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riecan@fpv.umb.sk
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Abstract

A probability theory on IFS-events has been constructed in [3], and ax-
iomatically characterized in [4]. Here using a general system of axioms it
is shown that any probability on IFS-events can be decomposed onto two
probabilities on a Lukasiewicz tribe, hence some known results from [5], [6]
can be used also for IFS-sets. As an application of the approach a variant of
Central limit theorem is presented.
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1 Introduction

An IFS-set A on a space Ω as a couple (µA, νA) is understood, µA : Ω → 〈0, 1〉,
νA : Ω → 〈0, 1〉 such that µA(ω) + νA(ω) ≤ 1 for any ω ∈ Ω (see[1]). The function
µA is called the membership function, the function νA is called the non membership
function. An IFS-set A = (µA, νA) is called IFS-event if µA, νA are S-measurable
with respect to a given σ-algebra of subsets of Ω.

In [3] P. Grzegorzewski and E. Mrowka considered a classical probability space
(Ω,S,P) and they suggested to define a probability measure on the set G of all IFS
events as an interval valued function P by the following way. Probability P(A) of
an event A = (µA, νA) is the interval

P(A) = [
∫
Ω

µA dP, 1−
∫
Ω

νA dP ]. (∗)

If νA = 1−µA, then the interval is the singleton
∫
Ω

µA dP , hence the Grzegorzewski
and Mrowka definition is an extension of the Zadeh definition. The probability P
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is the function P : G → J , where J is the family of all compact subintervals of the
unit interval I = [0, 1]. In [3] many properties of the mapping P were discovered.
Then in [4] it was proved that any function P : G → J satisfying some properties
(as continuity, some kind of additivity etc.) has the form (∗).

Special attention should by devoted to the notion of additivity of P. Namely
in fuzzy sets theory there are many possibilities how the define the intersection
and the union of fuzzy sets. Recall that the representation theorem works with the
Lukasiewicz connectives ⊕, �, hence the additivity has the form

A�B = (0, 1) =⇒ P(A⊕B) = P(A) + P(B)

In the paper we shall use a more general situation. Instead of the set of all
measurable functions with values in 〈0, 1〉 we shall consider any Lukasiewicz tribe
T . Instead of IFS-events we consider the family F of all couples (f, g) of elements of
T such that f + g ≤ 1. Then we define axiomatically the notion of a probability as
a function from F to the family J of all compact subintervals of the unit interval.
Moreover, we define the notion of an observable, that is an analogue of the notion
of a random variable in the Kolmogorov theory. This notion is introduced here
for the first time with regard to IFS-events. The main result of the paper are
the representation theorems representing probabilities and observables in F by the
corresponding notions in T . Consequently it is possible to transpone some known
theorems from the probability theory on tribes to the more general case of IFS-
events. As an illustration of the developed method the central limit theorem is
presented.

In Section 2 we give the definitions of basic notions and some examples. Section
3 contains the representation theorems. In Section 4 and Section 5 a version of the
central limit theorems is presented.

2 Probabilities and observables

Recall that a tribe is a non-empty family T of functions f : Ω → 〈0, 1〉 satisfying
the following conditions:

(i) f ∈ T =⇒ 1− f ∈ T ;

(ii) f, g ∈ T =⇒ f ⊕ g = min(f + g, 1) ∈ T ;

(iii) fn ∈ T (n = 1, 2, ...), fn ↗ f =⇒ f ∈ T .

Of course, a tribe is a special case of a σ-MV-algebra.
In the preceding definition (instead of max(a, b)) we have used the first Lukasie-

wicz operation ⊕: 〈0, 1〉 × 〈0, 1〉 → 〈0, 1〉, a⊕ b = min(a + b, 1). The second binary
operation � is defined by the equality a � b = max(a + b − 1, 0). It is easy to see
that χA ⊕ χB = χA∪B , χA � χB = χA∩B . Recall [5,6] that probability (= a state)
on a Lukasiewicz tribe T is any mapping p : T → 〈0, 1〉 satisfying the following
conditions:

(i) p(1Ω) = 1;
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(ii) if f � g = 0Ω, then p(f ⊕ g) = p(f) + p(g);

(iii) if fn ↗ f , then p(fn) ↗ p(f).

Example 1. Let S be a σ-algebra of subsets of a set Ω, P : S → 〈0, 1〉 be a
probability measure. χA be the characteristic function of a set A ∈ S. Put T =
{χA;A ∈ S}, p(χA) = P (A). Then T is a tribe and p is a probability on T .

Example 2. Again let (Ω,S,P) be a probability space, T be the set of all S-
measurable function f : Ω → 〈0, 1〉, p(f) =

∫
Ω

f dP . Then T is a tribe and p is a
probability on T defined by Zadeh [7].

During the whole text we fix the tribe T and the generated family F .

Definition 1. By an IFS-event we understand any element of the family

F = {(µA, νA);µA, νA ∈ T , µA + νA ≤ 1}

To define the notion of probability on IFS-events we need to introduce opera-
tions on F . Let A = (µA, νA), B = (µB , νB). Then we define

A⊕B = (µA ⊕ µB , νA � νB),
A�B = (µA � µB , νA ⊕ νB).

If An = (µAn , νAn), then we write

An ↗ A ⇐⇒ µAn ↗ µA, νAn ↘ νA.

If νA = 1− µA, νB = 1− µB , then

A⊕B = (µA ⊕ µB , (1− µA)� (1− µB)) = (µA ⊕ µB , 1− µA ⊕ µB),

and similarly A�B = (µA � µB , 1− µA � µB).
A probability P on F is a mapping from F to the family J of all closed intervals

〈a, b〉 such that 0 ≤ a ≤ b ≤ 1. Here we define

〈a, b〉+ 〈c, d〉 = 〈a + c, b + d〉,
〈an, bn〉 ↗ 〈a, b〉 ⇐⇒ an ↗ a, bn ↗ b.

Definition 2. By an IFS-probability on F we understand any function P : F → J
satisfying the following properties :

(i) P((1Ω, 0Ω)) = 〈1, 1〉 = {1}; P((0Ω, 1Ω)) = 〈0, 0〉 = {0};

(ii) P(A⊕B) + P(A�B) = P(A) + P(B) for any A,B ∈ F ;

(iii) if An ↗ A, then P(An) ↗ P(A).

P is called separating, if P((f, g)) = 〈p(f), 1− q(g)〉 for some p, q : T → 〈0, 1〉.
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Example 3. ([3]). Let (Ω,S, P ) be a probability space T = {f ; f : Ω → 〈0, 1〉, f is
S measurable}, and for A ∈ F , A = (µA, νA), put

P(A) =
〈∫

Ω

µA dP, 1−
∫

Ω

νA dP

〉
.

Then P is probability with respect to Definition 2. Indeed,

P(1Ω, 0Ω) =
〈∫

Ω

1Ω dP, 1−
∫

Ω

0Ω dP

〉
= 〈1, 1〉,

P(0Ω, 1Ω) =
〈∫

Ω

0Ω dP, 1−
∫

Ω

1Ω dP

〉
= 〈0, 0〉.

The property (iii) has been proved in [3], we shall prove (ii). We have

P(A⊕B) + P(A�B) =
= P((µA ⊕ µB , νA � νB)) + P(µA � µB , νA ⊕ νB)

=
〈∫

(µA ⊕ µB) dP, 1−
∫

(νA � νB) dP

〉
+
〈∫

(µA � µB) dP, 1−
∫

(νA ⊕ νB) dP

〉
=
〈∫

(µA ⊕ µB + µA � µB) dP, 2−
∫

(νA � νB + νA ⊕ νB) dP

〉
=
〈∫

µA dP +
∫

µB dP, 1−
∫

νA dP + 1−
∫

νB dP

〉
= P(A) + P(B).

Moreover, in [4] it has been proved that under two additional conditions any
IFS-probability P on the family F generated by a σ-algebra S, has the above form.

More generally, if p, q : T → 〈0, 1〉, p ≤ q are probabilities, then P : F →
J defined by P((f, g)) = 〈p(f), 1 − q(g)〉, is a probability. In the special case
P((f, 1− f)) = 〈p(f), q(f)〉.

The second important notion in the probability theory is the notion of a random
variable. According to the terminology used in quantum structures we shall speak
about observables instead of random variables. Recall that an observable with
values in T is a mapping x : B(R) → T (B(R) being the σ-algebra of Borel subsets
of R) satisfying the following properties:

(i) x(R) = 1Ω;

(ii) if A ∩B = ∅, then x(A)� x(B) = 0Ω, and x(A ∪B) = x(A) + x(B);

(iii) if An ↗ A then x(An) ↗ x(A).

Definition 3. A mapping x : B(R) → F is called an IFS-observable, if it satisfies
the following conditions:
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(i) x(R) = (1Ω, 0Ω);

(ii) if A ∩B = ∅, then x(A)� x(B) = (0Ω, 1Ω), and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An) ↗ x(A).

3 Representation theorems

Theorem 1. P : F → J is a separating IFS-probability if and only if p, q : T →
〈0, 1〉 are probabilities.

Proof. Let A = (f1, f2), B = (g1, g2) ∈ F . Then

A⊕B = (f1 ⊕ g1, f2 � g2),
A�B = (f1 � g1, f2 ⊕ g2),

P(A⊕B) = 〈p(f1 ⊕ g1), 1− q(f2 � g2)〉,
P(A�B) = 〈p(f1 � g1), 1− q(f2 ⊕ g2)〉,

P(A⊕B) + P(A�B) = 〈p(f1 ⊕ g1) + p(f1 � g1), 2− q(f2 � g2)− q(f2 ⊕ g2)〉,
P(A) + P(B) = 〈p(f1, 1− q(g1)〉+ 〈p(g1), 1− q(g2)〉

= 〈p(f1) + p(g1), 2− q(g1)− q(g2)〉,

hence

p(f1 ⊕ g1) + p(f1 � g1) = p(f1) + p(g1),
q(f2 � g2) + q(f2 ⊕ g2) = q(f2) + q(g2),

for all f1, f2, g1, g2 ∈ T .
By these two equalities the additivity of p and q follows. If I = (1Ω, 0Ω), then

〈p(1Ω), 1− q(0Ω)〉 = P(I) = {1},

hence p(1Ω) = 1.
On the other hand, if O = (0Ω, 1Ω), then

〈p(0Ω), 1− q(1Ω)〉 = P(O) = {0},

hence 1− q(1Ω) = 0, q(1Ω) = 1.
Now we prove the continuity of p and q. First let fn ∈ T , (n = 1, 2, . . . ),

fn ↗ f . Put Fn = (fn, 1− fn). Then Fn ∈ F , Fn ↗ F = (f, 1− f). Therefore

〈p(fn), 1− q(fn)〉 = P(Fn) ↗ P(F ) = 〈p(f), 1− q(f)〉,

hence p(fn) ↗ p(f), 1− q(fn) ↘ 1− q(f), q(fn) ↗ q(f).

Theorem 2. Let x : B(R) → F . For any A ∈ B(R) denote x(A) = (x[(A),
1− x](A)). Then x is IFS-observable if and only if x[ : B(R) → T , x] : B(R) → T
are observables.
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Proof. Since
(1Ω, 0Ω) = x(R) = (x[(R), 1− x](R)),

we obtain
x[(R) = 1Ω, x](R) = 1Ω.

Let A ∩B = ∅. Then

(0Ω, 1Ω) = x(A)� x(B)

= (x[(A), 1− x](A))� (x[(B), 1− x](B))

= (x[(A)� x[(B), (1− x](A))⊕ (1− x](B))),

hence 0Ω = x[(A)� x[(B). Further

1Ω = (1− x](A))⊕ (1− x](B)) = (1− x](A) + 1− x](B)) ∧ 1,

hence

1− x](A) + 1− x](B) ≥ 1,

1 ≥ x](A) + x](B),

x](A)� x](B) = (x](A) + x](B)− 1) ∨ 0 = 0.

Moreover,

(x[(A ∪B), 1− x](A ∪B)) =
= x(A ∪B) = x(A)⊕ x(B)

= (x[(A), 1− x](A))⊕ (x[(B), 1− x](B))

= (x[(A)⊕ x[(B), (1− x](A))� (1− x](B)))

= (x[(A) + x[(B), (1− x](A) + 1− x](B)− 1) ∨ 0)

= (x[(A) + x[(B), 1− (x](A) + x](B))).

Therefore

x[(A ∪B) = x[(A) + x[(B),

x](A ∪B) = x](A) + x](B).

Finally, let An ↗ A. Then

(x[(An), 1− x](An)) = x(An) ↗ x(A) = (x[(A), 1− x](A)),

hence

x[(An) ↗ x[(A), 1− x](An) ↘ 1− x](A), i. e. x](An) ↗ x](A).
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It is easy to see that the mappings

px[ = p ◦ x[ : B(R) → 〈0, 1〉, qx] = q ◦ x] : B(R) → 〈0, 1〉

are probability measures. Therefore we define

E(x[) =
∫

R

t dpx[(t), E(x]) =
∫

R

t dqx](t)

if these integrals exist. In this case we say that x is integrable. Further we define

σ2(x[) =
∫

R

(t− E(x[))2 dpx[(t), σ2(x]) =
∫

R

(t− E(x]))2 dqx](t)

if these integral exists. In this case we say that x belongs to L2.

Theorem 3. Let P : F → J be a separating IFS-probability given by P((f, g)) =
〈p(f), 1 − q(g)〉, x : B(R) → F be an IFS-observable given by x(A) = (x[(A),
1− x](A)). Then P ◦ x : B(R) → J is given by

P ◦ x(A) = 〈p(x[(A)), q(x](A))〉.

Proof. Evidently

P ◦ x(A) = P(x(A)) = P((x[(A), 1− x](A)))

= 〈p(x[(A)), 1− q(1− x](A))〉
= 〈p(x[(A)), q(x](A))〉.

4 Independence

Definition 4. An n-dimensional IFS-observable is a mapping h : B(Rn) → F
satisfying the following conditions:

(i) h(Rn) = (1Ω, 0Ω);

(ii) if A ∩B = ∅, then h(A)� h(B) = (0Ω, 1Ω), and h(A ∪B) = h(A) + h(B);

(iii) if An ↗ A, then h(An ↗ h(A).

Recall that observables (x1, . . . , xn) : B(R) → T are called independent if there
exists n-dimensional observable h : B(Rn) → T such that

p(h(A1 ×A2 × · · · ×An)) = p(x1(A1)) · p(x2(A2)) · · · · · p(xn(An)))

for any (A1, . . . , An) ∈ B(R).

Definition 5. IFS-observables x1, ..., xn : B(R) → F are called independent with
respect to an IFS-probability P, if there exists n-dimensional observable h : B(R) →
F such that

P(h(A1 ×A2 × · · · ×An)) = P(x1(A1))⊗ P(x2(A2))⊗ · · · ⊗ (P(xn(An))
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for any (A1, A2, . . . , An) ∈ B(R). Here

〈a1, b1〉 ⊗ 〈a2, b2〉 ⊗ · · · ⊗ 〈an, bn〉 = 〈a1a2 . . . an, b1b2 . . . bn〉

for any 〈ai, bi〉 ∈ J (i = 1, 2, . . . , n).

Theorem 4. Let P : F → J be a separating probability. Then IFS-observables
x1, x2, . . . , xn ∈ B(R) → F are independent if and only if the corresponding observ-
ables x[

1, x
[
2, . . . , x

[
n : B(R) → T are independent as well as x]

1, x
]
2, . . . , x

]
n : B(R) →

T .

Proof. Let A1, A2, . . . , An ∈ B(R). Then by Theorem 3

〈p(h[(A1 × · · · ×An)), q(h](A1 × · · · ×An))〉 =
=P(h(A1 × · · · ×An)) = P(x1(A1))⊗ P(x2(A2))⊗ · · · ⊗ P(xn(An))

=〈p(x[
1(A1), q(x

]
1(A1))〉 ⊗ · · · ⊗ 〈p(x[

n(An)), q(x]
n(An))〉

=〈p(x[
1(A1)) · p(x[

2(A2) · · · · · p(x[
n(An)), q(x]

1(A1)) · q(x]
2(A2)) · · · · · q(x]

n(An))〉

hence

p(h[(A1 × · · · ×An)) = p(x[
1(A1)) · p(x[

2(A2)) · · · · · p(x[
n(An)),

q(h](A1 × · · · ×An)) = q(x]
1(A1)) · q(x]

2(A2)) · · · · · q(x]
n(An)).

5 Central limit theorem

A sequence (xn)∞n=1 of IFS-observables is called independent, if (x1, x2, . . . , xn) are
independent for any n. They are equally distributed if

xn((−∞, t)) = x1((−∞, t))

for any n ∈ N and t ∈ R.
If k : Rn → R is any Borel function and x[

1, . . . , x
[
n : B(R) → T are observable,

and h[ their joint observable we define k(x[
1, . . . , x

[
n) by the formula

k(x[
1, . . . , x

[
n)(A) = h[(k−1(A))

for any A ∈ B(R). E.g.
√

n

σ1

(
1
n

n∑
i=1

x[
i − a1

)
: B(R) → T

is defined by the formula
√

n

σ1

(
1
n

n∑
i=1

x[
i − a1

)
(A) = h[(k−1(A)),

where

k(u1, u2, . . . , un) =
√

n

σ1

(
1
n

n∑
i=1

ui − a1

)
.
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Theorem 5. Let P : F → J be a separating probability. Let (xn)∞1 be a sequence of
independent equally distributed IFS-observables from L2, E(x[

1) = a1, E(x]
1) = a2,

σ2(x[
1) = σ1

2, σ2(x]
1) = σ2

2, y[
n =

√
n

σ1
( 1

n

∑n
i=1 x[

i − a1), y]
n =

√
n

σ2
( 1

n

∑n
i=1 x]

i − a2),
yn = (y[

n, 1− y]
n). Then

lim
n→∞

P(yn((−∞, t))) =
{

1√
2π

∫ t

−∞
exp(−u2

2
) du

}
for every t ∈ R.

Proof. By Theorem 4 (x[
n)∞1 , (x]

n)∞1 are independent and evidently equally dis-
tributed. Let h[

n, be the joint observable of x[
1, . . . , x

[
n,

kn(h1, . . . , hn) =
√

n

σ1

(
1
n

n∑
i=1

ui − a1

)
, y[

n = h[
n ◦ k−1

n .

Then by [5], Theorem 3.12

lim
n→∞

p(y[
n((−∞, t))) =

1√
2π

∫ t

−∞
exp

(
−u2

2

)
du.

Similarly

lim
n→∞

q(y]
n((−∞, t))) =

1√
2π

∫ t

−∞
exp

(
−u2

2

)
du.

6 Conclusions

The paper is concerned in the probability theory on IFS-events. The main result of
the paper is an original method of achieving new results of the probability theory
on IFS-events by the corresponding results holding for fuzzy events. The method
can be developed in two directions. First instead of a tribe of fuzzy sets one could
try to consider any MV-algebra. Secondly, instead of independency of observables a
kind of compatibility could be introduced and then conditional probabilities could
be considered.
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