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Abstract

This paper presents a multicast algorithm, called MSM-s, for
point-to-multipoint transmissions. The algorithm, which has
complexity O(n2) in respect of the number n of nodes, is easy
to implement and can actually be applied in other point-to-
multipoint systems such as distributed computing. We analyze
the algorithm and we provide some upper and lower bounds for
the multicast time delay.

1 Introduction

Multicast is a point-to-multipoint means of transmitting data in which
multiple nodes can receive the same information from one single source.
The applications of multicast include video conferencing, multiplayer net-
working games and corporate communications. The lack of deployment of
IP Multicast has led to considerable interest in alternative approaches at
the application layer, using peer-to-peer architectures[7]. In an applica-
tion layer multicast approach, also called overlay multicast, participating
peers organize themselves into an overlay topology for data delivery. In
this topology each edge corresponds to an unicast path between two end-
systems or peers (also called nodes) in the underlying IP network. All
multicast-related functionality is implemented by peers instead of routers,
with the goal of depicting an efficient overlay network for multicast data
transmission.

In this work we present an algorithm suitable for peer-to-peer multi-
cast transmissions, although the high degree of abstraction of its definition
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makes it also suitable for its implementation in other layers and in general
message-passing systems. The main contribution of this proposal is that
the operation of our algorithm is simple, with a complexity of O(n2), where
n is the number of peers, and thus it may adapt dynamically to the charac-
teristics of the source and the network in order to improve the multicast
time delay. Algorithm execution may be computed by a single group mem-
ber, usually the one which multicasts the message, or by all the members
after the complete network status has been broadcasted.

2 Single Message Multicast Algorithm

Bar Noi et al. introduced in [1] the Message Passing System Model MPS
which characterizes systems that use packet switching techniques at the
communication network. In this work, we extend the Bar Noi model to
EMPS(n,λ,μ), which consists of a set of n full-duplex nodes {p0, . . . , pn−1}
such that each node can simultaneously send and receive a message. The
term message refers to any atomic piece of data sent by one node to another
using the protocols of the underlying layers. For each node p we define the
transmission time μp as the time that requires p to transmit a single mes-
sage. Moreover, for each pair of nodes p and q in a message-passing system
we define the communication latency λpq between p and q as follows. If
at time t node p starts to send a single message to node q, then node p
sends the message during the time interval [t, t + μp], and node q receives
the message during the time interval [t + λpq − μp, t + λpq]. Thus λpq is
the transmission time μp of node p plus the propagation delay between p
and q, as shown in Figure 1. We denote by μ the vector of all μp’s and by
λ the matrix of all λpq’s in the network. For simplicity sake, we assume
that the communication latency is constant, and we consider multicast as a
broadcast problem, since we can isolate the receiving nodes of a multicast
communication, form with them a complete overlay graph, and then depict
a routing table through a broadcast algorithm.

Let p0 be the source node in EMPS(n,λ,μ) model which has a message
to multicast to the set of receiving nodes R = {p1, p2, . . . , pn−1}, we search
for an algorithm that minimizes the multicast time, that is, the time at
which all nodes in R have received the message. Though the result of
EMPS is a multicast spanning tree, in Figure 2 we show that this problem
is different from the well known minimum spanning tree problem.
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Figure 1: The Postal Model. The latency λpq is equal to transmission time
μp plus the propagation delay between p and q.
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Figure 2: Example of a network where EMPS(n,λ,μ) model does not
correspond to the MST problem. We show in parenthesis the multicast
delay for each node in the case that transmission time μ is 1 for any node.

The algorithm that we propose, called SMM Single Message Multicast,
operates as follows: at each step SMM algorithm chooses the node which
has not yet received the message and has the lowest cost, that is, the un-
visited node that can be reached at minimum time from the nodes which
have already received the message. Once the message has been received
by this node, the algorithm recalculates the arrival times of the remaining
nodes, searches the next node at which the message must be forwarded, and
so forth. We assume that when a sending node finishes the retransmission
of the message to another node, it begins immediately with another des-
tination node. SMM algorithm is very similar to Dijkstra’s shortest path
algorithm with the difference that in this case the time delay between two
nodes p and q is not constant. Actually, in EMPS(n,λ,μ) this delay is
equal to λpq plus μp multiplied by the number of previous retransmissions
of node p.

The multicast time achieved by the algorithm SMM is minimum when
μp = 0 for all the nodes. In this case, the time delay between two nodes p
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Figure 3: Example of a network where SMM is not optimal. Transmission
time is 1 for all the nodes. On the left we apply SMM and on the right
another multicast transmission order with a better result.

and q is always the weight λpq of the edge which joins them, and thus the
SMM algorithm corresponds to the optimal algorithm Dijkstra of comple-
xity O(n2). In a general case, however, the SMM algorithm is not always
optimal. Figure 3 shows a network where SMM is not optimal.

Proposition 1 Algorithm SMM for EMPS(n,λ,μ) has complexity O(n2).

Proof: At each step SMM searches the node which has not yet received
the message with lowest cost. As the maximum number of unvisited nodes
is n−1 this operation requires at most n−2 comparisons. Moreover, the al-
gorithm executes one step for every node which receives the message. Thus,
we have n− 1 steps and at each step we perform at maximum n− 2 com-
parisons plus some basic and bounded operations resulting in a complexity
of O(n2). �

2.1 Message Stream Multicast Algorithm

The SMM algorithm has been defined for the multicast of a single message.
For a set of messages we can repeat indefinitely the routing table obtained
with the SMM algorithm, multicasting each message independently of the
others. That means that when one message finally arrives at all the nodes,
the message source would proceed to multicast the next message, and so
forth. The total delay multicast time of the stream would be in this case
the total number of messages M multiplied by the multicast SMM delay
for one single message. The main inconvenience of this solution is that
the source can not send the next message until the previous one has been
received by all the group members and this could slow down the rate of
communication.
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Next, we consider a new possibility. Before the first message has arrived
at all nodes, the source could stop sending it and begin with the second
message. With this restriction, the multicast time of the first message will
increase, but we will begin to send before the second message. This saving
of time between the sending of two consecutive messages will be progres-
sively accumulated, and if the number of messages is large enough it will
compensate the increase of the multicast time for one single message. The
modified algorithm, that we call MSM-s Message Stream Multicast, works
as SMM and applies the same multicast scheme for every message with the
particularity that it stops the transmission of any message once a node has
already sent it s times. Then it will begin to send the next message and so
forth. Since the restriction on the number of retransmissions could isolate
some nodes of the network, MSM-s should choose a minimum restriction
number s to guarantee full-connectivity. As SMM, MSM-s algorithm has
complexity O(n2).

In next sections we prove that under certain conditions it is possible
to calculate a minimum number Mσ in such a way that if the number of
messages is equal or larger than Mσ then MSM-σ is better than MSM-
(σ + 1). Moreover, when restricting the number of transmissions for each
node, MSM-s has to take into account the transmission rate of the source.
That is, if the source sends at most s times the first message and then, after
s · μr time units, stops the transmission of the first message to begin with
the second one, we must be able to assume that the source has the second
message ready to forward. Otherwise, the source would stop sending the
first message before having the second one and would remain unnecessarily
idle, with the consequent loss of efficiency.

2.2 Message Stream Multicast Algorithm with Time
Restriction

Let p be a node which forwards the message to node q, and let sp(s), sq(s) ≤
s be the times that p and q forward the message for MSM-s, respectively. In
this case the second message will be received at q with a delay of sp(s) · μp

in respect to the first message, since the second message follows the same
path but with a source delay of sp(s) · μp, as seen in Figure 4. When the
forwarding period sq(s) · μq of node q is higher than the forwarding period
sp(s) · μp of node p, then successive messages may have higher delays than
former messages. In this context, the second message could arrive at node
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Figure 4: The limit sq of retransmissions of peer q could be different for
every peer q, depending on the transmission times of the peers.

q before it has finished forwarding the first message and then the second
message would have to be buffered, with the consequent time delay. This
buffering delay would be also accumulated by the third message, and so
forth. Nevertheless, this situation may be avoided by limiting the time
period sq(s) ·μq at which each node forwards a message, that is, by assuring
that the forwarding rate 1/(sq(s) ·μq) of any node q is higher than the rate
1/(sp(s) ·μp) of any node p which is in the path from the source to node q,
including the source. Therefore, the delay of the first message will be always
the same as the time delay of any other message, an issue which has great
importance in Section 3. Note also that we do not want 1/(sq(s) · μq) &
1/(sp(s) · μp) since in this case q would stop forwarding the first message
long before receiving the second one, and then the communication would
lose efficiency.

3 Analysis of MSM-s

3.1 Stream Multicast Delay

Let τs be the multicast time delay for a single message when the number
of transmissions of each node is established up to s, M the number of
messages of the stream and μr the transmission time of the source, also
called root. We assume that s is large enough to arrive at all the nodes of
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the network. In this case, the total stream multicast delay τMs for MSM-s
is τMs = (M − 1) · s · μr + τs. That is, the root sends the first message
s times and then, s · μr time units later, it begins with the second and so
forth. At moment (M − 1) · s · μr the root finishes to send the (M − 1)th
message and it begins with the last message, that will arrive at the last
node τs time units later. Remember that, as shown in Section 2.2, under
certain restrictions, the delay τs for the last message is the same as the
delay for any other message.

Equation for τMs is only valid when the root sends each message s times.
When s is large the message may be received by all nodes before the root
has sent it s times. Though in this case the node could remain idle and
wait until s · μr and then begin to send the second message, this would
mean a loss of efficiency. So, for MSM-s, when the message is received for
all nodes before the root has sent it s times, we will allow the root to send
the second message immediately, without an interval of silence. In this
particular case the parameter s should be replaced by the actual number
of times sr(s) ≤ s that the root sends each message for MSM-s, and then
τMs = (M − 1) · sr(s) · μr + τs.

Proposition 2 Given the algorithm MSM-s for EMPS, the delay of a
single message is such that τσ+Δ ≤ τσ ∀σ,Δ > 0.

Proof: By construction of the algorithm. When bounding up to σ +Δ the
transmissions of each node, MSM-(σ+Δ) will depict a better multicast tree
than MSM-(σ+Δ−1) for any message only if there exists a better solution.
Otherwise MSM-(σ + Δ) will depict the same multicast tree depicted by
MSM-(σ + Δ − 1). Thus τσ+Δ ≤ τσ+Δ−1. Repeating the argument for
τσ+Δ−1 and τσ+Δ−2 and so forth, we obtain τσ+Δ ≤ τσ ∀σ,Δ > 0. �

Theorem 3 Given the algorithm MSM-s for EMPS(n,λ,μ), we may ob-
tain the conditions such that MSM-σ is faster than MSM-(σ + 1).

Proof: First we define, in the case that MSM-σ could be better than
MSM-(σ + 1), the minimum number Mσ of messages from which MSM-σ
is better than MSM-(σ + 1). We begin with σ = 1. The value of M1 can
be easily obtained once we have computed τ1, τ2 and sr(2) by executing
MSM-1 and MSM-2. Remember that sr(2) is the number of times that the
root sends each message in MSM-2 and that, by Proposition 2, τ1 ≥ τ2.
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Figure 5: Example of network where sr(σ) ≥ sr(σ + 1). In particular we
have sr(3) = 3 and sr(4) = 2.

Then τM1 = (M − 1) · μr + τ1 and τM2 = (M − 1) · sr(2) · μr + τ2.
In this case sr(2) may be equal to either 1 or 2. In the unusual first case
where sr(2) = 1, since τ1 ≥ τ2, MSM-2 will be equal or better than MSM-1
for any number of messages. In the more usual case where sr(2) = 2 we
establish the restriction τM1 ≤ τM2 and then M ≥ (τ1 − τ2)/μr + 1 = M1.

For a general case, the number Mσ of messages from which the total
stream multicast delay is better for s = σ than for s = σ+1 may be obtained
repeating the arguments for M1. First we obtain by implementing MSM-σ
and MSM-(σ + 1) the following expressions τMσ = (M − 1) · sr(σ) · μr + τσ

and τMσ+1 = (M − 1) · sr(σ + 1) · μr + τσ+1. By Proposition 2 we have
τσ ≥ τσ+1. Thus, in the unusual case that sr(σ) ≥ sr(σ + 1), MSM-(σ + 1)
will be equal or better than MSM-σ for any number of messages. In other
case, when sr(σ) < sr(σ + 1), we establish τMσ ≤ τM(σ+1) and then we
obtain M ≥ (τσ − τσ+1)/((sr(σ + 1)− sr(σ)) · μr) + 1 = Mσ. �

Though it is not a usual case, in Figure 5 we depict a network where
sr(σ) is greater than sr(σ + 1). In particular we have sr(3) > sr(4), and
thus MSM-4 will be faster than MSM-3 for any number of messages. In
order to accomplish the restrictions discussed in section 2.2, we suppose
μr = 2 and μp = 1.

3.2 Analytical Bounds for M1

In this section, we obtain an analytical bound for M1, that is, for the num-
ber of messages from which the total stream multicast delay is better for
s = 1 than for s = 2. As explained in former section we assume sr(2) = 2.
In other case, when sr(2) = 1, MSM-2 will be equal or faster than MSM-1
for any number of messages. Let M be the number of messages; τM1 and
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τM2 the multicast delay for MSM-1 and MSM-2 respectively; μr the trans-
mission time of the root; and λmin and λmax the minimum and maximum
latency between any pair of nodes, respectively. First, we find an upper
bound for τM1 and a lower bound for τM2 which we denote respectively by
T1 and t2. If we force T1 to be lower or equal than t2, then MSM-1 will be
better than MSM-2:

τM1 ≤ T1 ≤ t2 ≤ τM2 (1)

To find T1 and t2, we modify slightly the MSM-s performance. First we
have:

τM1 ≤ (M − 1) · μr + (n− 1)λmax = T1 (2)

Remember that for MSM-1 each node sends each message only once, so
MSM-1 depicts a linear tree with n − 1 links. In this case it is clear that
τM1 ≤ T1 since Equation 2 corresponds to the worst case where a message
has to cross the n− 1 links with the maximum latency λmax.

To find a lower bound for τM2 we consider an algorithm with a lower
delay than MSM-2. First we assume that the latency for any pair of nodes
is the minimum latency λmin. Moreover, in the new algorithm we consider
that a node can send the same message simultaneously to two different
nodes, that is, that μp is equal to 0 for all the nodes. Note that, though
this is physically impossible, the new multicast tree will be faster than the
tree obtained with MSM-2. Let N(t), t ∈ Z+, be the number of nodes that
have received the message at step t according to the new algorithm, then
N(t) = 1 + 2 + 4 + · · ·+ 2t = 2t+1− 1. If we equal N(t) to the number n of
nodes we will obtain the number of steps that we need to arrive at all the
network t = �log2(n + 1) − 1�. In this case the new algorithm could send
the single message to all the other nodes in �log2(n + 1) − 1� · λmin time
units and then for all the messages we have:

τM2 ≥ (M − 1) · 2 · μr + �log2(n + 1)− 1�λmin = t2 (3)

Finally, if according to Equation 1 we force T1 to be lower or equal
than t2 then τM1 will be also lower or equal than τM2 and MSM-1 will
be better than MSM-2. From Equation 2 and Equation 3 it results M ≥
((n−1)λmax−�log2(n+1)−1�λmin)/μr +1. And since we have considered
tighter cases than MSM-1 and MSM-2:
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M1 ≤
(n− 1)λmax − �log2(n + 1)− 1�λmin

μr
+ 1 (4)

Note than when sr(2) = 2 there is always a number of messages from
which MSM-1 is better than MSM-2. From Equation 4 we see that this
minimum number of messages is linear respect to the number n of nodes.
So we can conclude that for the general case that sr(2) = 2, MSM-1 is
in general better than MSM-2, provided that the number of messages is
usually larger than the number of nodes.

The bound obtained in Equation 4 can be improved by recalculating t2,
that is, by comparing MSM-2 to a tighter algorithm and by using the same
lower bound T1 for MSM-1. We assume that sr(2) = 2. First, we define
an algorithm such that, at every step, each node sends the message to one
node and such that each node can send the message only twice. We do not
consider by the moment time delays. We call N(t) the number of nodes
which have received the message at step t. Note that from step t−1 to next
step t, only the N(t−1)−N(t−3) nodes which have not yet forwarded the
message twice can forward it. Thus we have, at step t, the N(t− 1) nodes
of the last step plus the N(t− 1)−N(t− 3) nodes that have just received
the message one or two iterations before:

N(t) = N(t− 1) + (N(t− 1)−N(t− 3)) = 2N(t− 1)−N(t− 3) (5)

In our case we have also N(0) = 1, N(1) = 2 and N(2) = 4. From
Table 1 we see that N(t) = F (t + 3) − 1 where F (t) is the well known
Fibonacci serie for F (0) = 0 and F (1) = 1. Hence, considering φ1 =
(1 +

√
5)/2) and φ2 = (1−

√
5)/2) we have:

N(t) = F (t + 3)− 1 = (φt+3
1 − φt+3

2 )/
√

5− 1 (6)

As we are determining a lower bound, in order to calculate the number
t of steps as a function of the number n of nodes we define N ′(t) which
is a little faster than N(t) as N ′(t) = (φt+3

1 + 1)/
√

5 − 1. Observe that
from Equation 6 we have −1 < φ2 < 0 and then N ′(t) > N(t). Hence, if
we calculate for N ′(t) the number of steps necessary to visit n nodes, we
will obtain a lower bound for N(t). For t & 1 the term φt+3

2 is close to 0
and then we have a very accurate bound. If we equal N ′(t) to n we obtain
t = �logφ1

((n + 1)
√

5 − 1) − 3�. We can also prove from Figure 6 that at
each step t we have a minimum delay of t · (λmin + μmin)/2 and then:
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t 0 1 2 3 4 5 6

N(t) 1 2 4 7 12 20 33

F(t) 0 1 1 2 3 5 8 13 21 34

t 0 1 2 3 4 5 6 7 8 9

Table 1: N(t) vs. Fibonacci Serie.
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Figure 6: The Fibonacci Tree. Each node forwards the message twice.

τM2 ≥ (M − 1) · 2 · μr +
⌈
logφ1

((n + 1)
√

5− 1)− 3
⌉λmin + μmin

2
= t2

Hence, considering the new bound of t2 with φ1 = (1 +
√

5)/2) and
repeating the arguments from the former section with the same value of
T1, we have:

M1 ≤
(n− 1)λmax −

⌈
logφ1

((n + 1)
√

5− 1)− 3
⌉

λmin+μmin
2

μr
+ 1 (7)

This bound is tighter than the bound of Equation 4 depending on the
value of μmin. Actually, if μmin is close to λmin the new bound is better
than the former, whereas if μmin ' λmin then we must consider Equation 4.
In a practical case we can calculate both bounds and consider the best one.
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3.3 An Upper and a Lower Bound for Time Delay in MSM-s

Let τMs be the multicast delay for MSM-s and Ts an upper bound of τMs.
We obtain first a bound for s = 2 and then we generalize the result. With
this purpose we consider again the algorithm N(t). As we determine an
upper bound, in order to calculate the number t of steps as a function of
the number n of nodes we define N ′′(t), which is a little slower than N(t),
as N ′′(t) = (φt+3

1 − 1)/
√

5− 1. From Equation 6 we have −1 < φ2 < 0 and
then N ′′(t) < N(t). If we calculate for N ′′(t) the number of steps that we
need to visit n nodes we will obtain an upper bound for N(t). If we equal
N ′′(t) to n we obtain t = �(logφ1

((n + 1)
√

5 + 1)) − 3�. Considering from
Figure 6 that at each step t the maximum delay is t · λmax, we obtain:

τ2 ≤ �(logφ1
((n + 1)

√
5 + 1)) − 3�λmax (8)

Note that, if we want to guarantee that N ′′(t) < N(t), we have to
suppose that each node cand send the message twice for MSM-2. Remember
also that in section 2.2 we have seen that this is not always possible (in
order to avoid congestion). However, we now assume that for MSM-s every
node can send the message s times (twice for s = 2), even if its rate is lower
than the root rate, and then we force the root to send any message with a
lower rate than the slowliest node in the graph. In this case, we will not
have congestion problems, as referred in section 2.2, and all the messages
will have the same delay. Then, since τs ≤ τ2 ∀s ≥ 2 and the root will
begin to send a message at most s · μs time units later than the previous
one (being μs the maximum transmission time of any node in the graph),
we obtain:

τMs ≤ (M − 1) · s · μs +
⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax = Ts ∀s ≥ 2 (9)

To find a lower bound ts for τMs we consider, as we did for MSM-2 in
section 3.2 but now in a general case, an algorithm such that a node can
forward the same message simultaneously to s different nodes. Moreover,
we assume that the latency for any pair of nodes is the minimum latency
λmin. The new algorithm is therefore better than MSM-s. Let N(t), t ∈ Z+,
be the number of nodes that have received the message at step t, then
N(0) = 1 and N(t) = 1 + s + s2 + · · · + st = (st+1 − 1)/(s − 1) for
t > 0. If we equal N(t) to the number of nodes n we obtain that the
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number of steps that we need to arrive at all the network for s ≥ 2 is
t = �(logs(n(s− 1) + 1)) − 1�. And thus for s ≥ 2 we obtain ts:

τMs ≥ (M − 1) · sr(s) · μr +
⌈
logs(n(s− 1) + 1)− 1

⌉
λmin

≥ (M − 1) · μr +
⌈
logs(n(s − 1) + 1)− 1

⌉
λmin (10)

For s = 2 we obtain the expression in Equation 3 and for s = 1 we have
τM1 ≥ (M − 1) · μr + (n− 1)λmin.

3.4 A General Bound for Mσ

Taking the bounds of the former section and repeating the arguments of
section 3.2 for M1, we obtain a bound for the minimum number Mσ of
messages from which MSM-σ is better than MSM-(σ + 1). As in former
sections, this bound has only sense when sr(σ) < sr(σ + 1). In other case,
MSM-(σ + 1) is always equal or better than MSM-σ. From Equation 9 we
have an upper bound Tσ for s = σ and from Equation 10 we obtain a lower
bound tσ+1 for s = σ + 1. Forcing Tσ ≤ tσ+1 we will have τMσ ≤ Tσ ≤
tσ+1 ≤ τM(σ+1) and then MSM-σ will be better than MSM-(σ + 1). This
results in the next bound for σ ≥ 2:

M ≥

⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax −

⌈
log(σ+1)(nσ + 1)− 1

⌉
λmin

sr(σ + 1) · μr − σ · μs
+ 1

Note that we assume sr(σ + 1) · μr ≥ σ · μs and thus sr(σ + 1) = σ + 1
(since μr ≤ μs). Otherwise, we should find tighter values for Tσ and tσ+1

and then recalculate the bound for M . Finally, since we have a pessimistic
case, we obtain for σ ≥ 2:

Mσ ≤

⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax −

⌈
log(σ+1)(nσ + 1)− 1

⌉
λmin

(σ + 1) · μr − σ · μs
+ 1

3.5 Robustness of MSM-s

Frequently, real-time applications use unreliable transport-layer protocols
such as User Datagram Protocol (UDP). That means that it is not always
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Figure 7: Multicast tree for the calculation of MSM-s robustness.

possible to ensure the ordered and complete arrival of the data at the
destination peers. The overlay links of application-layer multicast for real-
time applications could therefore provide some degree of reliability. We
analyze in this section, under the assumption that there is no message
retransmission, the robustness of MSM-s algorithm.

First note that MSM-1 algorithm depicts a linear topology for the mul-
ticast tree, that is, a message arrives at a peer which immediately forwards
it to another peer and so forth, whereas the MSM-s algorithm depicts in
general s divergent paths from each peer of the multicast tree, as shown in
Figure 7. In this case, for MSM-1 the probability that a message arrives at
l peers is always lower than the probability of arriving at l− 1 peers. This
is because for arriving at the lth peer the message will have to arrive first
until the (l− 1)th peer and then cross successfully the edge between them.
This undesirable characteristic does not appears in MSM-s when s > 1 due
to the different multicast tree that depicts the algorithm, with divergent
paths. In MSM-3, for example, the probability of arriving at three peers
is much higher than the probability of arriving at only one, an issue which
does not happen in MSM-1. Then, as we show in this section, MSM-1 will
be less robust than the rest of MSM-s algorithms.

Let Pc(p, q) be the probability that peer q receives correctly a message
sent by peer p. For the sake of simplicity we consider that Pc(p, q) = Pc

for all the peers. Actually, if we consider Pc = max{Pc(p, q)} ∀p, q ∈
EMPS(n,λ,μ), we will get a lower bound of the robustness of the MSM-s
algorithm. We call a peer which has received correctly the message a “visi-
ted peer”. Note that since the results would be the same, we calculate the
robustness only for the transmission of one single message.

We denote by n̄s the average number of peers that receive the message
for MSM-s with a probability Pc for each peer-to-peer communication. To
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calculate n̄s we divide the peers into levels, according to Figure 7. We call
El the average number of peers that receive the message at level l. For the
first level we have s peers and then:

E1 = E(r11 + r21 + · · ·+ rs1) = sE(r11) = s(0 · p(0) + 1 · p(1)) = sPc

By definition rij is 1 if the peer i at level j has received the message
and 0 otherwise (we calculate the average number of visited peers when we
send only one message). Thus r11 + r21 + · · · + rs1 is equal to the number
of peers that have received the message at the first level. For the s2 peers
of the second level we have:

E2 = E(r12 + r22 + · · ·+ rs22) = s2E(r12) = s2(0 · p(0) + 1 · p(1)) = s2P 2
c

And in general for the level l:

El = E(r1l + r2l + · · · + rsll) = slE(r1l) = sl(0 · p(0) + 1 · p(1)) = slP l
c

Finally we calculate n̄s as the sum of the averages of each level, consi-
dering that, since the root always has the message, for level 0 this number
is 1. We denote by L the number of levels:

n̄s = E0 + E1 + · · · + EL

= 1 + sPc + (sPc)
2 + · · · + (sPc)

L

=
(sPc)

L+1 − 1

sPc − 1
(11)

In this case we assume that the number of peers is 1+s+s2 + · · ·+sL =
(sL+1 − 1)/(s − 1) and that we flood the network level by level (this only
would happen on a very regular network with little time transmissions).
For the MSM-1 algorithm the assumptions of Equation 11 are valid. Since
we have L = n− 1 it results:

n̄1 =
1− Pn

c

1− Pc
<

1

1− Pc

Thus if 1/(1 − Pc) is much smaller than the number n of peers, the
average number of visited peers with MSM-1 will be also much smaller
than n. But if, on the contrary, 1/(1 − Pc) is higher than n then the
average number of visited peers may be close to n.
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n Pc = 0.9 Pc = 0.99 Pc = 0.999 Pc = 0.9999

50 9.95 39.50 48.79 49.88

100 10.00 63.40 95.21 99.51

1000 10.00 100.00 632.30 951.67

Table 2: Average of the number of peers that receive the message for MSM-
1, depending on n and Pc.

In Table 2 we see some values of the average for MSM-1 depending on
n and Pc. For Pc = 0.9 we have 1/(1−Pc) = 10 and then the average may
not be greater than 10, no matter how high is n. However, for the usual
values of Pc = 0.999 and n = 50 or n = 100 we have good averages, close to
n. For the other values the average is much smaller than n, which means
that the message is not received by a large percentage of peers. In this
case the algorithm should automatically change from MSM-1 to MSM-2.
For instance, for n ≈ 1000 and Pc = 0.999 we would arrive at only the
63.2% of the peers with MSM-1 whereas for MSM-2 the percentage would
be of 99.1%. In this case the percentage for MSM-3 would be only a little
higher than for MSM-2: 99.4%. Actually, in a general case the robustness
of MSM-2 will be acceptable.

Therefore, when we want to apply MSM-1 to a real network (assuming
that MSM-1 can topologically arrive at all the peers with the restriction
s = 1, that the rate of the source is high enough to provide a new message
every μr time units, and that for the number of messages that we have the
time delay is lower for MSM-1 than for MSM-2), in this case the algorithm
itself should estimate the average number of peers that will receive the
message for MSM-1 and if it would not be high enough then it should
apply MSM-2, consider the new average number and change if necessary to
MSM-3, and so forth.

Nevertheless, the assumption that Pc is equal for all the links has major
implications on MSM-1 than on MSM-s for s ≥ 2. In general, in MSM-
1 there are a larger percentage of short end-to-end transmissions than in
MSM-s for s ≥ 2. This means that in MSM-1 there will be in general more
transmissions than in MSM-s with a probability of success larger than Pc.
Thus, the results of Equation 11 can be more pessimistic for s = 1 than for
s ≥ 2.
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4 Conclusions and Future Work

In this paper we propose an algorithm, called MSM-s, for multicast trans-
missions in application-layer networks. The fundamental parameter of
MSM-s is the value of s, i.e. the maximum number of times that a peer
may forward a single message. This parameter is also the maximum degree
of each node in the resulting multicast tree. We present a theoretical study
of the multicast delay and the robustness of the algorithm.

The practical implementation of the algorithm in real peer-to-peer net-
works will be part of our future work. Though in this paper we have not
considered the possibility of dynamic multicast groups, we plan to define
mechanisms for the actualization of the routing tables which take into ac-
count the joining and leaving of peers without recalculating the whole table.
This could mean a loss of efficiency but would simplify the computation.
We consider the possibility of allowing a maximum number of joinings and
leavings of peers with only partial changes on routing tables. Once this
number is achieved the algorithm would proceed to completely recalcu-
late the tables. This maximum number could be determined by means of
theoretical bounds and network measures.

We also plan to study the benefits of the use of the algorithm for two
real-time applications: multi-player networking games, which can be con-
sidered a static scenario with large restrictions on delay and with multi-
ple points of information, and video-streaming of stored content and live-
events, which are dynamic scenarios where the preservation of messages
rate is of great importance.
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