
7th Workshop on Numerical Methods in Applied
Science and Engineering (NMASE 08)
Vall de Núria, 9 a 11 de enero de 2008

c©LaCàN, www.lacan-upc.es

SOLMEC: AN EFFICIENT C++ LIBRARY TO SOLVE
LINEAR AND NONLINEAR ELASTICITY PROBLEMS

A.M. Rosolen, R.D. Millán and M. Arroyo∗

LaCàN, Universitat Politècnica de Catalunya,
C/Jordi Girona 1-3, Barcelona 08934, Spain.

e-mail: adrian.rosolen,daniel.millan,marino.arroyo@upc.edu
web: http://www-lacan.upc.es

Key words: linear and nonlinear elasticity, meshfree schemes, direct and iterative solvers,
quasi-Newton methods, constrained optimization, C++ library

Abstract. A C++ library based on local maximum-entropy approximation schemes to
solve linear and nonlinear elasticity problem is presented. The available tools are briefly
described, and several implementation details are also mentioned. Selected numerical
examples are shown in order to illustrate the capabilities of the library. The current and
future developments are indicated.

1 INTRODUCTION

The aim of this work is to present an efficient C++ library to solve linear and nonlin-
ear elasticity problems. The main objective is to show the most relevant available tools
and the current state of development of the library. The design and programming of
the library was motivated by the convenience of having an efficient, robust, flexible and
totally controllable tool to attack applications of mechanics as diverse as multiscale mod-
eling, quasi-continuum approaches, large scale problems, model reduction, and variational
adaptivity in meshfree methods.

The library is based on local maximum-entropy (LME) approximation schemes [1] for
the numerical solution of the elasticity problems. These schemes belonging to the family of
meshfree methods present smooth LME shape functions, which make them appropriate
to deal with the applications above mentioned. It is worth noting that, although the
library is based on LME schemes, its flexible structure allows an easy inclusion of other
numerical approaches such as FEM [6, 21].

At the present time, the library may be used for the full analysis of two and three-
dimensional linear elasticity problems. Several kinds of nonlinear elasticity problems can
be also solved, and the work in progress is focus mainly on the creation and optimization
of algorithms to solve nodal-based numerical integration and variational adaptivity for
finite-deformation elasticity.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41782259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A.M. Rosolen, R.D. Millán and M. Arroyo

The structure of the paper is as follows. In Section 2, the principal tools of the library
are described and the most significant implementation details are mentioned. In Section
3, selected numerical examples are shown both for linear and nonlinear problems. Some
concluding remarks and future work are finally indicated in Section 4.

2 LIBRARY DESCRIPTION

The library is specifically designed to solve linear and non linear elasticity problems.
The necessary algorithms to complete all the steps of computation are implemented in
an efficient and robust way. The algorithms are also designed to be flexible and easily
extended.

The library can be compiled by using gcc, intel, intel-OMP or MPI [11] compilers.
Many of the implemented algorithms are parallelized by using OMP [12], and the conju-
gate gradient method is also parallelized to be used with MPI. The design of the library
permits the parallelization of the algorithms, which is necessary to obtain a good perfor-
mance in large scale problems. The library also permits to include METIS [7], which is
useful for domain decomposition.

The documentation of the library and its structure can be automatically generated.
This is possible because the Doxygen [5] tool is employed and specific comments are
suitably introduced in the code.

The analysis of linear and nonlinear elasticity problems involves three major stages:
preprocessing or model definition, processing or computation, and postprocessing. The
tools of the library for each one of this stages are described in this section. The more
significant details of implementation are also commented.

2.1 Preprocessing

In this stage the data related with geometry, materials, and boundary conditions of the
problem are defined. At the moment, all the tools associated to this stage are included
in the library, but they will be separated in the future in order to maintain the natural
independence between the different stages.

The support of a LME scheme is not given by elements, but a a set of sample points
associated to each node. By that reason, the main effort is then applied to the generation
of nodes and sample (or integration) points for the domain of the problem. Qhull library
[13] is employed to make the simplex regions (triangles in 2D and tetrahedral in 3D). The
ways for generating sample points currently available in the library are based on Gauss-
Legendre and Gauss-Hermite cubatures [18]. More details about the implementation and
accuracy of such cubature rules can be consulted in reference [8].

The data structure to store the sample points and its associated nodes is inspired in
sparse matrix format. In the Figure 1 it is shown an example of the nodes (red) and the
sample points (green) generated for a cylindrical domain. The current tools only permit
to define and impose boundary conditions on simple geometries as squares, rectangles,

2



A.M. Rosolen, R.D. Millán and M. Arroyo

prisms, cubes and cylinders.

Figure 1: Nodes (red) and sample points (green) for a cylindrical domain. The sample points correspond
to Gauss-Legendre points generated by applying QHULL.

2.2 Processing

This stage is related with the assembly of the stiffness and tangent matrix, and with the
computation of the solutions. As the tools employed during the calculation process change
if the problem is linear or nonlinear, the logical order of computation is not followed below
to explain the developed algorithms, but they are only enumerated and described.

2.2.1 Shape Functions

A considerable difference between LME and FEM is given by the computation of the
shape functions. While the shape functions for FEM depend only on the type of element,
a local minimization problem must be solved in each node for LME in order to determine
the value of the shape functions. It means that the calculation of the shape functions is
computationally more expensive for LME schemes.

Even though the data structures to store the shape functions and its gradients are not
detailed here, it can be asserted that they are optimal and very efficient because they are
inspired in a sparse matrix format [14].

3



A.M. Rosolen, R.D. Millán and M. Arroyo

2.2.2 Matrix Assembly

All the algorithms of the library related with matrices were designed and optimized to
work with sparse matrices in CSR or CSC format [14, 16, 17]. However, the extension of
the algorithms to work with full matrices can be easily done if it is necessary for some
specific application.

The assembly of the stiffness matrix [6, 21] for linear elasticity problems and the tangent
matrix [2, 3] for nonlinear elasticity applications follow a similar process to that of FEM.
The design of the data structure of the nodes and sample points facilitate and optimize
the assembly process.

2.2.3 Direct Solvers

Efficient algorithms for LU and Cholesky decomposition [14] are currently implemented
both for sparse and full matrices. The structure of the library allows to include easily
other matrix decomposition algorithms.

The solvers associated to each matrix decomposition are also implemented for the
data structure used in the library. They can be applied to solve a complete matrix
decomposition when a direct method is used, or an incomplete matrix decomposition
when a preconditioner is used within an iterative method.

2.2.4 Preconditioners

The ilut and the incomplete Cholesky preconditioners [14] are implemented. The al-
gorithms are very efficient and optimize considerably the computational time when an
iterative solver is used. They are implemented both for sparse and full matrices.

2.2.5 Iterative Solvers

The gradient conjugate algorithm [15] is only implemented to solve systems of linear
equations. Different preconditioners can be chosen in order to reduce the computational
time, and different criteria can be used to finalize the computation. Although the current
conjugate gradient algorithm does not permit to solve systems of nonlinear functions, an
extension of the implemented algorithm can be done with a little effort.

The Newton-Raphson algorithm [9] is only implemented for specific problems, and the
design of a general structure for the algorithm is a work in progress.

The L-BFGS Quasi-Newton method is also available. This was not implemented, but
it was taken from the work of Nocedal and others [4] and adapted to the structure of the
library.

4



A.M. Rosolen, R.D. Millán and M. Arroyo

2.2.6 Nonlinear Elasticity

Algorithms to compute energy, forces and stiffness (tangent matrix) for materials de-
fined by a strain energy function [2, 3] are implemented. The algorithms are efficient, and
its flexible structure allows an easy inclusion of new materials.

2.2.7 Optimization

The optimization problems without constraints can be solved by applying one of the
iterative solvers described above.

The L-BFGSB method (developed by Nocedal and co-workers [10]) is available to solve
constrained optimization problems. This kind of problems can be also solved by using a
combination of iterative solvers and an special dealing of the constraints.

2.2.8 Error Norms

Several algorithms are implemented in order to compute different error norms, both
for scalar and vectorial magnitudes.

2.3 Postprocessing

It has not been implemented any tool related with the postprocess of the results ob-
tained from the numerical simulations. However, VTK [20] can be included as tool in the
structure of the library, by which the visualization of the domain, nodes, sample points,
and numerical results is possible during execution time.

3 SELECTED NUMERICAL EXAMPLES

The four numerical examples presented in this section illustrate some possible applica-
tions of the library tools. The statement of the problems and the numerical approximation
schemes are not shown, but they can be consulted in the documentation of the library or
in the indicated references.

3.1 Poisson’s PDE

The problem corresponds to a distribution of temperature for a square plate without
any heat source but with a parabolic prescribed temperature on one of the edges. The
analytical solution and the numerical results obtained by using LME are shown in the
Figure 2. It can be noticed that analytical (green) and numerical (red) solutions can be
exactly superposed due to the accuracy of the numerical approximation scheme.

3.2 Cantilever beam

This is a standard benchmark problem of linear elasticity. A cantilever beam is sub-
jected to a parabolic distribution of tractions at one end and built-in boundary conditions

5



A.M. Rosolen, R.D. Millán and M. Arroyo

Figure 2: Temperature distribution for a square plate.

at the other end. The analytical solution of this problem is known [19]. The numerical
results (red) obtained by using LME approximants and the initial (green) configuration
of the cantilever beam are shown in the Figure 3.

Figure 3: Linear elastic built-in cantilever beam loaded at the tip. Initial (green) and deformed (red)
configurations.

3.3 Finite-Deformation compression

This is a strongly nonlinear elasticity problem. A hyper-elastic sheet of compressible
neo-Hookean material is subjected to compression. The load is only applied to two edges
of the solid sheet. The numerical results (red) obtained by using LME approximants and
the initial (green) configuration of the sheet are shown in the Figure 4.

6



A.M. Rosolen, R.D. Millán and M. Arroyo

Figure 4: Hyper-elastic sheet of compressible neo-Hookean material subjected to compression. Initial
(green) and deformed (red) configurations.

3.4 Finite-Deformation buckling

This is other strongly nonlinear elasticity problem. A long slender column is subjected
to compression. A buckling effect appears as results of that load. The numerical results
(red) obtained by using LME approximants and the initial (green) configuration of the
column are shown in the Figure 5.

Figure 5: Long slender column subjected to compression. Initial (green) and deformed (red) configura-
tions. A buckling effect appears.

7



A.M. Rosolen, R.D. Millán and M. Arroyo

4 CONCLUSIONS

It was presented a robust and efficient library to solve linear and nonlinear elasticity
problems. The more relevant implemented tools were also briefly described. Several
selected numerical examples were shown in order to illustrate the capabilities of the library.

It is important to remark the facilities that the structure of the library presents to
include external libraries (as METIS or VTK) and to compile with gcc, intel, intel-OMP
or MPI.

The work in progress is focus mainly on the creation and optimization of algorithms to
solve nodal-based numerical integration and variational adaptivity for finite-deformation
elasticity. The future algorithms of the library will be related with meshless applications.

REFERENCES

[1] M. Arroyo and M. Ortiz. “Local maximum-entropy approximation schemes: a seam-
less bridge between finite elements and meshfree methods”. Int. J. Numer. Meth.
Engng, Vol. 65, 2167–2202, 2006.

[2] T. Belytschko, W.K. Liu and B. Moran, Nonlinear Finite Elements for Continua and
Structures, John Wiley & Sons, 2001.

[3] J. Bonet and R.D. Wood, Nonlinear continuum mechanics for finite element analysis,
Cambridge University Press, 1997.

[4] R.H. Byrd, P. Lu and J. Nocedal. “A Limited Memory Algorithm for Bound Con-
strained Optimization”, SIAM Journal on Scientific and Statistical Computing, 16:5,
1190–1208, 1995.

[5] Doxygen: www.stack.nl/~dimitri/doxygen

[6] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Ele-
ment Analysis, Dover Publications, 2000.

[7] G. Karypis and V. Kumar. METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices, Department of Computer Science, University of Minnesota, 1998.

[8] R.D. Millán, A.M. Rosolen and M. Arroyo, “Local–node Gauss–Hermite cubature
for numerical integration”, NMASE 08, Vall de Núria, Spain, 2008.

[9] Newton-Raphson’s Method: en.wikipedia.org/wiki/Newton’s_method

[10] J. Nocedal. “Updating Quasi-Newton Matrices with Limited Storage”, Mathematics
of Computation, 35, 773–782, 1980.

[11] MPI: www-unix.mcs.anl.gov/mpi

8



A.M. Rosolen, R.D. Millán and M. Arroyo

[12] OMP: developers.sun.com/solaris/articles/omp-intro.html

[13] QHULL: www.qhull.org

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003.
An Introduction to the

[15] J. R. Shewchuk, Conjugate Gradient Method Without the Agonizing Pain, School of
Computer Graphics, Carnegie Mellon University, 1994.

[16] F. Smailbegovic, G.N. Gaydadjiev and S. Vassiliadis, “Sparse Matrix Storage For-
mat”, Computer Engineering Laboratory, TU Delft University.

[17] Sparse Matrix Storage Formats:
www.intel.com/software/products/mkl/docs/webhelp/appendices/mkl_appA_SMSF.html

[18] A.H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

[19] Timoshenko and Goodier, Theory of Elasticity, Second Edition, McGraw-Hill, 1951.

[20] VTK: www.vtk.org

[21] O.C. Zienkiewicz and R.L. Taylor, The finite element method, McGraw Hill, Vol. I.,
(1989), Vol. II., (1991).

Con el apoyo de Universitat Politècnica de Catalunya y E.T.S. d’Enginyers de Camins, Canals i Ports
de Barcelona

9


