Mathware & Soft Computing 12 (2005) 5-14

On the Central Limit Theorem on IFS-events

J. Petrovičová¹ and B. Riečan^{2,3}

¹ Department of Medical Informatics, Faculty of Medicine,

P.J. Šafárik University, Trieda SNP 1, 040 66 Košice, Slovakia *jpetrov@central.medic.upjs.sk*

² Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia

riecan@fpv.umb.sk

³ Math. Inst. SAS, Štefánikova 49, 814 73 Bratislava, Slovakia riecan@mat.savba.sk

Abstract

A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.

Keywords. Probability theory, IFS-events

1 Introduction

An IFS-set A on a space Ω as a couple (μ_A, ν_A) is understood, $\mu_A : \Omega \to \langle 0, 1 \rangle$, $\nu_A : \Omega \to \langle 0, 1 \rangle$ such that $\mu_A(\omega) + \nu_A(\omega) \leq 1$ for any $\omega \in \Omega$ (see[1]). The function μ_A is called the membership function, the function ν_A is called the non membership function. An IFS-set $A = (\mu_A, \nu_A)$ is called IFS-event if μ_A, ν_A are *S*-measurable with respect to a given σ -algebra of subsets of Ω .

In [3] P. Grzegorzewski and E. Mrowka considered a classical probability space (Ω, S, \mathcal{P}) and they suggested to define a probability measure on the set \mathcal{G} of all IFS events as an interval valued function \mathcal{P} by the following way. Probability $\mathcal{P}(A)$ of an event $A = (\mu_A, \nu_A)$ is the interval

$$\mathcal{P}(A) = \left[\int_{\Omega} \mu_A \, dP, 1 - \int_{\Omega} \nu_A \, dP\right].\tag{*}$$

If $\nu_A = 1 - \mu_A$, then the interval is the singleton $\int_{\Omega} \mu_A dP$, hence the Grzegorzewski and Mrowka definition is an extension of the Zadeh definition. The probability \mathcal{P}

This research has been supported by grant VEGA 1/9056/02.

is the function $\mathcal{P}: \mathcal{G} \to \mathcal{J}$, where \mathcal{J} is the family of all compact subintervals of the unit interval I = [0, 1]. In [3] many properties of the mapping \mathcal{P} were discovered. Then in [4] it was proved that any function $\mathcal{P}: \mathcal{G} \to \mathcal{J}$ satisfying some properties (as continuity, some kind of additivity etc.) has the form (*).

Special attention should by devoted to the notion of additivity of \mathcal{P} . Namely in fuzzy sets theory there are many possibilities how the define the intersection and the union of fuzzy sets. Recall that the representation theorem works with the Lukasiewicz connectives \oplus , \odot , hence the additivity has the form

$$A \odot B = (0,1) \Longrightarrow \mathcal{P}(A \oplus B) = \mathcal{P}(A) + \mathcal{P}(B)$$

In the paper we shall use a more general situation. Instead of the set of all measurable functions with values in $\langle 0, 1 \rangle$ we shall consider any Lukasiewicz tribe \mathcal{T} . Instead of IFS-events we consider the family \mathcal{F} of all couples (f, g) of elements of \mathcal{T} such that $f + g \leq 1$. Then we define axiomatically the notion of a probability as a function from \mathcal{F} to the family \mathcal{J} of all compact subintervals of the unit interval. Moreover, we define the notion of an observable, that is an analogue of the notion of a random variable in the Kolmogorov theory. This notion is introduced here for the first time with regard to IFS-events. The main result of the paper are the representation theorems representing probabilities and observables in \mathcal{F} by the corresponding notions in \mathcal{T} . Consequently it is possible to transpone some known theorems from the probability theory on tribes to the more general case of IFS-events. As an illustration of the developed method the central limit theorem is presented.

In Section 2 we give the definitions of basic notions and some examples. Section 3 contains the representation theorems. In Section 4 and Section 5 a version of the central limit theorems is presented.

2 Probabilities and observables

Recall that a tribe is a non-empty family \mathcal{T} of functions $f: \Omega \to \langle 0, 1 \rangle$ satisfying the following conditions:

- (i) $f \in \mathcal{T} \Longrightarrow 1 f \in \mathcal{T};$
- (ii) $f, g \in \mathcal{T} \Longrightarrow f \oplus g = \min(f + g, 1) \in \mathcal{T};$
- (iii) $f_n \in \mathcal{T} \ (n = 1, 2, ...), f_n \nearrow f \Longrightarrow f \in \mathcal{T}.$

Of course, a tribe is a special case of a σ -MV-algebra.

In the preceding definition (instead of $\max(a, b)$) we have used the first Lukasiewicz operation \oplus : $\langle 0, 1 \rangle \times \langle 0, 1 \rangle \rightarrow \langle 0, 1 \rangle$, $a \oplus b = \min(a + b, 1)$. The second binary operation \odot is defined by the equality $a \odot b = \max(a + b - 1, 0)$. It is easy to see that $\chi_A \oplus \chi_B = \chi_{A \cup B}, \chi_A \odot \chi_B = \chi_{A \cap B}$. Recall [5,6] that probability (= a state) on a Lukasiewicz tribe \mathcal{T} is any mapping $p : \mathcal{T} \rightarrow \langle 0, 1 \rangle$ satisfying the following conditions:

(i) $p(1_{\Omega}) = 1;$

(ii) if $f \odot g = 0_{\Omega}$, then $p(f \oplus g) = p(f) + p(g)$;

(iii) if $f_n \nearrow f$, then $p(f_n) \nearrow p(f)$.

Example 1. Let S be a σ -algebra of subsets of a set Ω , $P : S \to \langle 0, 1 \rangle$ be a probability measure. χ_A be the characteristic function of a set $A \in S$. Put $\mathcal{T} = \{\chi_A; A \in S\}, p(\chi_A) = P(A)$. Then \mathcal{T} is a tribe and p is a probability on \mathcal{T} .

Example 2. Again let (Ω, S, \mathcal{P}) be a probability space, \mathcal{T} be the set of all S-measurable function $f : \Omega \to \langle 0, 1 \rangle$, $p(f) = \int_{\Omega} f \, dP$. Then \mathcal{T} is a tribe and p is a probability on \mathcal{T} defined by Zadeh [7].

During the whole text we fix the tribe \mathcal{T} and the generated family \mathcal{F} .

Definition 1. By an IFS-event we understand any element of the family

$$\mathcal{F} = \{(\mu_A, \nu_A); \mu_A, \nu_A \in \mathcal{T}, \mu_A + \nu_A \le 1\}$$

To define the notion of probability on IFS-events we need to introduce operations on \mathcal{F} . Let $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B)$. Then we define

$$A \oplus B = (\mu_A \oplus \mu_B, \nu_A \odot \nu_B),$$

$$A \odot B = (\mu_A \odot \mu_B, \nu_A \oplus \nu_B).$$

If $A_n = (\mu_{A_n}, \nu_{A_n})$, then we write

$$A_n \nearrow A \Longleftrightarrow \mu_{A_n} \nearrow \mu_A, \quad \nu_{A_n} \searrow \nu_A.$$

If $\nu_A = 1 - \mu_A$, $\nu_B = 1 - \mu_B$, then

$$A \oplus B = (\mu_A \oplus \mu_B, (1 - \mu_A) \odot (1 - \mu_B)) = (\mu_A \oplus \mu_B, 1 - \mu_A \oplus \mu_B),$$

and similarly $A \odot B = (\mu_A \odot \mu_B, 1 - \mu_A \odot \mu_B).$

A probability \mathcal{P} on \mathcal{F} is a mapping from \mathcal{F} to the family \mathcal{J} of all closed intervals $\langle a, b \rangle$ such that $0 \leq a \leq b \leq 1$. Here we define

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle, \langle a_n, b_n \rangle \nearrow \langle a, b \rangle \iff a_n \nearrow a, \ b_n \nearrow b.$$

Definition 2. By an IFS-probability on \mathcal{F} we understand any function $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ satisfying the following properties :

- (i) $\mathcal{P}((1_{\Omega}, 0_{\Omega})) = \langle 1, 1 \rangle = \{1\}; \mathcal{P}((0_{\Omega}, 1_{\Omega})) = \langle 0, 0 \rangle = \{0\};$
- (ii) $\mathcal{P}(A \oplus B) + \mathcal{P}(A \odot B) = \mathcal{P}(A) + \mathcal{P}(B)$ for any $A, B \in \mathcal{F}$;
- (iii) if $A_n \nearrow A$, then $\mathcal{P}(A_n) \nearrow \mathcal{P}(A)$.

 \mathcal{P} is called separating, if $\mathcal{P}((f,g)) = \langle p(f), 1 - q(g) \rangle$ for some $p, q: \mathcal{T} \to \langle 0, 1 \rangle$.

Example 3. ([3]). Let (Ω, \mathcal{S}, P) be a probability space $\mathcal{T} = \{f; f : \Omega \to \langle 0, 1 \rangle, f \text{ is } \mathcal{S} \text{ measurable}\}$, and for $A \in \mathcal{F}, A = (\mu_A, \nu_A)$, put

$$\mathcal{P}(A) = \left\langle \int_{\Omega} \mu_A \, dP, \quad 1 - \int_{\Omega} \nu_A \, dP \right\rangle.$$

Then \mathcal{P} is probability with respect to Definition 2. Indeed,

$$\mathcal{P}(1_{\Omega}, 0_{\Omega}) = \left\langle \int_{\Omega} 1_{\Omega} dP, \quad 1 - \int_{\Omega} 0_{\Omega} dP \right\rangle = \langle 1, 1 \rangle,$$

$$\mathcal{P}(0_{\Omega}, 1_{\Omega}) = \left\langle \int_{\Omega} 0_{\Omega} dP, \quad 1 - \int_{\Omega} 1_{\Omega} dP \right\rangle = \langle 0, 0 \rangle.$$

The property (iii) has been proved in [3], we shall prove (ii). We have

$$\begin{aligned} \mathcal{P}(A \oplus B) + \mathcal{P}(A \odot B) &= \\ &= \mathcal{P}((\mu_A \oplus \mu_B, \nu_A \odot \nu_B)) + \mathcal{P}(\mu_A \odot \mu_B, \nu_A \oplus \nu_B) \\ &= \left\langle \int (\mu_A \oplus \mu_B) \, dP, 1 - \int (\nu_A \odot \nu_B) \, dP \right\rangle \\ &+ \left\langle \int (\mu_A \odot \mu_B) \, dP, 1 - \int (\nu_A \oplus \nu_B) \, dP \right\rangle \\ &= \left\langle \int (\mu_A \oplus \mu_B + \mu_A \odot \mu_B) \, dP, 2 - \int (\nu_A \odot \nu_B + \nu_A \oplus \nu_B) \, dP \right\rangle \\ &= \left\langle \int \mu_A \, dP + \int \mu_B \, dP, 1 - \int \nu_A \, dP + 1 - \int \nu_B \, dP \right\rangle \\ &= \mathcal{P}(A) + \mathcal{P}(B). \end{aligned}$$

Moreover, in [4] it has been proved that under two additional conditions any IFS-probability \mathcal{P} on the family \mathcal{F} generated by a σ -algebra \mathcal{S} , has the above form.

More generally, if $p, q : \mathcal{T} \to \langle 0, 1 \rangle$, $p \leq q$ are probabilities, then $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ defined by $\mathcal{P}((f,g)) = \langle p(f), 1 - q(g) \rangle$, is a probability. In the special case $\mathcal{P}((f, 1 - f)) = \langle p(f), q(f) \rangle$.

The second important notion in the probability theory is the notion of a random variable. According to the terminology used in quantum structures we shall speak about observables instead of random variables. Recall that an observable with values in \mathcal{T} is a mapping $x : \mathcal{B}(R) \to \mathcal{T}$ ($\mathcal{B}(R)$ being the σ -algebra of Borel subsets of R) satisfying the following properties:

(i)
$$x(R) = 1_{\Omega};$$

- (ii) if $A \cap B = \emptyset$, then $x(A) \odot x(B) = 0_{\Omega}$, and $x(A \cup B) = x(A) + x(B)$;
- (iii) if $A_n \nearrow A$ then $x(A_n) \nearrow x(A)$.

Definition 3. A mapping $x : \mathcal{B}(R) \to \mathcal{F}$ is called an IFS-observable, if it satisfies the following conditions:

(i) x(R) = (1_Ω, 0_Ω);
(ii) if A ∩ B = Ø, then x(A) ⊙ x(B) = (0_Ω, 1_Ω), and x(A ∪ B) = x(A) ⊕ x(B);
(iii) if A_n ∧ A, then x(A_n) ∧ x(A).

3 Representation theorems

Theorem 1. $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ is a separating IFS-probability if and only if $p, q : \mathcal{T} \to \langle 0, 1 \rangle$ are probabilities.

Proof. Let $A = (f_1, f_2), B = (g_1, g_2) \in \mathcal{F}$. Then

$$\begin{split} A \oplus B &= (f_1 \oplus g_1, f_2 \odot g_2), \\ A \odot B &= (f_1 \odot g_1, f_2 \oplus g_2), \\ \mathcal{P}(A \oplus B) &= \langle p(f_1 \oplus g_1), 1 - q(f_2 \odot g_2) \rangle, \\ \mathcal{P}(A \odot B) &= \langle p(f_1 \odot g_1), 1 - q(f_2 \oplus g_2) \rangle, \\ \mathcal{P}(A \oplus B) + \mathcal{P}(A \odot B) &= \langle p(f_1 \oplus g_1) + p(f_1 \odot g_1), 2 - q(f_2 \odot g_2) - q(f_2 \oplus g_2) \rangle, \\ \mathcal{P}(A) + \mathcal{P}(B) &= \langle p(f_1, 1 - q(g_1)) + \langle p(g_1), 1 - q(g_2) \rangle \\ &= \langle p(f_1) + p(g_1), 2 - q(g_1) - q(g_2) \rangle, \end{split}$$

hence

$$p(f_1 \oplus g_1) + p(f_1 \odot g_1) = p(f_1) + p(g_1),$$

$$q(f_2 \odot g_2) + q(f_2 \oplus g_2) = q(f_2) + q(g_2),$$

for all $f_1, f_2, g_1, g_2 \in \mathcal{T}$.

By these two equalities the additivity of p and q follows. If $I = (1_{\Omega}, 0_{\Omega})$, then

$$\langle p(1_{\Omega}), 1 - q(0_{\Omega}) \rangle = \mathcal{P}(I) = \{1\},\$$

hence $p(1_{\Omega}) = 1$.

On the other hand, if $O = (0_{\Omega}, 1_{\Omega})$, then

$$\langle p(0_{\Omega}), 1 - q(1_{\Omega}) \rangle = \mathcal{P}(O) = \{0\},\$$

hence $1 - q(1_{\Omega}) = 0$, $q(1_{\Omega}) = 1$.

Now we prove the continuity of p and q. First let $f_n \in \mathcal{T}$, (n = 1, 2, ...), $f_n \nearrow f$. Put $F_n = (f_n, 1 - f_n)$. Then $F_n \in \mathcal{F}$, $F_n \nearrow F = (f, 1 - f)$. Therefore

$$\langle p(f_n), 1 - q(f_n) \rangle = \mathcal{P}(F_n) \nearrow \mathcal{P}(F) = \langle p(f), 1 - q(f) \rangle,$$

hence $p(f_n) \nearrow p(f), 1 - q(f_n) \searrow 1 - q(f), q(f_n) \nearrow q(f).$

Theorem 2. Let $x : \mathcal{B}(R) \to \mathcal{F}$. For any $A \in \mathcal{B}(R)$ denote $x(A) = (x^{\flat}(A), 1 - x^{\sharp}(A))$. Then x is IFS-observable if and only if $x^{\flat} : \mathcal{B}(R) \to \mathcal{T}, x^{\sharp} : \mathcal{B}(R) \to \mathcal{T}$ are observables.

Proof. Since

$$(1_{\Omega}, 0_{\Omega}) = x(R) = (x^{\flat}(R), 1 - x^{\sharp}(R)),$$

we obtain

$$x^{\flat}(R) = 1_{\Omega}, x^{\sharp}(R) = 1_{\Omega}.$$

Let $A \cap B = \emptyset$. Then

$$\begin{aligned} (0_{\Omega}, 1_{\Omega}) &= x(A) \odot x(B) \\ &= (x^{\flat}(A), 1 - x^{\sharp}(A)) \odot (x^{\flat}(B), 1 - x^{\sharp}(B)) \\ &= (x^{\flat}(A) \odot x^{\flat}(B), (1 - x^{\sharp}(A)) \oplus (1 - x^{\sharp}(B))), \end{aligned}$$

hence $0_{\Omega} = x^{\flat}(A) \odot x^{\flat}(B)$. Further

$$1_{\Omega} = (1 - x^{\sharp}(A)) \oplus (1 - x^{\sharp}(B)) = (1 - x^{\sharp}(A) + 1 - x^{\sharp}(B)) \wedge 1,$$

hence

$$1 - x^{\sharp}(A) + 1 - x^{\sharp}(B) \ge 1,$$

$$1 \ge x^{\sharp}(A) + x^{\sharp}(B),$$

$$x^{\sharp}(A) \odot x^{\sharp}(B) = (x^{\sharp}(A) + x^{\sharp}(B) - 1) \lor 0 = 0.$$

Moreover,

$$\begin{aligned} &(x^{\flat}(A \cup B), 1 - x^{\sharp}(A \cup B)) = \\ &= x(A \cup B) = x(A) \oplus x(B) \\ &= (x^{\flat}(A), 1 - x^{\sharp}(A)) \oplus (x^{\flat}(B), 1 - x^{\sharp}(B)) \\ &= (x^{\flat}(A) \oplus x^{\flat}(B), (1 - x^{\sharp}(A)) \odot (1 - x^{\sharp}(B))) \\ &= (x^{\flat}(A) + x^{\flat}(B), (1 - x^{\sharp}(A) + 1 - x^{\sharp}(B) - 1) \lor 0) \\ &= (x^{\flat}(A) + x^{\flat}(B), 1 - (x^{\sharp}(A) + x^{\sharp}(B))). \end{aligned}$$

Therefore

$$\begin{aligned} x^{\flat}(A\cup B) &= x^{\flat}(A) + x^{\flat}(B), \\ x^{\sharp}(A\cup B) &= x^{\sharp}(A) + x^{\sharp}(B). \end{aligned}$$

Finally, let $A_n \nearrow A$. Then

$$(x^{\flat}(A_n), 1 - x^{\sharp}(A_n)) = x(A_n) \nearrow x(A) = (x^{\flat}(A), 1 - x^{\sharp}(A)),$$

hence

$$x^{\flat}(A_n) \nearrow x^{\flat}(A), \quad 1 - x^{\sharp}(A_n) \searrow 1 - x^{\sharp}(A), \quad \text{i. e. } x^{\sharp}(A_n) \nearrow x^{\sharp}(A). \qquad \Box$$

It is easy to see that the mappings

$$p_{x^\flat} = p \circ x^\flat : \mathcal{B}(R) \to \langle 0, 1 \rangle, \quad q_{x^\sharp} = q \circ x^\sharp : \quad \mathcal{B}(R) \to \langle 0, 1 \rangle$$

are probability measures. Therefore we define

$$E(x^{\flat}) = \int_{R} t \, dp_{x^{\flat}}(t), \quad E(x^{\sharp}) = \int_{R} t \, dq_{x^{\sharp}}(t)$$

if these integrals exist. In this case we say that x is integrable. Further we define

$$\sigma^{2}(x^{\flat}) = \int_{R} (t - E(x^{\flat}))^{2} dp_{x^{\flat}}(t), \sigma^{2}(x^{\sharp}) = \int_{R} (t - E(x^{\sharp}))^{2} dq_{x^{\sharp}}(t)$$

if these integral exists. In this case we say that x belongs to L^2 .

Theorem 3. Let $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ be a separating IFS-probability given by $\mathcal{P}((f,g)) = \langle p(f), 1 - q(g) \rangle$, $x : \mathcal{B}(R) \to \mathcal{F}$ be an IFS-observable given by $x(A) = (x^{\flat}(A), 1 - x^{\sharp}(A))$. Then $\mathcal{P} \circ x : \mathcal{B}(R) \to \mathcal{J}$ is given by

$$\mathcal{P} \circ x(A) = \langle p(x^{\flat}(A)), q(x^{\sharp}(A)) \rangle.$$

Proof. Evidently

$$\mathcal{P} \circ x(A) = \mathcal{P}(x(A)) = \mathcal{P}((x^{\flat}(A), 1 - x^{\sharp}(A)))$$
$$= \langle p(x^{\flat}(A)), 1 - q(1 - x^{\sharp}(A)) \rangle$$
$$= \langle p(x^{\flat}(A)), q(x^{\sharp}(A)) \rangle.$$

4 Independence

Definition 4. An *n*-dimensional IFS-observable is a mapping $h : \mathcal{B}(\mathbb{R}^n) \to \mathcal{F}$ satisfying the following conditions:

- (i) $h(R^n) = (1_\Omega, 0_\Omega);$
- (ii) if $A \cap B = \emptyset$, then $h(A) \odot h(B) = (0_{\Omega}, 1_{\Omega})$, and $h(A \cup B) = h(A) + h(B)$;
- (iii) if $A_n \nearrow A$, then $h(A_n \nearrow h(A))$.

Recall that observables $(x_1, \ldots, x_n) : \mathcal{B}(R) \to \mathcal{T}$ are called independent if there exists *n*-dimensional observable $h : \mathcal{B}(R^n) \to \mathcal{T}$ such that

$$p(h(A_1 \times A_2 \times \cdots \times A_n)) = p(x_1(A_1)) \cdot p(x_2(A_2)) \cdot \cdots \cdot p(x_n(A_n)))$$

for any $(A_1, \ldots, A_n) \in \mathcal{B}(R)$.

Definition 5. IFS-observables $x_1, ..., x_n : \mathcal{B}(R) \to \mathcal{F}$ are called independent with respect to an IFS-probability \mathcal{P} , if there exists *n*-dimensional observable $h : \mathcal{B}(R) \to \mathcal{F}$ such that

$$\mathcal{P}(h(A_1 \times A_2 \times \cdots \times A_n)) = \mathcal{P}(x_1(A_1)) \otimes \mathcal{P}(x_2(A_2)) \otimes \cdots \otimes (\mathcal{P}(x_n(A_n)))$$

for any $(A_1, A_2, \ldots, A_n) \in \mathcal{B}(R)$. Here

$$\langle a_1, b_1 \rangle \otimes \langle a_2, b_2 \rangle \otimes \cdots \otimes \langle a_n, b_n \rangle = \langle a_1 a_2 \dots a_n, b_1 b_2 \dots b_n \rangle$$

for any $\langle a_i, b_i \rangle \in \mathcal{J}(i = 1, 2, \dots, n).$

Theorem 4. Let $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ be a separating probability. Then IFS-observables $x_1, x_2, \ldots, x_n \in \mathcal{B}(R) \to \mathcal{F}$ are independent if and only if the corresponding observables $x_1^{\flat}, x_2^{\flat}, \ldots, x_n^{\flat} : \mathcal{B}(R) \to \mathcal{T}$ are independent as well as $x_1^{\sharp}, x_2^{\sharp}, \ldots, x_n^{\sharp} : \mathcal{B}(R) \to \mathcal{T}$.

Proof. Let $A_1, A_2, \ldots, A_n \in \mathcal{B}(R)$. Then by Theorem 3

$$\langle p(h^{\flat}(A_{1} \times \dots \times A_{n})), q(h^{\sharp}(A_{1} \times \dots \times A_{n})) \rangle =$$

= $\mathcal{P}(h(A_{1} \times \dots \times A_{n})) = \mathcal{P}(x_{1}(A_{1})) \otimes \mathcal{P}(x_{2}(A_{2})) \otimes \dots \otimes \mathcal{P}(x_{n}(A_{n})))$
= $\langle p(x_{1}^{\flat}(A_{1}), q(x_{1}^{\sharp}(A_{1}))) \rangle \otimes \dots \otimes \langle p(x_{n}^{\flat}(A_{n})), q(x_{n}^{\sharp}(A_{n}))) \rangle$
= $\langle p(x_{1}^{\flat}(A_{1})) \cdot p(x_{2}^{\flat}(A_{2}) \dots p(x_{n}^{\flat}(A_{n})), q(x_{1}^{\sharp}(A_{1})) \cdot q(x_{2}^{\sharp}(A_{2})) \dots q(x_{n}^{\sharp}(A_{n})) \rangle$

hence

$$p(h^{\flat}(A_1 \times \dots \times A_n)) = p(x_1^{\flat}(A_1)) \cdot p(x_2^{\flat}(A_2)) \cdot \dots \cdot p(x_n^{\flat}(A_n)),$$

$$q(h^{\sharp}(A_1 \times \dots \times A_n)) = q(x_1^{\sharp}(A_1)) \cdot q(x_2^{\sharp}(A_2)) \cdot \dots \cdot q(x_n^{\flat}(A_n)).$$

5 Central limit theorem

A sequence $(x_n)_{n=1}^{\infty}$ of IFS-observables is called independent, if (x_1, x_2, \ldots, x_n) are independent for any n. They are equally distributed if

$$x_n((-\infty,t)) = x_1((-\infty,t))$$

for any $n \in N$ and $t \in R$.

If $k : \mathbb{R}^n \to \mathbb{R}$ is any Borel function and $x_1^{\flat}, \ldots, x_n^{\flat} : \mathcal{B}(\mathbb{R}) \to \mathcal{T}$ are observable, and h^{\flat} their joint observable we define $k(x_1^{\flat}, \ldots, x_n^{\flat})$ by the formula

$$k(x_1^{\flat}, \dots, x_n^{\flat})(A) = h^{\flat}(k^{-1}(A))$$

for any $A \in \mathcal{B}(R)$. E.g.

$$\frac{\sqrt{n}}{\sigma_1} \left(\frac{1}{n} \sum_{i=1}^n x_i^{\flat} - a_1 \right) : \mathcal{B}(R) \to \mathcal{T}$$

is defined by the formula

$$\frac{\sqrt{n}}{\sigma_1} \left(\frac{1}{n} \sum_{i=1}^n x_i^{\flat} - a_1 \right) (A) = h^{\flat}(k^{-1}(A)),$$

where

$$k(u_1, u_2, \dots, u_n) = \frac{\sqrt{n}}{\sigma_1} \left(\frac{1}{n} \sum_{i=1}^n u_i - a_1 \right).$$

Theorem 5. Let $\mathcal{P} : \mathcal{F} \to \mathcal{J}$ be a separating probability. Let $(x_n)_1^{\infty}$ be a sequence of independent equally distributed IFS-observables from L^2 , $E(x_1^{\flat}) = a_1$, $E(x_1^{\sharp}) = a_2$, $\sigma^2(x_1^{\flat}) = \sigma_1^2$, $\sigma^2(x_1^{\sharp}) = \sigma_2^2$, $y_n^{\flat} = \frac{\sqrt{n}}{\sigma_1} (\frac{1}{n} \sum_{i=1}^n x_i^{\flat} - a_1)$, $y_n^{\sharp} = \frac{\sqrt{n}}{\sigma_2} (\frac{1}{n} \sum_{i=1}^n x_i^{\sharp} - a_2)$, $y_n = (y_n^{\flat}, 1 - y_n^{\sharp})$. Then

$$\lim_{n \to \infty} \mathcal{P}(y_n((-\infty, t))) = \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp(-\frac{u^2}{2}) \, du \right\}$$

for every $t \in R$.

Proof. By Theorem 4 $(x_n^{\flat})_1^{\infty}$, $(x_n^{\sharp})_1^{\infty}$ are independent and evidently equally distributed. Let h_n^{\flat} , be the joint observable of $x_1^{\flat}, \ldots, x_n^{\flat}$,

$$k_n(h_1,\ldots,h_n) = \frac{\sqrt{n}}{\sigma_1} \left(\frac{1}{n} \sum_{i=1}^n u_i - a_1 \right), \quad y_n^{\flat} = h_n^{\flat} \circ k_n^{-1}.$$

Then by [5], Theorem 3.12

$$\lim_{n \to \infty} p(y_n^{\flat}((-\infty, t))) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp\left(\frac{-u^2}{2}\right) \, du.$$

Similarly

$$\lim_{n \to \infty} q(y_n^{\sharp}((-\infty, t))) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp\left(\frac{-u^2}{2}\right) du.$$

6 Conclusions

The paper is concerned in the probability theory on IFS-events. The main result of the paper is an original method of achieving new results of the probability theory on IFS-events by the corresponding results holding for fuzzy events. The method can be developed in two directions. First instead of a tribe of fuzzy sets one could try to consider any MV-algebra. Secondly, instead of independency of observables a kind of compatibility could be introduced and then conditional probabilities could be considered.

References

- Atanassov, K., Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York, 1999.
- [2] Dvurečenskij, A. and Pulmannová, S., Trends in Quantum Structures. Kluwer, Dordrecht, 2000.
- [3] Grzegorzewski, P. and Mrowka, E., Probability of intuitionistic fuzzy events. In: Soft Metods in Probability, Statistic and Data Analysis, (P. Grzegorzewski et al. eds.), Physica Verlag, New York, 2002, pp. 105–115.

- [4] Riečan, B., A descriptive definition of the probability on intuitionistic fuzzy sets. In: EUSFLAT 2003 (M. Wagenecht, R. Hampet eds.), Zittau-Goerlitz Univ. Appl. Sci. 2003, pp. 263–266.
- [5] Riečan, B. and Mundici, D., Probability in MV-algebras. In: Handbook on Measure Theory (E. Pap ed.), Elsevier, Amsterdam, 2002, pp. 869–909.
- [6] Riečan, B. and Neubrunn T., Integral, Measure, and Ordering. Kluwer, Dordrecht, and Ister Science, Bratislava 1997.
- [7] Zadeh, L. A. Probability measures of fuzzy events. J. Math. Anal. Appl. 123 (1968), 421–427.