
Mathware & Soft Computing 12 (2005) 129-153

A First Approach to the Multipurpose Relational

Database Server

I.J. Blanco1, C. Mart́ınez-Cruz1, J.M. Serrano2 and M.A. Vila1

1Dept. Comp. Science and Art. Intelligence, University of Granada
C/ Periodista Daniel Saucedo Aranda S/N, 18071, Granada, SPAIN

{iblanco,cmcruz,vila}@decsai.ugr.es
2Dept. Computer Science, University of Jaen
Las Lagunillas Campus, 23071, Jaen, SPAIN

jschica@ujaen.es

Abstract

In this paper, an architecture and an implementation of a multipurpose

relational database server are proposed. This architecture enables classical

queries to be executed, deductions to be made, and data mining operations

to be performed on fuzzy or classical data. The proposal of this integration

is to combine several ways of querying different types of data. In order to

achieve this, a combination of existing meta-knowledge bases and new data

catalog elements is presented. We also introduce a language for handling all

these data coherently and uniformly on the basis of classical SQL sentences.

1 Introduction

In order to increase the expressiveness of Codd’s relational model [14], various ex-
tensions have been proposed. While some of these improvements focused on the
integration of fuzzy logic into the model so that imprecise and flexible values can be
represented [6, 21], another extension of the model was based on the logical repre-
sentation of a relational database[17] and the possibility of making deductions using
classical inference mechanisms. Following the introduction of these extensions, it
was obvious that it would be interesting to merge fuzzy relational databases and
logical relational databases [1, 4, 5].

Data mining is the process by which information is extracted from a potentially
large volume of data. The data mining community is currently well aware of
the importance of databases in the process. Because of this, Imielinski et al.[18]
proposed merging databases with data mining, and for a Knowledge Discovery and
Data Mining System (KDD System) to be converted into a Knowledge Discovery
and Database Mining System (KDDB System). On the basis of this, Carrasco
[11, 9, 10, 8] has proposed the integration of data mining operations with a fuzzy
extension of the relational database model GEFRED[21].

129

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41782386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

130 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

All architectures and implementations shown in this paper have been sug-
gested on the basis of a specific proposal for fuzzy relational databases, called
GEFRED[21]. Each of these has been developed to deal with a specific type of
information (fuzzy, logical or referring to data mining processes). When the capa-
bilities of all these implementations are merged, the power of the relational model is
increased since complex queries can be executed. With such a system, data mining
on relations that are defined using logical rules is possible.

The aim of this paper is therefore to combine data mining, and flexible and
logical approaches in order to enhance the query capability of the system. This
proposal of an extended RDBMS enables new architectures and implementations
to be included due to its scalability.

The paper is organized in the following way: Section 2 describes previous imple-
mentations and architectures; Section 3 examines the architecture for the unified
server and the information which needs to be added so that existing servers can
be connected; Section 4 presents an example of how the data are stored in the
database when a query has been run on the new architecture; and finally, Section
6 presents the conclusions and future lines of research.

2 Previous Implementations, Architectures and

Models

As we mentioned above, we propose to combine existing implementations for fuzzy
querying, making deductions with imprecise data, and data mining querying the
relational model into a unified architecture. These existing implementations are
described in this section.

2.1 Representing Imprecise Information in the Relational
Model

2.1.1 Theoretical Model (GEFRED)

This model was introduced by Medina et al. [21] to represent flexible and imprecise
information within the relational model. In order to achieve this, the concept of
domain is extended into the generalized fuzzy domain. This extension of the concept
enables a relational attribute to store values such as non-numerical discrete values,
numerical values, a set of possible non-numerical discrete values, a set of possible
numerical values, possibility distributions on the basis of a non-numerical domain
and possibility distributions on the basis of a numerical domain. This definition
enables three special values to be represented: unknown (when no concrete value is
known), undefined (when the attribute is not applicable), and null (when the value
can be unknown or undefined).

The second extension introduced by this model is the concept of the generalized
fuzzy relation as a pair (H,B). H is called the head (the scheme of the relation where
each attribute can take a value in a generalized fuzzy domain with a compatibility

A First Approach to the Multipurpose Relational Database Server 131

value in the [0, 1] interval) and B is called the body (the instance of the relation as
a set of tuples).

Due to the extension of the domain concept, the concept of the comparison
operator is also extended into a generalized fuzzy comparison operator concept (see
Table 3).

2.1.2 An Architecture (FIRST)

In order to represent all the values in a generalized fuzzy domain, various authors
entered three new data types into a classic RDMBS [22]. These data types are:

• Fuzzy data type 1, or CRISP data type, which represents those attributes
storing classical data which can be fuzzy queried;

• Fuzzy data type 2, or POSSIBILISTIC data type, which represents those at-
tributes storing fuzzy data represented using trapezoid possibility distribu-
tions defined on a numerical domain, (values for the attributes are shown in
Table 1); and

• Fuzzy data type 3, or SCALAR data type, which allows attributes storing
fuzzy data to be represented using possibility distributions defined on a non-
numerical domain (see Table 2).

Table 1: Fuzzy Type 2 Representation
Value Types FT F1 F2 F3 F4

Unknown 0 NULL NULL NULL NULL
Undefined 1 NULL NULL NULL NULL

Null 2 NULL NULL NULL NULL
Crisp 3 d NULL NULL NULL
Label 4 Fuzzy ID NULL NULL NULL

Interval[n,m] 5 n NULL NULL m
Approx(d) 6 d d-margin d+margin margin

trapezoid[α, β, γ, δ] 7 α β γ δ

Table 2: Fuzzy Type 3 Representation
Value Types FT FP1 F1 . . . FPn Fn

Unknown 0 NULL NULL . . . NULL NULL
Undefined 1 NULL NULL . . . NULL NULL

Null 2 NULL NULL . . . NULL NULL
Simple 3 p d . . . NULL NULL

Distribution 4 p1 d1 . . . pn dn

132 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

Type Comparator Meaning

Possibility FEQ Fuzzy Equal (scalars or fuzzy numbers)
FGT Fuzzy More Than

FGEQ Fuzzy More or Less Than
FLT Fuzzy Less Than

FLEQ Fuzzy Less Than or Equal To
MGT Fuzzy Much More Than
MLT Fuzzy Much Less Than

Necessity NFEQ Necessary Equal To
NFGT Fuzzy Necessary More Than

NFGEQ Fuzzy Necessary More Than or Equal To
NFLT Fuzzy Necessary Less Than

NFLEQ Fuzzy Necessary Less Than or Equal To
NMGT Fuzzy Necessary Much More Than
NMLT Fuzzy Necessary Much Less Than

Table 3: Fuzzy Comparators

The aim of this extension is to provide a new set of capabilities to a classical
RDBMS. So that this may be achieved, all accesses to relations in the data catalog
must be intercepted so that new types and relations can be processed. Some new
data catalog relations involved in this processing have therefore been defined, and
this new set has been named the Fuzzy Meta-knowledge Base (FMB). Each FMB
relation is described below:-

• FUZZY COL LIST relation, storing information about attributes of relations
that can contain fuzzy data or can be fuzzy queried;

• FUZZY OBJECT LIST relation, storing common information about all the
fuzzy concepts stored in the database such as labels;

• FUZZY LABEL DEF relation, storing the possibility distribution related to
every fuzzy label defined in the database;

• FUZZY APPROX MUCH relation, storing information for designing pos-
sibility distributions on predefined fuzzy concepts in the database such as
greater than, much greater than;

• FUZZY NEARNESS DEF relation, storing information about similarity re-
lations between every pair of values of a fuzzy type 3 attribute;

• FUZZY COMPATIBLE COL relation, storing those attributes whose do-
main is copied from another fuzzy attribute in the database; and

• FUZZY QUALIFIERS DEF relation, storing the minimum threshold that is
assigned to every qualifier and is defined on a linguistic label.

A First Approach to the Multipurpose Relational Database Server 133

A set of fuzzy comparators has also been proposed and implemented for making
fuzzy queries. All these comparison operators, which are described in Table 3, are
implemented as procedures in the database system.

2.1.3 An Implementation (FSQL)

In order to manage all the concepts and relations defined by the FIRST architec-
ture, an extension of the Data Description Language (DDL) was introduced. This
extension includes a syntax and an implementation of several BNF expressions such
as the ones shown below.

The following sentence shows how to define the previously described fuzzy at-
tributes:

CREATE TABLE table_name

’(’ { col_name (clasic_type |

(FTYPE1 ’(’margin ’,’much’)’ clasic_type |

FTYPE2 ’(’margin ’,’much’)’ clasic_type |

FTYPE3 [’(’number’)’][DOMAIN col_reference]

) [NULL |ONLY LABEL | NOT NULL | NOT UNDEFINED |

NOT UNKNOWN | NOT LABEL | NOT CRISP |

NOT TRAPEZOID | NOT INTERVAL | NOT APPROX]) }+

’)’

table_clauses;

where margin represents the triangular base in an approximate (approx) value,
much represents the minimum distance required in order for two values to be
considered different. Col reference is a reference to a previously defined FTYPE3
attribute and the remaining commands (i.e. NOT LABEL, NOT CRISP, etc.)
restrict the types allowed in the definition.

This expression defines linguistic labels as values for the fuzzy domain of fuzzy
types 1 and 2:

CREATE LABEL

(* ON column FROM colum |

ID ON column VALUES alfa,beta, gamma, delta

) ;

This expression states symbols as values for a fuzzy type 3 attribute and estab-
lishes the values of the similarity function for each pair of domain values.

CREATE NEARNESS ON column

LABELS label_name, label_name {’,’ label_name}* VALUES

similarity_value{’,’ similarity_value}*

Furthermore, the sentences for altering (ALTER) and dropping (DROP) the
structures mentioned above have been implemented.

134 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

An extension of the Data Management Language (DML) was introduced to
handle tuples within this relation [2, 15], with an extended syntax for the INSERT
sentence:

INSERT INTO table_name VALUES

’(’ { clasic_value |

UNDEFINED | UNKNOWN |NULL |

\$’[’ number , number, number, number ’]’ |

id | # number }+

’)’

where the symbol $ enables the representaion of trapezoidal and interval values, the
symbol # that of triangular values, and id allows a linguistic label to be referenced.

In order to query all the data defined by the GEFRED Model and implemented
by the FIRST architecture, Galindo[16, 15, 2, 3] introduced an extension of the
SELECT relational sentence (DML sentence) which incorporates management of
the fuzzy comparison of the extended model and allows classical or fuzzy data to
be queried.

2.2 Representing Logical Information in the Relational Model

2.2.1 Theoretical Model: The Logical View of a Relational Database

The translation of a relational database into a logic database was first proposed
by Gallaire et al.[17]. In this proposal, the authors provided translations for every
element in the relational model into the logic language and the necessary axioms for
the correct and complete description of a database. This correspondence enabled
the application of logic programming languages such as the Prolog[7, 19] language
to a database and the development of a specific language for deduction in relational
databases called Datalog[13].

After the first attempt at introducing fuzzy data into the relational model, Vila
et al.[23] proposed a logical representation for a fuzzy relational database. As in
the classic relational case, this correspondence includes the translation for every
element in the fuzzy relational database and the necessary axioms for the complete
representation of data in the logical model.

On the basis of this logical equivalence, Blanco et al.[4] defined two new kinds
of relations depending on whether the instance of the relation is explicitly stored
(extensional relation, either fuzzy or classical) or if it is calculated using logical rules
(intensional relation, either fuzzy or classical). The classical rules are extended into
the concept of a generalized fuzzy rule with matching degree in order to deal with
fuzzy values and fuzzy comparisons.

2.2.2 An Architecture (Extended FREDDI)

The FREDDI architecture was proposed by Medina et al.[20] to incorporate a
way of storing and executing logical rules within an RDBMS. In order to combine
FREDDI with the implementation for a fuzzy relational database FIRST, Blanco et

A First Approach to the Multipurpose Relational Database Server 135

al.[4] introduced an extension of FREDDI. All of these extensions are represented
in a set of catalog relations called the Rule Base (RB) and described below:

• DED INTENSIONAL CATALOG relation, storing an index of all the inten-
sional relations in the database;

• DED INT TABLE DESCRIPTION relation, storing the index of all the rules
for the calculation of the instance of an intensional relation;

• DED RULE DESCRIPTION relation, representing the definition of every
rule defining the content of an intensional relation as a conjunction of pred-
icates (related to other extensional and intensional predicates) and compar-
isons;

• DED PREDICATE DESCRIPTION relation, describing the structure of ev-
ery predicate in every rule (variable, position, . . .); and

• DED COMPARISON DESCRIPTION relation, describing the structure of
every predicate that is present in any rule (variables, comparison operator
and threshold).

2.2.3 An Implementation (DFSQL)

Intensional relations, extensional relations, and generalized rules in the Extended
FREDDI architecture are managed by means of an extension of the DDL language
provided by Blanco et al.[2]. This extension includes the syntax and management
of expressions such as:

CREATE INTENSIONAL TABLE table_name

’(’ list_columns ’)’ ;

this expression enables an intensional table to be created, specifying the attributes
of the relation to replace list columns.

CREATE RULE table_name FOR ’(’

list_identifier AS [NOT]

{ (predicate_name ’(’ identifier

(FEQ|NFEQ) identifier.identifier [THOLD number] ’)’ |

predicate_name ’(’ identifier SOURCE colum

(FEQ|NFEQ) identifier.identifier [THOLD number] ’)’ |

identifier.identifier (FEQ|FGT|FGEQ|FLT|FLEQ|MGT|MLT|

NEQL|NFGT|NFGEQ|NFLT|NFLEQ|NMGT|NMLT)

identifier.identifier [THOLD number])

[AND]}* ’)’

where list identifier identifies the name of the predicate or predicates that are being
defined. The meaning of FEQ, NFEQ, FGT, FGEQ, FLT, FLEQ, MGT, MLT,
NEQL, NFGT, NFGEQ, NFLT, NFLEQ, NMGT, NMLT is described in Table 3
and all of these represent fuzzy comparators.

136 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

The sentences for dropping these objects are also defined.
¿From the functional point of view, the calculus of an intensional relation in-

stance can be performed by two implementations of the basic algorithms Prolog
and Datalog introduced by Blanco et al.[4, 5].

2.3 Data Mining in the Relational Model

2.3.1 Theoretical Model (GEFRED*)

Based on the GEFRED model, this model redefines the previous concept of fuzzy
domain, giving it a more universal sense: the Complex Generalized Fuzzy Do-
main(GEFRED*) [12, 11] where its definition is not limited to a specific domain.
In addition, GEFRED* defines complex data types where more than one classic
attribute can be included. The concept of Generalized Fuzzy Comparator is also
extended into the concept of Complex Generalized Fuzzy Comparator and this pro-
vides the mechanism for comparing values in this domain. On the basis of this
complex domain, a Complex Generalized Fuzzy Relation has been defined in the
same way as the Generalized Fuzzy Relation.

2.3.2 Architecture: (DmFIRST)

A new data type is introduced to represent the new set of values that were not
contained in the Generalized Fuzzy Domain. This data type is a super-type that
can contain values of any classical data type and the three data types introduced
by F IRST (Fuzzy data type 1, Fuzzy data type 2, and Fuzzy data type 3). Fuzzy
data type 4 [11] consists of:

• a part storing information about the value, and

• another part storing meta-data about the type of value.

This type is included in an intermediate modification of the FIRST architec-
ture, called FIRST*. The representations of the attributes defined in the FIRST
architecture are now collected in Fuzzy data type 4.

Following the idea expressed in FIRST, the data catalog relations that are in-
volved in this processing are made up of an extension of the Fuzzy Meta-knowledge
Base (FMB*)[11]. These relations provide the capability of representing the new
fuzzy data type and executing data mining operations:-

• DMFSQL LABEL DEFINITION relation, storing information about the fuzzy
labels defined for the new fuzzy data type;

• DMFSQL COL COL relation, storing information about all the attributes
capable of containing or handling this new type;

• DMFSQL FUNCTIONS relation, storing the index of functions that define
the extended comparators;

A First Approach to the Multipurpose Relational Database Server 137

• DMFSQL FUNCTIONS COL relation, storing relations between an attribute
and its related comparison function;

• DMFSQL COL PAR relation, storing the interface to call functions imple-
menting extended comparisons.

There are also another two relations in the data catalog that are part of the so-
called DmFMB. This extension of the catalog enables the system to define certain
required parameters for executing some data mining operations such as:

• clustering

• fuzzy classification

• characterization

• fuzzy global dependencies searching: Fuzzy Functional Dependencies(FFD)
and Fuzzy Gradual Dependencies (FGD)

The data mining fuzzy meta-knowledge base (DmFMB) maintains the necessary
information for performing a data mining operation. Some of these relations store
temporary data, determine the default function for an operation, parameters such
as the minimum confidence or support, etc. and these are:

• DMFSQL PROJECT relation, storing general information about the data
mining process, such as the source relation, the clustering process status;. . .

• DMFSQL COL LIST relation, storing information about source attributes
that are significant for the data mining process, the type of operation, and
the relation created for storing the results, called project.

These relations enable table names to be defined where the results of data
mining operations will be stored. These tables are created when a data mining
project is defined. The definition of a data mining project is described in the
following section.

2.3.3 An Implementation (DmFSQL)

In order to manage all the concepts and relations defined by the FIRST* and
the DmFIRST architecture, in [11], Carrasco proposed the syntax of an extended
DDL language. This extension includes the syntax of expressions such as CRE-
ATE MINING, ALTER MINING, DROP MINING, GRANT MINING, or
REVOKE MINING to enable the user to create, drop, alter, or revoke constraints
in a data mining project. A data mining project stores the required information
for performing a data mining process. The syntax of the Create mining project is
described below:

CREATE_MINING PROJECT id_project [ON OWNER id_owner]

ON TABLE id_table

WITH COLUMNS FOR

138 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

[CLUSTERING ’(’ list_columns_clu |list_columns_clu_cen’)’]

[CLASSIFICATION ’(’list columns_cla’)’]

[FGLOBAL_DEPENDENCIES ’(’

{ANTECEDENT list_columns_fgd [THOLD_ANT thold]

CONSEQUENT list_columns_fgd [THOLD_CON thold] }

...

’)’]

[STORAGE_SPECIFICATIONS storage_stm]

This BNF sentence declares a data mining project, and fixes the parameters of
the mining process. A data mining project is associated with a relation, id table
(and sometimes with a schema or owner). Each data mining process requires the
definition of different parameters:

• A clustering process specifies in list columns clu and list columns clu cen the
set of relevant attributes in the process and certain specifications for obtain-
ing the distance matrix such as weight establishment, specification of the
comparison operator, etc. If a classification process is applied after the clus-
tering process, parameters for obtaining the attribute centroids will also be
established.

• A classification process specifies in list columns cla the set of relevant at-
tributes in the process and some specifications about the comparison oper-
ator, if it is necessary to use a t-norm or a t-conorm, weight establishment,
etc.

• A search of functional dependencies involves defining some attributes as an-
tecedents and some as consequents in list columns fgd and whether they must
accomplish a certain threshold.

Carrasco[11] also implements a sentence for managing Fuzzy data type 4.

Furthermore, the DML defined for the data mining process is included as an
extension of the SELECT sentence[11]. This sentence incorporates operations for
clustering, classifying, or extracting global functional dependencies. One example
of the syntax of this sentence when a clustering process is executed is:

SELECT MINING CLUSTERING id_project

INTO TABLE_CLUSTERING id_table_result_clu

[’,’ TABLE_CENTROIDS id_table_result_cen]

OBTAINING {n_clusters|OPTIMAL_ABS|OPTIMAL_H3|OPTIMAL_MED}

CLUSTERS

where id project identifies a previously defined data mining project, id table result clu
represents the name of a new relation created for storing the clustering results,
id table result cen is the name of the relation where the characterization process
stores all the sets and centroids obtained. The parameter n clusters specifies the

A First Approach to the Multipurpose Relational Database Server 139

number of clusters to be obtained and OPTIMAL ABS,OPTIMAL H3 and OPTI-
MAL MED allow the system to obtain the number of clusters using other imple-
mented processes.

The example in Section 4 shows a sentence for obtaining some fuzzy global
dependencies.

3 Architecture for a Unified Server

Using the previously described architectures, we propose the infrastructure for a
unified server that integrates the capabilities of all of these architectures and enables
their functionalities to be combined.
These architectures are defined below and include:

• a database server for fuzzy querying;

• a database server for making deductions with classical and fuzzy data; and

• a database server for executing data mining operations.

This integration is capable of processing several types of queries in the same sen-
tence. For example, queries about deductions with fuzzy data or deductions using
the results of a data mining process can be included in a single sentence.
Moreover, the proposed architecture establishes a mechanism to add more imple-
mentations of new servers with different functionalities on the GEFRED extension
of the relational model.

The elements to be described are:

• the combination of the different meta-knowledge bases; and

• the way to process a query so that the server can decide which modules must
participate in its execution and the order for this participation.

3.1 Meta-knowledge Base (MB)

This set of catalog relations stores the definition of objects and data types used by
the different modules and by the unified server. It is divided into:

• FMB, which represents fuzzy data types, fuzzy domains, fuzzy labels; . . .

• RB, which stores intensional predicates and their definition, described by
means of several logical rules;

• FMB*, which defines a new data type capable of representing text, XML,
objects,. . . and the operations that can be applied to this data type;

• DMFMB, which stores information about clustering, classification and fuzzy
global dependencies, for applying data mining operations on classic data types
of the classical RDBMS, or the fuzzy types defined in FMB.

140 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

The FMB must be defined in any system that uses either FIRST, FREDDI or
DMFIRST, because the FMB implements the basic structure of fuzzy data. The
fuzzy comparison operators implemented in FIRST are outside the FMB. Further-
more, the RB stores all the rules included in the system, referencing attributes that
can be fuzzy or not, so that the FMB must be visible to this architecture. On the
other hand, the FMB* is only an extension of the FMB for managing a new data
type. The DMFMB works with all the attributes of the database defined in FIRST
and in DMFIRST, so it is necessary to include the FMB relations for managing
fuzzy data.

EXTENDED_

TAB_COLUMNS

EXTENDED_

TABLES

FMB RB

DMFMBFMB*

ALL_TAB_

COLUMNS

ALL_

OBJECTS
1

2
 3 4

5

67

8

Figure 1: Extended Knowledge Base

In Figures 1 and 2, the different meta-knowledge bases are interconnected by
means of two new relations. The connections introduced in order for cross-queries
to be processed are:

• EXTENDED TABLES, storing the relations (classical or extended) defined
in the DB that can be used by fuzzy, deductive or data mining queries. These
relations stored in ALL OBJECTS (only those tuples referring to tables) are
included in this relation (connection (5)). Consequently, this relation is a
specialization of ALL OBJECTS and all the relations included in it have
some of the previously mentioned special characteristics. Table 5 shows the
attributes of this relation and the values that it can take.

• EXTENDED TAB COLUMNS, providing information about all of the at-
tributes (classical or extended) accessible to the user. This includes some
of the columns stored in ALL TAB COLUMNS (connection (1)) and a de-
scription of this. As in the previous item, this relation is a specialization of
ALL TAB COLUMNS and the tuples that this relation can contain could be
the fuzzy attributes described in FIRST, the intensive attributes described
in FREDDI, the attributes that can be used in a data mining process, or
the attributes that can store data mining temporary information or results.
The TYPE attribute (see Table 4) therefore stores the type of data that the
attribute contains (a rule, fuzzy data, etc.).

A First Approach to the Multipurpose Relational Database Server 141

These new relations must be related to a specific relation of the Relational
Database Management System (RDBMS) catalog containing information about
all the columns and tables defined in the database. In this proposal, the specific
relations of the RDBMS (Oracle c©) catalog (All Tab Columns and All Object) are
shown as an example.

The remaining connections with the new relations in Figure 1 are:

• Connections 2 and 8 enable the FMB and the FMB* to be related to EX-
TENDED TAB COLUMNS since they extend the definition of attributes and
their domains;

• Connection 3 enables the RB to be related to EXTENDED TAB COLUMNS
since the RB extends the definition of relations;

• Connection 4 makes the RB be related to EXTENDED TABLES because the
schema of this extension must be obtained from attributes in other relations;

• Connection 7 enables the DMFMB to be related to EXTENDED TAB COLUMNS
because data mining operations are applied on attributes;

• Connection 6 enables DMFMB to be related to EXTENDED TABLES be-
cause the results of these operations must be stored in other relations.

Table 4: Extended Tab Columns Relation
OBJ# COL# Type

0 (Fuzzy Column)
1 (Logic Column)

2 (Data Mining Column)

Table 5: Extended Tables Relation
OBJ# Type Orig

0 (Extensive) 0 (Classic Data)
1 (Intensive) 1 (Fuzzy Data)

2 (Rule Description)
3 (DM Data)

4 (DM Description)

The inclusion of these unifying catalog relations makes the extended MB easily
scalable.

3.2 Server Architecture and Operation

Figure 3 shows the relations between the different modules within the RDBMS. As
the figure shows, there is at this moment an independent client for every module

142 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

FUZZY_APROX _MUCH

FUZZY_COMPATIBLE_ COL

FUZZY_QUALIFIERS_ DEF

FUZZY_LABEL_ DEF

FUZZY_NEARNESS_ DEF

FUZZY_COL_LIST FUZZY_OBJECT_LIST

DED_INT_TABLE_DESCRIPTION

DED_RULE_DESCRIPTION

DED_COMPARISION _DESCRIPTION

DED_PREDICATE_DESCRIPTION

DED_LINK_VALUE_SET DED_STACK_INDEX

DED_STACK_TYPES

DED_INTENSIONAL _CATALOG

ALL_OBJECTS

ALL_TAB_COLUMNS

DMFSQL _COL_COL

DMFSQL _LOG

DMFSQL _LABEL_DEFINITION

DMFSQL _FUNCTIONS_ COL

DMFSQL _COL_PAR

DMFSQL _FUNCTIONS

DMFSQL _PROYECTDMFSQL _COL_LIST

EXTENDED_TAB_COLUMNS

EXTENDED_TABLES

System

Catalog

Extended Catalog

FMB

Rule Base

FMB *

DMFMB

MetaKnowledge Base

Figure 2: MetaKnowledge Base

providing the specific functionality. Not only will a simple SQL query be sent to
the SQL executor directly, but also fuzzy, deductive, or data mining queries will
be parsed by the appropriate module so that they may be translated into a classic
SQL sentence or a set of sentences.

As Figure 3 shows, Galindo[16, 15] implemented lexical and syntactical parsers
for FSQL language so that it could be easily modified to increase the number of
processed sentences. In this way, developers of DFSQL and DMFSQL took advan-
tage of this feature when developing analyzers for their extensions. In addition,
semantic parsers are implemented separately and each translates a different query
into a classical SQL sentence to be processed by the classical RDBMS.

Compilation between FSQL and DFSQL is tight because the second is imple-
mented using the first as a basis and re-using some of its functions and modules.

Our proposal consists of a unified server that enables all flows of information
to be integrated from and to a single client. This client communicates to only
one server which is capable of identifying the type of relations involved in every

A First Approach to the Multipurpose Relational Database Server 143

LEXICAL

ANALYZER

FSQL

DFSQL

DmSQL

SYNTACTIC

ANALYZER

SQL

EXECUTOR

SEMANTIC

ANALYZER **

DATABASE

MB

SEMANTIC

ANALYZER *

SEMANTIC

ANALYZER

RDBMS

DFSQL

CLIENT

DmFSQL

CLIENT

SQL

CLIENT

FSQL

CLIENT

Figure 3: Independent Servers

query. Once the query has been parsed, the server controls the execution of all
the modules that must translate some parts of the query, and integrates their
responses. There is also another module inside the server, the Querying Strategy
Planner, which schedules the order that the queries must be executed in order
to increase the efficiency of the server. The solution strategy of this planner is
to analyze a complex query (a query that implies different modules to be solved)
and to determine the order of execution of each subquery that this complex query
involves.

The modifications provided by this architecture are shown in Figure 4 using
solid lines.

The processing of a query can be resumed as follows:

• the client application sends a query to the server;

• the query is analyzed by the server using lexical and syntactic analyzers in
order to determine the modules involved in the query resolution;

• the sentence is divided (if necessary) and sent to the corresponding module
(here the Querying Strategy Planner schedules the execution of the different
subqueries);

• every module analyzes the assigned part of the query semantically and trans-
lates it into a classical sentence;

144 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

LEXICAL

ANALYZER

FSQL

DFSQL

DmSQL

SYNTACTIC

ANALYZER

SQL

EXECUTOR

SEMANTIC

ANALYZER **

DATABASE

SEMANTIC

ANALYZER *

SEMANTIC

ANALYZER

RDBMS

CLIENT

SERVER

MB

QUERYING

STRATEGY

PLANNER

Figure 4: Multipurpose Server

• the processed part of the original query is returned to the server which inte-
grates the translations provided by the modules into a single classical query
that is sent to the SQL Executor; and

• the server formats the resulting set of tuples provided by the SQL Executor
before sending it to the client application.

As Figure 4 shows, both the server and all the modules need to query the MB.

4 Example

As suggested in the previous sections, the integration of the different architectures
provides both the capacity for parsing several types of queries and for storing the
results of independent queries as relations, rules, calculated data, etc. that other
processes can subsequently use.

This section shows how a typical data mining process may be combined with
the fuzzy logic rules handling. More specifically, the search for fuzzy functional
dependencies (FFDs) can (when they are found) generate rules that can be stored
in the database as generalized fuzzy rules with a matching degree (described in
Section 2.2).

In order to illustrate this example, we suggest the following query: we want
to know if there is a relationship between a student’s marks and his/her behavior.
The real problem to solve is whether there is a fuzzy functional dependency (FFD)
between the attribute mark and the attribute behavior in the STUDENT relation
(Table 6).

In order to achieve this, it is necessary to explain how the information is stored
in the database, and, more specifically, the structure of the data in the meta-
knowledge base (MB).

A First Approach to the Multipurpose Relational Database Server 145

Table 6: STUDENT relation
Name Mark Behavior
John #8 good
Beth 10 excellent
Mary [3,4] bad
Tom C normal

Charles 2 bad
Susan Unknown Unknown
.

The STUDENT relation shown in Table 6 has been stored in the database with
the structure described in Table 8, i.e. in order to represent the distinct fuzzy data
types (defined in Section 2).

As we can see in the attribute F TYPE in Table 12, Mark is a Fuzzy Type 2
and Behavior is a Fuzzy Type 3. The similarity relation of Behavior (described in
Table 7) is stored in the MB in the Fuzzy Nearness Def Relation (Table 10).

Labels such as mark ’C’ are described in the Fuzzy Label Def Relation (Table
11) of the MB. The Fuzzy Object List Relation (Table 9) stores the labels used in
the attribute Behavior and all the labels that can be used to describe a value of
the attribute Mark. Furthermore, this table establishes a single identifier for each
label so as to avoid confusion.

Table 7: Similarity Relation sr over BEHAVIOR
Sr(d,d’) Bad Normal Good Excellent

Bad 1 0.8 0.5 0.1
Normal 0.8 1 0.7 0.5
Good 0.5 0.7 1 0.8

Excellent 0.1 0.5 0.8 1

This is only the specification of the data structures in the FMB, however, and
the data must be defined in other relations, more specifically in the new relations
of the MB. These definitions are shown in Tables 14 and 15. Table 14 contains
a reference to the attributes used in this example and the type of data that they
represent (fuzzy data). Table 15 keeps the description of the relations used in this
example, an extensive table STUDENT and an intensive table FDD that will be
described subsequently. The ’-’ in Table 15 means that this value is not relevant.
The tuple STUDENT is inserted into this table once it has been defined in the
database as a fuzzy table, and the tuple FDD inserted when the data mining
process has successfully finished and an conclusion extracted from it.

Before performing any data mining operation, a new project must be defined on
the database. This project definition generates a few new rows in certain relations
of the MB (corresponding to the previous DmFMB). The sentence for defining this

146 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

Table 8: STUDENT relation
Name MarkT Mark1 Mark2 Mark3 Mark4 . . .
John 6 8 7 9 1 . . .
Beth 3 10 NULL NULL NULL . . .
Mary 5 3 NULL NULL 4 . . .
Tom 4 2 NULL NULL NULL . . .

Charles 3 2 NULL NULL NULL . . .
Susan 0 NULL NULL NULL NULL . . .
. .

. . . BehaviorT BehaviorP1 Behavior1
. . . 3 1 2
. . . 3 1 3
. . . 3 1 0
. . . 3 1 1
. . . 3 1 0
. . . 0 NULL NULL
.

Table 9: Fuzzy Object List Relation

OBJ# COL# FUZZY ID FUZZY NAME FUZZY TYPE
STUDENT Mark 0 ’A’ 0
STUDENT Mark 1 ’B’ 0
STUDENT Mark 2 ’C’ 0
STUDENT Mark 3 ’D’ 0
STUDENT Behavior 0 ’BAD’ 1
STUDENT Behavior 1 ’NORMAL’ 1
STUDENT Behavior 2 ’GOOD’ 1
STUDENT Behavior 3 ’EXCELLENT’ 1

Table 10: Fuzzy Nearness Def Relation
OBJ# COL# FUZZY ID1 FUZZY ID2 DEGREE

STUDENT Behavior 0 1 0.8
STUDENT Behavior 0 2 0.5
STUDENT Behavior 0 3 0.1
STUDENT Behavior 1 2 0.7
STUDENT Behavior 1 3 0.5
STUDENT Behavior 2 3 0.8

A First Approach to the Multipurpose Relational Database Server 147

Table 11: Fuzzy Label Def Relation

OBJ# COL# FUZZY ID ALFA BETA GAMMA DELTA
STUDENT Mark 0 9 9 10 10
STUDENT Mark 1 6 6 8 9
STUDENT Mark 2 4.5 5 6 6
STUDENT Mark 3 0 0 4.5 5

Table 12: Fuzzy Col List Relation
OBJ# COL# F TYPE LEN COM

STUDENT Mark 2 NULL ”STUDENT.MARK”
STUDENT Behavior 3 1 ”STUDENT.BEHAVIOR”

Table 13: Fuzzy Aprox Much Relation
OBJ# COL# MARGEN MUCH

STUDENT Mark 1 3

Table 14: Extended Tab Column Relation
OBJ# COL# COL TYPE

STUDENT Mark 0
STUDENT Behavior 0

Table 15: Extended Tables Relation
OBJ# TAB TYPE ORIG

STUDENT 0 1
FDD 1 -

148 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

project has the following structure:

CREATE_MINING PROJECT STUDENT_PRJ

ON TABLE STUDENT

WITH COLUMNS FOR

FGLOBAL_DEPENDENCIES ’(’ {

ANTECEDENT MARK FCOMP_GLOBAL_DEPENDENCIES FEQ THOLD_ANT 0.6

CONSEQUENT BEHAVIOR FCOMP_GLOBAL_DEPENDENCIES FEQ THOLD_CON 0.7}

where STUDENT PRJ is an identifier of a data mining project that keeps infor-
mation about the parameters of the data mining process: fuzzy functional depen-
dencies search. Some of the parameters that this project contains are the type of
functional dependencies to search, the matching degree of the attributes, etc. This
project has been defined as the first step in a data mining process. The struc-
ture of the DmFMB is described in Tables 16 and 17. Table 16 stores the general
specification about the fuzzy functional dependence proposed and Table 17 stores
information about each column involved in the fuzzy functional dependence search.

Table 16: DmFsql Project Relation
PROJECT NAME OWNER OBJ# STATUS FGD . . .

STUDENT PRJ OWNER STUDENT - . . .

. . . THOLD ANT FGD THOLD CON FGD . . .
. . . 0.6 0.7 . . .

. . . CONFIDENCE FGD SUPPORT FGD . . .
. . . c s . . .

Table 17: DmFsql Col List Relation
PROJECT NAME COL TYPE COL# . . .

STUDENT PRJ A Mark . . .
STUDENT PRJ Q Behavior . . .

. . . FUZZY COMP FGK THOLD FGD
. . . FEQ -
. . . FEQ -

The fuzzy functional dependence we are searching for has been called FDD and
it is described in the following expression:

0.6 - 0.7 FDD MARK FEQ∗FEQ −→ BEHAVIOR with confidence c and sup-
port s

The goal is obviously to discover whether a student’s mark influences his/her
behavior, where 0.6 is the matching degree of the mark, and 0.7 is the matching

A First Approach to the Multipurpose Relational Database Server 149

degree of the behavior. In order to accomplish this operation, a DML sentence is
run on the data mining server:

SELECT_MINING FGLOBAL_DEPENDENCIES STUDENT_PRJ

USING T_NORM THOLD_ANT_CON

This query is actually the last in a set of basic queries such as the following:

SELECT COUNT(*) FROM STUDENT A1, STUDENT A2

WHERE(A1.NAME<>A2.NAME) AND

(A1.MARK FEQ A2.MARK

THOLD 0.6) AND NOT

(A1.BEHAVIOR NFEQ A2.BEHAVIOR

THOLD 0.7)

Fuzzy functional dependence (FDD), support and confidence are calculated with
a similar sentence, counting the number of antecedent and consequent appearances.
If support and confidence are high enough, the FDD will be accepted and auto-
matically stored in the database as a logic rule. If not, the functional dependence
must be rejected or its matching degrees must be decreased.

The structure of this rule is:

FDD(MARK,BEHAVIOR) :- STUDENT(X,Y) ∧
(X =0.6 MARK)∧ (Y =0.7 BEHAVIOR)

The sentence which enables us to define the rule on the database is:

CREATE INTENSIONAL TABLE FDD

(MARK FTYPE2 (2,3) NUMBER (3,2)

BEHAVIOUR FTYPE3);

CREATE RULE FOR FDD (Mark, Behavior) AS

STUDENT (X SOURCE Mark, Y SOURCE Behavior) AND

(X FEQ MARK THOLD 0.6) AND (Y FEQ BEHAVIOR THOLD 0.7)

where Create Intensional Table inserts a new tuple into Table 18 and makes a new
relation FDD in the database, without tuples because this is an intensive relation.
This process also involves inserting tuple FDD into the Table 15. Create Rule stores
information in the remaining tables of the rule base (RB), i.e. Tables 19, 20, 21
and 22. In these tables, the structure of the rule, each predicate and variable that
conforms to it are defined.

150 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

Table 18: Ded Intensional Catalog Relation
ID PRED MARCADO NVARS

FDD 1 2

Table 19: Ded Int Table Description Relation
Table ID Rule Id

FDD 1

Table 20: Ded Rule Description Relation
Table ID Rule Id Pred Id Occ Number Negated Type

FDD 1 2 1 0 0
FDD 1 - 2 0 2
FDD 1 - 3 0 2

Once we have defined this rule in the database, for each insertion run on the
database, the system checks whether this tuple keeps the threshold for each at-
tribute (the rule antecedent and consequent). If it does, the new tuple will validate
the FDD and will be inserted into the database increasing the confidence and sup-
port of the rule.

The previous query has only shown how the mixed architecture has increased
the number of queries that can be made on the database. Other possibilities for
querying the unified database are described in the following section.

5 Operations in the New Integrated System

Once the architecture of the unified system has been designed, a number of new
capabilities are introduced. In general, the purpose of this union is:

• to increase the number of operations and data types that a fuzzy RDBMS
(FRDBMS) can manage, these operations include:

– making deductions on data mining structures

– making data mining on logical structures (such as intensive relations)

– storing data mining results as association rules, or as logical rules, in
the case of fuzzy functional dependencies

• to convert this architecture into a new, more scalable one, since the system
must be extended to enable new operations and data types.

A First Approach to the Multipurpose Relational Database Server 151

Table 21: Ded Predicate Description Relation
Table ID Rule Id Pred Id Occ Number . . .

FDD 1 2 1 . . .
FDD 1 2 1 . . .

. . . Var Id Col Id Source Col
. . . 3 1 Mark
. . . 4 2 Behavior

Table 22: Ded Condition Description Relation
Table ID Rule Id Pred Id Occ Number . . .

FDD 1 - 2 . . .
FDD 1 - 3 . . .

. . . Var Id1 Var Id2 ComOp Thold
. . . 3 1 6(FEQ) 0.6
. . . 4 2 6(FEQ) 0.7

The possibility of using fuzzy data, however, is presented in every operation
of the unified system since all the architectures have been developed with this
functionality.

This unified system represents a single system which is capable of making any
type of query with fuzzy or classic data on a database, while enabling new processes
to be implemented in the system when necessary.

In order to implement this unified architecture, the entire Querying Strategy
Planner must be implemented so as to enable the query to be separated and
scheduled depending on the operation to be performed. FIRST, FREDDI, and
DMFIRST, the initial architectures, have been developed and they are currently
running.

6 Conclusions and Future Work

As we have shown in this paper, this architecture connects several existing servers
that are demoted to modules. It also unifies the way of communicating with a
single extended RDBMS. From our point of view, the structure of MB allows new
servers to be easily incorporated to the extension.

Added connections enable the result of a query to be used as an input for
another module execution and to calculate the content of certain relations prior
to a query. The automatic storing of the retrieved knowledge without an explicit
query writing is another feature of the system proposed. In short, results of the
different integrated server can be combined, and additional types of data can be
stored and handled.

The syntax of the FSQL and DFSQL languages has been designed in line with

152 I.J. Blanco, C. Mart́ınez-Cruz, J.M. Serrano & M.A. Vila

the SQL philosophy, but the language incorporated by DmFSQL must be unified
with this philosophy and some sentences for the management of data types must
be completed.

Acknowledgments

This research has been partially supported by the Spanish ”Ministerio de Ciencia
y Tecnoloǵıa” (MCYT) with projects TIC2002-04021-C02-02 and TIC2002-00480.

References

[1] J. F. Baldwin and S. Q. Zhou. A fuzzy relational inference language. Fuzzy
Sets and Systems, (14):155–174, 1984.

[2] I. Blanco, J. C. Cubero, O. Pons, and M. A. Vila. An implementation for fuzzy
relational databases. In G. Bordogna and G. Passi, editors, Recent Research
Issues on the Management of Fuzziness in Databases, Studies in Fuzziness and
Soft Computing, pages 183–207. Physica-Verlag, 2000.

[3] I. Blanco, N. Maŕın, O. Pons, and M. A. Vila. An extension of data description
language (ddl) for fuzzy data handling. In Larsen, Kacprzyk, Zadrozny, An-
dreasen, and Christiansen, editors, Flexible Query Answering Systems, Recent
Advances, Advances in Soft Computing, pages 54–64. Physica-Verlag, 2000.

[4] I. Blanco, M. J. Martin-Bautista, O. Pons, and M. A. Vila. A mechanism for
deduction in a fuzzy relational database. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 11:47–66, September 2003.

[5] I. Blanco, O. Pons, J. M. Serrano, and M. A. Vila. Deduction in a gefred
database using datalog. In International Conference in Fuzzy Logic and Tech-
nology EUSFLAT 2003, pages 550–553, September 2003.

[6] P. Bosc, M. Galibourg, and G. Hamon. Fuzzy querying with sql: Extensions
and implementation aspects. Fuzzy Sets and Systems, 28:333–349, 1988.

[7] I. Bratko. Prolog, Programming for Artificial Intelligence. Addison Wesley, 2
edition, 1990.

[8] R.A. Carrasco, J. Galindo, M.C. Aranda, J.M. Medina, and M.A. Vila. Clas-
sification in databases using a fuzzy query language. In 9th International
Conference on Management of Data, COMAD’98, 1998.

[9] R.A. Carrasco, J. Galindo, M.A. Vila, and J.C. Cubero. Fsql: a tool for
obtaining fuzzy dependencies. In 8th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
IPMU’2000, pages 1916–1919, 2000.

A First Approach to the Multipurpose Relational Database Server 153

[10] R.A. Carrasco, J. Galindo, M.A. Vila, and J.M. Medina. Clustering and fuzzy
classification in a financial data mining environment. In 3rd International
ICSC Symposium on Soft Computing, SOCO’99, pages 713–720, 1999.

[11] Ramón Alberto Carrasco, Maŕıa Amparo Vila, and José Galindo. Fsql: a
flexible query language for data mining. Enterprise information systems IV,
pages 68–74, 2003.

[12] Ramón A. Carrasco. Lenguajes e Interfaces de Alto Nivel para Data Min-
ing con Aplicación Práctica a Entornos Financieros. PhD thesis, E. T. S. I.
Informática, Universidad de Granada, Spain, 2003.

[13] S. Ceri, G. Gottlob, and L. Tanca, editors. Logic Programming and Databases.
Surveys in Computer Science. Springer-Verlag, 1990.

[14] E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

[15] J. Galindo, J.M. Medina, A. Vila, and O. Pons. Fuzzy comparators for flexible
queries to databases. In Iberoamerican Conference on Artificial Intelligence,
IBERAMIA’98, pages 29–41, 1998.

[16] José Galindo, Juan Miguel Medina, Olga Pons, and Juan C. Cubero. A server
for fuzzy sql queries. In Proceedings of the Third International Conference on
Flexible Query Answering Systems, pages 164–174, 1998.

[17] H. Gallaire, J. Minker, and J. M. Nicholas. Logic and databases: A deductive
approach. Computing Surveys, 16(2):153–185, June 1984.

[18] T. Imielinski and Heikki Mannila. A database perspective on knowledge dis-
covery. Communications of the ACM, 39(11):58–64, 1996.

[19] D. Li and D. Liu. A Fuzzy Prolog Database System. Computing Systems
Series. John Wiley & Sons, 1990.

[20] J. M. Medina, O. Pons, J. C. Cubero, and M. A. Vila. Freddi: A fuzzy
relational deductive database interface. International Journal of Intelligent
Systems, 12:597–613, 1997.

[21] J. M. Medina, O. Pons, and M. A. Vila. Gefred. a generalized model of fuzzy
relational databases. Information Sciences, 76(1-2):87–109, 1994.

[22] J. M. Medina, M. A. Vila, J. C. Cubero, and O. Pons. Towards the imple-
mentation of a generalized fuzzy relational database model. Fuzzy Sets and
Systems, 75:273–289, 1995.

[23] M. A. Vila, J. C. Cubero, J. M. Medina, and O. Pons. Some recent advances
in fuzzy relational and fuzzy deductive databases. In European Research Con-
sortium for Informatics and Mathematics, pages 161–176, Barcelona, Spain,
Noviembre 1994.

