illnesses supposes an inconvenience in the goal of achieving undetectable
viral load. There was no prior information about the difference between treatments. A
small value of 0.01 was assigned to the prior variance for all the odds ratios.Then, the
prior elicitation is implemented by using the following parameter assignments:

β0 = (0,0,−0.2301,−0.3667,−0.7124,−0.2301,0),

and
V1 = diag(1010,1010,0.0154,0.02,0.0385,0.0154,1010).

3.2.2 Results

Table 3 shows some posterior moments of the parameters for the effectiveness regression
estimated by means of MCMC simulation techniques.

Table 3: Posterior statistics and symmetrical interval of probability at 95% (binary
effectiveness).

Mean Standard deviation 95% CI

β0 1.5281 0.6020 (0.3998, 2.7534)
β1 -0.0127 0.0162 (-0.0454, 0.0181)
β2 -0.3174 0.1109 (-0.5359, -0.0972)
β3 -0.3728 0.1244 (-0.6102, -0.1276)
β4 -0.7451 0.1709 (-1.0760, -0.4078)
β5 -0.000402 0.001304 (-0.002807, 0.002327)
βT -0.0367 0.2589 (-0.5392, 0.4722)

exp(βT) 0.9968 0.2631 (0.5832, 1.6041)
∆p -0.002285 0.014085 (-0.030341, 0.024540)

The relative risk measure is usually employed to compare categories in logit discrete
choice models. This measure is obtained by determining the ratio of the relative
probabilities of success and failure of two categories. With regard to the type of
treatment received, a patient given the (d4T+ ddl + IND) treatment has an odds ratio
of reducing the viral load to undetectable levels of 99.7% with respect to another, with
the same characteristics, who receives the (d4T+ 3TC + IND) treatment. There is a
probability of 44.7% that the new treatment (d4T+ ddl + IND) is more effective than
the first-named one (d4T+ 3TC + IND). The regression coefficients corresponding to
the costs are the same as in the previous section.
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Figure 3: Joint posterior distribution of costs and relative risk (binary effectiveness).

Figure 4: Cost-effectiveness acceptability curve (binary effectiveness).

Besides the odds ratio, we estimate the mean difference in the probability of
success between treatments. The mean incremental change in probability is estimated
as−0.229%, with a Bayesian interval of (−3.03%,2.45%).

Figure 3 shows the joint posterior distribution of the increase in probability and of
the incremental cost.
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The cost-effectiveness acceptability curve is shown in Figure 4. From the cost-
effectiveness acceptability curve, we see that the new treatment (d4T + ddl + IND)
is not preferred, in all cases, to the control treatment (d4T+ 3TC+ IND).

3.3 Cost asymmetry: log-normal model

Most statistical models assume normality in effectiveness and in costs (O’Haganet al.,
2001, O’Hagan and Stevens, 2002). In practice, however, costs tend to present severe
asymmetry, and this should be taken into account in the analysis. Evidence of skewing
is shown in Figure 5, which contains a histogram of the residuals from the normal
model of Section 3.1. Due to this skewness, it is more appropriate to consider a log-
transformation. The analysis of the effectiveness is similar to that of Section 3.1.

Figure 5: Histogram of residuals of the normal model.

The coefficients of the log-normal model does not have a natural interpretation and
it is necessary to search for another means of comparing the effect of a covariate. In
this case, the ratio of the costs of having or not a characteristic can be described by the
exponential of the coefficient. We use this property to define our prior information:

exp(δk) =
C(Xk = 1)
C(Xk = 0)

=
C(Xk = 1)−C(Xk = 0)

C(Xk = 0)
+ 1 =

∆C
C(Xk = 0)

+ 1,

whereC(Xk = 1) is the cost of a patient in the treatment group andC(Xk = 0) is the cost
of a patient in the reference group.
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3.3.1 Priors

We can elicit the prior mean and variance of the exponential of each coefficient β
using the prior information shown in Section 3.1.

E[exp(δk)] =
E(∆C)

C(Xk = 0)
+ 1 and Var[exp(δk)] =

Var(∆C)
(C(Xk = 0))2

.

Using asC(Xk = 0) the sample mean of the cost for the reference group we obtain the
prior mean and variance for the exponential of the coefficients. For continuous covariates
asageor start we use as reference group the total of the sample. With this information
and similarly to the previous section we can obtain the priorinformation about the
coefficients:

β0 = (0,1.39060· 10−3,2.76073· 10−2,−6.12301· 10−6,−6.02103· 10−6,

·6.93488· 10−3,2.75936· 10−2),

and

V1 = diag(1010,4.80952· 10−7,4.64127· 10−5,1.22460· 10−5,1.20421· 10−5,

·1.19405· 10−7,4.63492· 10−5).

3.3.2 Results

The new treatment is 2.78% more expensive than the control one, with an interval of
probability of 95% of (1.48%, 4.06%).

Table 4: Posterior statistics and symmetrical interval of probability at 95% (log-normal
model).

Mean Standard deviation 95% CI

δ0 8.785 0.02294 (8.74, 8.829)
δ1 0.000961 0.000585 (-0.000190, 0.002107)
δ2 0.02548 0.006382 (0.01285, 0.03784)
δ3 0.000862 0.003448 (-0.005887, 0.007592)
δ4 -0.000138 0.003429 (-0.00685, 0.006563)
δ5 0.000423 0.0000858 (0.000259, 0.000596)
δT 0.027411 0.006416 (0.0147, 0.03977)

exp(δT) − 1 0.02781 0.006594 (0.01481, 0.04057)

Figure 6 shows the joint posterior distribution of the incremental effectiveness and
the relative incremental cost (exp(δT) − 1).



104 Incorporating patients’ characteristics in cost-effectiveness studies with...

Figure 6: Joint posterior distribution of incremental effectiveness and of the ratio between costs (log-normal
model).

The cost-effectiveness acceptability curve is shown in Fig. 7.

Figure 7: Cost-effectiveness acceptability curve (log-normal model).
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The critical value is 0.019353. When the decision-maker is prepared to increase
costs by 1.9353% or more in order to increase effectiveness by one unit, then the new
treatment (d4T+ ddl + IND) will be preferred. If we take the cost of the control
treatment as its mean value (7142.44 euros), an increase of 1.9353% is equivalent to
138.23 euros. In Section 3.1, with the assumption of normality, this critical value was
calculated to be 141.89 euros. The greater the degree of asymmetry in costs, the greater
is the divergence between the results obtained by the normality assumption and the log-
normal assumption.

4 Conclusions

This paper presents a flexible methodology to carry out cost-effectiveness analysis,
developed from a Bayesian perspective. The assumption common to all models is that
the effectiveness and cost differences between alternative treatment options may not be
due solely to the type of treatment received. Sample differences between the groups
given one or other of the two treatments may be relevant and influence the final results
for effectiveness and cost. Therefore, a valid comparison of two alternative treatments is
only possible if we are able to isolate the effect of the type of treatment received on the
variables of interest (effectiveness and cost). In order to achieve this, we must create
a regression model that includes the other explanatory variables and a dichotomous
variable that is assigned a value of 0 or 1 depending on the type of treatment received.
On the basis of these models, we can generate the different cost-effectiveness decision-
making measures described in the literature.

The initial model is normal-normal, in which both effectiveness and costs are
assumed to follow a normal distribution. This assumption maybe justified by the central
limit theorem, in the case of large sample sizes.

However, on some occasions the effectiveness measure is not determined by a
quantitative variable. For example, effectiveness may be measured by whether or not
a certain objective has been achieved. Taking this into account, we have developed an
alternative model that uses the difference in the probability of success as measure of
effectiveness.

Moreover, costs often present severely asymmetrical distributions, or the sample size
may be limited, which would invalidate the assumption of normality. In such cases, it is
necessary to assume an alternative cost distribution, one that is flexible to the existence
of extreme values. Such a requirement is met by the log-normaldistribution, and the
ratio of costs is then used to compare different treatments.

All the models described here have been developed from a Bayesian perspective,
which enables us to incorporate prior information (if it exists) in a natural, flexible
way, and to interpret the results in terms of probability. For the purposes of our
illustrative analysis, we obtained prior information fromthe consensus of the experts
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who participated in the study. A different elicitation process is proposed for each model,
and this process plays an important role in the analysis of the results. For future research
more efforts have to be carried out to elicit the prior information and to analyse the
robustness of the models. The cost-effectiveness acceptability curve is shown to be a
natural measure and one that is easy for the decision-maker to interpret.
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Resum

La major part de les publicacions que comparen diverses opcions de tractament, es redueixen a
comparar els resultats (eficàcia i cost) obtingudes per cada grup. Aquest treball proposa la incorporació
d’altres caracterı́stiques dels pacients en l’anàlisi. La major part dels estudis duts a terme en aquest
context suposen que tant el cost com l’eficàcia són normals. A la pràctica les dades no sempre es
distribueixen d’acord amb aquesta hipòtesi. Cal desenvolupar models alternatius. En aquest article
presentem un model general que incorpora una mesura de l’eficàcia binària i un cost asimètric. En
un aplicació pràctica, comparem dos tractaments antiretrovirals altament actius donats a pacients VIH
asimptomàtics. Proposem un model logit on l’eficàcia es mesura d’acord amb si s’ha aconseguit un
determinat propòsit inicial. Per a aquest model, la mesura per comparar els tractaments es la diferència
en la probabilitat d’èxit.

A més, les dades de cost són usualment asimètriques cap a la dreta. Proposem usar la transformació
logarı́tmica per a dur a terme el model de regressió. Els tres models es condueixen demostrant els
avantatges d’aquest model. La corba d’acceptabilitat cost-eficàcia s’utilitza com a mesura per prendre
les decisions.
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Paraules clau: anàlisis baiesiana, eficàcia-Cost, Markov chain Monte Carlo (MCMC), distribucions de
cost asimètriques


