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Abstract

Given a bipartite graph G with m and n vertices, respectively,
in its vertices classes, and given two integers s, t such that
2 ≤ s ≤ t, 0 ≤ m−s ≤ n−t, and m+n ≤ 2s+t−1, we prove that
if G has at least mn− (2(m− s) + n− t) edges then it contains
a subdivision of the complete bipartite K(s,t) with s vertices
in the m-class and t vertices in the n-class. Furthermore, we
characterize the corresponding extremal bipartite graphs with
mn − (2(m − s) + n − t + 1) edges for this topological Turan
type problem.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or
multiple edges are considered. Unless otherwise stated, we follow [5] for
terminology and definitions.

Two well-known extensions of the Turán problem [19] are the Turán
topological problem and the Zarankiewicz problem. The former one con-
sists of estimating the extremal function ex(n, TKp) which denotes the
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maximum number of edges of a graph on n vertices free of a topologi-
cal minor TKp of a complete graph on p vertices (see Bollobás’ excellent
monograph [4] devoted to this subject and the contributions on this topic
[1, 13, 11, 16, 15, 18]). The second was stated by Zarankiewicz [20] who
studied the maximum size of a bipartite graph on (m,n) vertices, denoted
by z(m,n; s, t) that contains no bipartite complete K(s,t) subgraph with s
vertices in the m-class and t vertices in the n-class. For a survey of this
problem we also refer the reader to Section VI.2 of [4]. Most of the contri-
butions are bounds for the function z(m,n; s, t) when s, t are fixed and m,n
are much larger than s, t (see, for example, [6, 7, 8]). Other contributions
provide exact values of the extremal function [2, 9, 10].

Recent results on some problems involving the contention of a complete
bipartite graph or a subdivision of a complete bipartite graph can be found
in the literature [3, 12, 14, 17]. Böhme et al. [3] studied the size of a
k-connected graph free of either an induced path of a given length or a
subdivision of a complete bipartite graph. Kühn and Osthus [12] proved
that for any graph H and for every integer s there exists a function f =
f(H, s) such that every graph of size at least f contains either a Ks,s as a
subgraph or an induced subdivision of H. Meyer [17] also relates the size
of a graph with the property of containing a minor of Ks,t. Other problems
involving the contention of maximum matching in graphs are considered in
[14].

Combining the topological version of the Turán problem for complete
graphs with the Zarankiewicz problem, we introduce the extremal function
tz(m,n; s, t) as a natural extension. The function tz(m,n; s, t) is defined
as the maximum size of a (m,n)-bipartite graph free of a topological minor
TK(s,t) of a complete bipartite K(s,t) with s vertices in the m-class and t
vertices in the n-class. The objective of this paper is to obtain exact values
for this extremal function tz(m,n; s, t) and to characterize the correspond-
ing extremal bipartite graphs for infinitely many related values of m,n, s, t.
Namely, we determine the exact value of tz(m,n; s, t) and we character-
ize the family TZ(m,n; s, t) of extremal graphs for any values of m,n, s, t
satisfying 2 ≤ m− s ≤ n− t and m + n ≤ 2s + t− 1.

A subdivision of a graph H is a graph TH obtained from H by replacing
the edges of H with internally disjoint paths. The branch vertices of TH are
all those vertices that correspond to vertices of H. The complete bipartite
graph K(s,t) is said to be a topological minor of a bipartite graph G if
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TK(s,t) ⊆ G.
Given two positive integers, m, n, a bipartite graph G with vertex

classes X and Y of cardinalities |X| = m and |Y | = n, is denoted by G =
(X,Y ). The sets of vertices and edges of G are denoted by V (G) = X ∪ Y
and E(G), respectively, whereas v(G) and e(G) stand for the corresponding
cardinalities.

For a bipartite graph H = (X,Y ), the degree of a vertex v in the
graph H is denoted by dH(v) whereas ΔX(H) (resp. ΔY (H)) stand for
the maximum degree among vertices in the first class (resp. second class).
Thus, Δ(H) = max{ΔX(H),ΔY (H)} is the maximum degree of H. Let us
consider two subsets of vertices {x1, x2, . . . , xp} ⊆ X and {y1, y2, . . . , yp} ⊆
Y . Let us denote by H0,0 = H, H1,0 = H − {x1}, H1,1 = H1,0 − {y1},
and for all i = 2, . . . , p, let us denoted by Hi,i−1 = Hi−1,i−1 − {xi} and
Hi,i = Hi,i−1 − {yi} . Next we introduce the notion of decreasing sequence
of vertices in a bipartite graph H = (X,Y ).

Definition 1 Given an integer p ≥ 1 and a bipartite graph H = (X,Y ),
a subset of vertices of H, {x1, y1, x2, y2, . . . , xp, yp}, with {x1, . . . , xp} ⊆ X
and {y1, . . . , yp} ⊆ Y , is called a decreasing sequence of H if the following
assertions hold:

(i) dHi−1,i−1(xi) = ΔX(Hi−1,i−1), for i = 1, . . . , p.

(ii) dHi,i−1(yi) = ΔY (Hi,i−1), for i = 1, . . . , p.

(iii) For each i = 1, . . . , p, either xiyi 
∈ E(H) or every vertex y ∈
V (Hi,i−1) ∩ Y with degree dHi,i−1(y) = ΔY (Hi,i−1) is adjacent to
vertex xi in H.

Note that

dH0,0(x1) ≥ dH1,1(x2) ≥ . . . ≥ dHp−1,p−1(xp) ≥ ΔX(Hp,p)

and
dH1,0(y1) ≥ dH2,1(y2) ≥ . . . ≥ dHp,p−1(yp) ≥ ΔY (Hp,p),

and furthermore,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p).
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2 Exact values

Let G be a bipartite graph G = (X,Y ) on m and n vertices in X and Y
respectively. We will henceforth use H to denote the bipartite complement
of G, i.e., the bipartite graph H = (X,Y ) = K(m,n) − E(G).

The problem of finding a TK(s,t) in a bipartite graph G can be for-
mulated in terms of its bipartite complement H. Indeed, if G = (X,Y )
contains a TK(s,t) with set of branch vertices S ∪ T , S ⊂ X, T ⊂ Y , then
the edges of the graph H[S ∪T ] are missing in G and thus they must be re-
placed in G with internally disjoint paths passing through vertices of X \S
and vertices of Y \ T . Since each of these paths must have odd length at
least 3, it follows that e (H[S ∪ T ]) ≤ min{|X \ S|, |Y \ T |}. Hence, the
following necessary but not sufficient condition on the induced subgraph
H[S ∪ T ] in order to determine whether K(s,t) is a topological minor of G
is immediate.

Remark 2 Let G = (X,Y ) be with |X| = m and |Y | = n and let H be
the bipartite complement of G. If G contains a TK(s,t), then there exist
S ⊆ X and T ⊆ Y with |S| = s, |T | = t, such that the number of edges of
the subgraph induced by S ∪ T in the bipartite complement of G satisfies

e (H[S ∪ T ]) ≤ min{m− s, n− t}.

By using Remark 2, the following proposition provides a lower bound
on the maximum size of a (m,n)-bipartite graph free of a topological minor
TK(s,t) of K(s,t).

Proposition 3 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 0 ≤ m− s ≤
n− t, and m + n ≤ 2s + t− 1. Then the bipartite graph G = K(m,n) −M ,
where M is any matching of cardinality 2(m − s) + n − t + 1, does not
contain TK(s,t) and therefore,

tz(m,n; s, t) ≥ mn− (2(m− s) + n− t + 1) .

Proof: First, let us see that K(m,n) has a matching of cardinality 2(m −
s) + n− t + 1. This is clear because from 2 ≤ s ≤ t and 0 ≤ m− s ≤ n− t,
it follows that m ≤ n, and from the hypothesis m+n ≤ 2s+ t−1 it follows
that 2(m−s)+n− t+1 = (m+n)+m−2s− t+1 ≤ m ≤ n. Therefore, we
may consider the bipartite graph G = (X,Y ) = K(m,n) −M where M is a
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matching of cardinality 2(m− s)+ n− t + 1 in K(m,n). Next let us see that
K(s,t) is not a topological minor of G. For that, from Remark 2 it is enough
to prove that e (H[S ∪ T ]) > m − s for any subsets S ⊆ X and T ⊆ Y of
cardinalities s and t, respectively, with s ≤ t. Observe that the number of
isolated vertices in the class Y of H is exactly n− (2(m− s) + n− t + 1).
It follows that the number of edges of H[X ∪ T ] is

e(H[X ∪ T ]) ≥ t− (n− (2(m− s) + n− t + 1)) = 2m− 2s + 1.

But since e(H[(X \ S) ∪ T ]) ≤ m− s, then we have

e(H[S ∪ T ]) = e(H[X ∪ T ])− e(H[(X \ S) ∪ T ])

≥ 2m− 2s + 1− (m− s)

= m− s + 1 > m− s.

Thus the result holds. �

Lemma 4 Let p ≥ 1 be an integer and let G = (X,Y ) be a bipartite
graph, with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite
complement of G. Let {x1, y1, x2, y2, . . . , xp, yp} be any decreasing sequence
of H and denote by r = e(Hp,p). If r ≥ 1 and e(H) ≤ 3p, then:

(i) r ≤ p.

(ii) Δ(Hp,p) = 1.

(iii) {xp−(r−1)yp−(r−1), . . . , xpyp} ∩ E(H) = ∅.

(iv) {ayp−(r−1), . . . , ayp} ∩ E(H) = ∅, for each a ∈ X \ {x1, . . . , xp} of
degree dHp,p(a) = 1.

(v) If r ≥ 2, then {xp−(r−2)b, . . . , xpb} ∩ E(H) = ∅, for each b ∈ Y \
{y1, . . . , yp} of degree dHp,p(b) = 1.

Proof: Since e(Hp,p) = r ≥ 1 we deduce ΔX(Hp,p) ≥ 1, ΔY (Hp,p) ≥ 1,
following that dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p, and
therefore

e(Hp,p) = e(H)−
p∑

i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
≤ 3p− 2p = p,
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thus item (i) is proved.

If ΔX(Hp,p) ≥ 2, then dHi−1,i−1(xi) ≥ 2 for each i = 1, . . . , p, hence,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + r > 3p,

which is a contradiction. Analogously, we arrive at a contradiction if
ΔY (Hp,p) ≥ 2. Thus, ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies Δ(Hp,p) =
1, hence item (ii) is shown.

(iii) Let us denote the edges of Hp,p by e1 = a1b1, . . . , er = arbr, ai ∈
X \ {x1, . . . , xp} and bi ∈ Y \ {y1, . . . , yp}, for i = 1, . . . , r. By item
(i) we know that r ≤ p. We reason by way of contradiction supposing
that there exists j ∈ {0, . . . , r − 1} such that xp−jyp−j ∈ E(H). First we
claim that dHp−j,p−j−1(yp−j) = 1. Otherwise, if dHp−j,p−j−1(yp−j) ≥ 2 then
dHi,i−1(yi) ≥ 2, for i = 1, . . . , p− j and therefore, by (ii) we have

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j+1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r

= 3p + (r − j)

> 3p,

the last inequality due to the fact that j ≤ r − 1. Since this is a contra-
diction with the hypothesis, then ΔY (Hp−j,p−j−1) = dHp−j,p−j−1(yp−j) = 1,
yielding to dHi,i−1(yi) = 1, for i = p − j, . . . , p and dHp,p(bi) = 1, for
i = 1, . . . , r. As {x1, y1, x2, y2, . . . , xp, yp} is a decreasing sequence of H,
it follows that xp−j is adjacent in H to each one of the vertices of the
set {yp−j, . . . , yp, b1, . . . , br} because of point (iii) of Definition 1. That is,
dHp−j−1,p−j−1(xp−j) ≥ j+1+r, which means that dHi−1,i−1(xi) ≥ j+1+r ≥
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2, for i = 1, . . . , p− j and therefore,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j+1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p− j) + 2j + r = 3p + (r − j) > 3p,

again a contradiction. Thus xp−jyp−j 
∈ E(H) for all j ∈ {0, . . . , r − 1},
hence item (iii) is valid.
(iv) Note that r ≥ 1 implies dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. We reason by way of contradiction supposing that there exists
j ∈ {0, . . . , r−1} such that ayp−j ∈ E(H) for a vertex a ∈ X\{x1, . . . , xp} of
degree dHp,p(a) = 1. Then dHp−j−1,p−j−1(a) ≥ 2 and hence, dHi−1,i−1(xi) ≥
2, for i = 1, . . . , p− j. Thus,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r = 3p + (r − j) > 3p,

because j ≤ r − 1, against the hypothesis.
(v) Since r ≥ 2 then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p.
We reason by way of contradiction supposing that there exists j ∈ {0, . . . , r−
2} such that xp−jb ∈ E(H) for a vertex b ∈ Y \ {y1, . . . , yp} of degree
dHp,p(b) = 1. Then dHp−j−1,p−j−2(b) ≥ 2 and hence, dHi,i−1(yi) ≥ 2, for
i = 1, . . . , p− j − 1. Thus,

e(H) =

p−j−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j − 1) + 2(j + 1) + r = 3p + (r − j − 1) > 3p,

because j ≤ r − 2, again a contradiction. �
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Lemma 5 Let p ≥ 2 be an integer. Let G = (X,Y ) be a bipartite graph
with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite com-
plement of G. Suppose that there exists a decreasing sequence of vertices
U = {x1, y1, x2, y2, . . . , xp, yp} of H such that E(Hp,p) = {ab} with a ∈ X
and b ∈ Y . If e(H) ≤ 3p then there exists an (a, b)-path in G with its
internal vertices belonging to U .

Proof: Since E(Hp,p) = {ab}, then ΔX(Hp,p) = ΔY (Hp,p) = 1, which
implies that dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. If G
contains the path a, yp, xp, b, then we are done. So assume that some of
the edges ayp, xpyp, xpb is an edge of H. We know by Lemma 4 (iii) that
xpyp 
∈ E(H). If ayp ∈ E(H), then dHp−1,p−1(a) ≥ 2, because {ayp, ab} ⊂
E(Hp−1,p−1). Then dHi−1,i−1(xi) ≥ 2 and we get

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + 1,

which is a contradiction. Therefore we can suppose that xpb ∈ E(H) and
ayp 
∈ E(H). Then {xpb, ab} ⊂ E(Hp−1,p−2), following that dHp−1,p−2(b) ≥
2, which implies that dHi,i−1(yi) ≥ 2, for i = 1, . . . , p−1. Since dHp,p−1(yp) ≥
1 and dHi−1,i−1(xi) ≥ 1 for i = 1, . . . , p, it follows that

e(H) =

p−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

(
dHp−1,p−1(xp) + dHp,p−1(yp)

)
+ e(Hp,p)

≥ 3(p− 1) + 2 + 1 = 3p.

This means that all the above inequalities become equalities, that is,{
dHi,i−1(yi) = 2, for i = 1, . . . , p− 1, and dHp,p−1(yp) = 1;

dHi−1,i−1(xi) = 1, for i = 1, . . . , p.
(1)

Therefore we obtain that:

• xpyp−1 
∈ E(H), because otherwise, {xpb, xpyp−1} ⊂ E(Hp−2,p−2) and
thus, dHp−2,p−2(xp−1) = ΔX(Hp−1,p−1) ≥ 2, contradicting (1).

• xp−1b 
∈ E(H), for if not, {xp−1b, xpb, ab} ⊂ E(Hp−2,p−3) and hence,
dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ 3, against (1).
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• xp−1yp−1 
∈ E(H), because otherwise, dHp−2,p−3(yp−1) ≥ 3 and there-
fore, dHp−2,p−3(yp−2) ≥ 3, contradicting (1).

Thus, it follows that {ayp, xpyp, xpyp−1, xp−1yp−1, xp−1b}∩E(H) = ∅. Con-
sequently, there exists in G the path a, yp, xp, yp−1, xp−1, b, hence the result
holds. �

Lemma 6 Let m,n, p be integers such that p ≥ 2, m > p and n > p. Let
G = (X,Y ) be a bipartite graph with |X| = m and |Y | = n, and denote by
H = (X,Y ) the bipartite complement of G. If e(H) ≤ 3p, then K(m−p,n−p)

is a topological minor of G.

Proof: Let U = {x1, y1, x2, y2, . . . , xp, yp} be a decreasing sequence of
H. The graph Hp,p is a bipartite graph with vertex classes X∗ = X \
{x1, . . . , xp} and Y ∗ = Y \ {y1, . . . , yp}, so |X∗| = m− p and |Y ∗| = n− p.
If e(Hp,p) = 0 then the bipartite complement of Hp,p is K(m−p,n−p) and
the result follows. We may henceforth assume that e(Hp,p) > 0, or in
other words ΔX(Hp,p) ≥ 1 and ΔY (Hp,p) ≥ 1, thus dHi−1,i−1(xi) ≥ 1 and
dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. Then by Lemma 4 we have e(Hp,p) = r ≤ p
and Δ(Hp,p) = 1. Let us denote the edges of Hp,p by e1 = a1b1, . . . , er =
arbr, ai ∈ X∗ and bi ∈ Y ∗, for i = 1, . . . , r. In order to prove that G
contains TK(m−p,n−p) with set of branch vertices X∗∪Y ∗, we will show the
existence of vertex disjoint (ai, bi)-paths in G, i = 1, . . . , r, with internal
vertices from U . As e(H) ≤ 3p, if r = 1 then the bipartite complement of
Hp,p is Km−p,n−p − e1. Thus, by Lemma 5, the bipartite graph G contains
TKm−p,n−p and we are done. Hence assume that 2 ≤ r ≤ p, then by Lemma
4 (iii), (iv), (v), for each i = 1, . . . , r and j = 0, . . . , r − 2, there exists in
G the path ai, yp−j, xp−j, bi. Thus, we only must show that there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Otherwise, since xp−(r−1)yp−(r−1) ∈ E(G) and aiyp−(r−1) ∈ E(G) for all
i = 1, . . . , r, because of Lemma 4, we deduce that xp−(r−1)bi ∈ E(H) for all
i = 1, . . . , r, that is, dHp−r,p−r(xp−(r−1)) ≥ r and therefore, dHi−1,i−1(xi) ≥ r
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for i = 1, . . . , p− (r − 1). Then since 2 ≤ r ≤ p it follows that

e(H) =

p−(r−1)∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(r−2)

(
dHi−1,i−1(ik) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ (r + 1)(p − (r − 1)) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r + 1)

> 3p

which is a contradiction. Hence there exists i ∈ {1, . . . , r} such that the
path ai, yp−(r−1), xp−(r−1), bi is contained in G. Without loss of generality
we may assume that i = r. Then there exist in G the vertex-disjoint paths
aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r. Thus, G contains TK(m−p,n−p)

and this finishes the proof. �

The following lemma gives a sufficient condition on the size of a bipartite
graph in order to contain a complete bipartite graph as a topological minor.

Lemma 7 Let m,n, s, t be integers such that 2 ≤ m − s ≤ n − t. Let
G = (X,Y ) be a bipartite graph with |X| = m, |Y | = n. If the bipartite
complement H of G has size e(H) ≤ 2(m − s) + n − t, then K(s,t) is a
topological minor of G.

Proof: Set p = m − s and q = n − t, then 2 ≤ p ≤ q and e(H) ≤ 2p + q.
First, suppose that p = q. Thus the bipartite graph H has size at most
3p, and by Lemma 6, we obtain that K(m−p,n−p) = K(s,t) is a topological
minor of G. Hence, assume that p < q. Without loss of generality, we may
assume that the vertices of the partite set Y are ordered in such a way that
dH(y1) ≥ dH(y2) ≥ · · · ≥ dH(yn). Set Y ′ = {y1, . . . , yq−p} ⊆ Y and let us
consider the bipartite graph H ′ = (X,Y \ Y ′). Observe that |X| = m and
|Y \Y ′| = n−(q−p) = t+p. If e(H ′) = 0 then the bipartite complement G′

of H ′ is the complete bipartite graph K(m,t+p). Since G′ is a subgraph of G
and K(s,t) ⊆ K(m,t+p), then G contains a K(s,t) and we are done. So, we may
assume that e(H ′) > 0, which implies that dH(yi) ≥ 1 for i = 1, . . . , q − p.
Hence, e(H ′) = e(H)−

∑q−p
i=1 dH(yi) ≤ 2p+ q− (q− p) ≤ 3p, and therefore,
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from Lemma 6, it follows that K(m−p,t+p−p) = K(s,t) is a topological minor
of G. �

Combining Proposition 3 and Lemma 7 the following theorem is imme-
diate.

Theorem 8 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 2 ≤ m−s ≤ n−t,
and m + n ≤ 2s + t− 1. Then

tz(m,n; s, t) = mn− (2(m− s) + n− t + 1) .

3 Family of extremal graphs

When an extremal problem is studied, it is not only important to know
the exact value of the extremal function, but also characterize the family
of extremal graphs. In this section we characterize the extremal family
TZ(m,n; s, t) for integers m,n, s, t such that 2 ≤ s ≤ t, 2 ≤ m− s ≤ n− t,
and m + n ≤ 2s + t− 1.

Lemma 9 Let p ≥ 2 be an integer and let G = (X,Y ) be a bipartite
graph with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite
complement of G. Let {x1, y1, x2, y2, . . . , xp, yp} be any decreasing sequence
of H and denote by r = e(Hp,p). If e(H) ≤ 3p + 1 and ΔX(H) ≥ 2 then

(i) r ≤ p.

(ii) Δ(Hp,p) ≤ 1.

(iii) If r = 1 then {xp−(r−1)yp−(r−1), . . . , xpyp} ∩E(H) = ∅.

(iv) If r ≥ 2 then {ayp−(r−2), . . . , ayp} ∩ E(H) = ∅, for each a ∈ X \
{x1, . . . , xp} of degree dHp,p(a) = 1, if any.

(v) If r ≥ 2 then {xp−(r−2)b, . . . , xpb} ∩ E(H) = ∅, for each b ∈ Y \
{y1, . . . , yp} of degree dHp,p(b) = 1, if any.

Proof: If e(Hp,p) = r = 0, then both items (i) and (ii) hold. Hence we
may assume that 0 < r = e(Hp,p) ≤ 3p + 1, which implies ΔX(Hp,p) ≥
1, ΔY (Hp,p) ≥ 1, following that dHi−1,i−1(xi) ≥ 1 for i = 2, . . . , p and
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dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. Moreover, dH0,0(x1) ≥ 2, because ΔX(H) ≥
2. Therefore

e(Hp,p) = e(H)−
(
dH0,0(x1) + dH1,0(y1)

)
−

p∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
≤ 3p + 1− 3− 2(p − 1) = p,

thus item (i) is proved.
If ΔX(Hp,p) ≥ 2, then e(Hp,p) ≥ 2 and dHi−1,i−1(xi) ≥ 2 for each

i = 1, . . . , p, hence,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3p + e(Hp,p) ≥ 3p + 2 > 3p + 1,

which is a contradiction. Analogously, we arrive at a contradiction if
ΔY (Hp,p) ≥ 2. Thus, ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies Δ(Hp,p) =
1, hence item (ii) is shown.
(iii) From item (i) it follows that r ≤ p. Let us denote the edges of Hp,p by
e1 = a1b1, . . . , er = arbr, ai ∈ X \{x1, . . . , xp} and bi ∈ Y \{y1, . . . , yp}, for
i = 1, . . . , r. Since e(Hp,p) = r ≥ 1, then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥
1 for i = 1, . . . , p. We reason by way of contradiction supposing that there
exists j ∈ {0, . . . , r − 1} such that xp−jyp−j ∈ E(H). Then dHi,i−1(yi) ≥ 2
for i = 1, . . . , p−j−1, because dHp−j,p−j−1(yp−j) ≥ 1 and xp−jyp−j ∈ E(H).
We have two cases:

Case 1. Assume that dHp−j,p−j−1(yp−j) ≥ 2, then dHi,i−1(yi) ≥ 2 for
i = 1, . . . , p− j. Since dH0,0(x1) = ΔX(H) ≥ 2 and j ≤ r− 1 it follows that

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 4 + 3(p − j − 1) + 2j + r

= 3p + 1 + (r − j)

> 3p + 1,
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which is a contradiction.

Case 2. Assume that dHp−j,p−j−1(yp−j) = 1, then dHi,i−1(yi) = 1, for i =
p− j, . . . , p. Moreover, dHp,p(bi) = 1, for i = 1, . . . , r, because Δ(Hp,p) = 1.
As {x1, y1, x2, y2, . . . , xp, yp} is a decreasing sequence of H and xp−jyp−j ∈
E(H), it follows that xp−j is adjacent in H to each one of the vertices of the
set {yp−j, . . . , yp, b1, . . . , br} because of point (iii) of Definition 1. That is,
dHp−j−1,p−j−1(xp−j) ≥ j + 1 + r, which means that dHi−1,i−1(xi) ≥ j + 1 + r
for i = 1, . . . , p− j. If j = 0 then dHi−1,i−1(xi) ≥ 1 + r for i = 1, . . . , p, and
therefore

e(H) =

p−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−1,p−1(xp) + dHp,p−1(yp)) + e(Hp,p)

≥ (3 + r)(p− 1) + (r + 2) + r

= 3p + 1 + r(p + 1)− 2 > 3p + 1,

because r ≥ 1 and p ≥ 2, which is a contradiction. If j = r − 1 then
dHi−1,i−1(xi) ≥ j + 1 + r = 2r for i = 1, . . . , p− (r − 1), and therefore

e(H) =

p−r∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1)))

+

p∑
i=p−(r−2)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ (2r + 2)(p − r) + (2r + 1) + 2(r − 1) + r

= 3p + 1 + (2rp − 2r2 − p + 3r − 2)

≥ 3p + 1 + (p − 1)

> 3p + 1,
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because p ≥ 2, which also contradicts the hypothesis. Finally, if 1 ≤ j ≤
r − 2 then dHi−1,i−1(xi) ≥ j + 1 + r ≥ 3 for i = 1, . . . , p− j, and therefore

e(H) =

p−j−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−j−1,p−j−1(xp−j) + dHp−j,p−j−1(yp−j))

+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 5(p − j − 1) + 4 + 2j + r

= 3p + 1 + (2p− 3j − 2 + r)

≥ 3p + 1 + (3r − 3j − 2) > 3p + 1,

because p ≥ r and j ≤ r − 2, again a contradiction.

Thus xp−jyp−j 
∈ E(H) for all j ∈ {0, . . . , r − 1}, hence item (iii) is
valid.

(iv) Assume e(Hp,p) = r ≥ 2. Then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. We reason by way of contradiction supposing that there exists
j ∈ {0, . . . , r−2} such that ayp−j ∈ E(H) for a vertex a ∈ X\{x1, . . . , xp} of
degree dHp,p(a) = 1. Then dHp−j−1,p−j−1(a) ≥ 2 and hence, dHi−1,i−1(xi) ≥
2, for i = 1, . . . , p− j. Thus,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r = 3p + (r − j) > 3p + 1,

because j ≤ r − 2, against the hypothesis.

(v) Assume e(Hp,p) = r ≥ 2. Then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. Moreover, dH0,0(x1) ≥ 2, due to the fact that ΔX(H) ≥ 2. We
reason by way of contradiction supposing that there exists j ∈ {0, . . . , r −
2} such that xp−jb ∈ E(H) for a vertex b ∈ Y \ {y1, . . . , yp} of degree
dHp,p(b) = 1. Then dHp−j−1,p−j−2(b) ≥ 2 and hence, dHi,i−1(yi) ≥ 2, for
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i = 1, . . . , p− j − 1. Thus,

e(H) = (dH0,0(x1) + dH1,0(y1)) +

p−j−1∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 4 + 3(p− j − 2) + 2(j + 1) + r = 3p + (r − j) > 3p + 1,

because j ≤ r − 2, again a contradiction. �

Lemma 10 Let p ≥ 4 be an integer. Let G = (X,Y ) be a bipartite graph
with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite comple-
ment of G. Suppose that ΔX(H) ≥ 2 and there exists a decreasing sequence
of vertices U = {x1, y1, x2, y2, . . . , xp, yp} of H such that E(Hp,p) = {ab}
with a ∈ X and b ∈ Y . If e(H) ≤ 3p + 1 then there exists an (a, b)-path in
G with its internal vertices belonging to U .

Proof: Assume that e(H) ≤ 3p + 1. Note that dH0,0(x1) = ΔX(H) ≥ 2.
Since E(Hp,p) = {ab}, then ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies that
dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. If G contains the path
a, yp, xp, b, then we are done. So assume that some of the edges ayp, xpyp,
xpb is an edge of H. We know by Lemma 9 that xpyp 
∈ E(H). So, let us
distinguish two cases.

Case 1. Suppose that ayp ∈ E(H). Then dHp−1,p−1(a) ≥ 2, because
ab ∈ E(H). Then dHi−1,i−1(xi) ≥ 2 and we get

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + 1 ≥ e(H).

Thus, all the inequalities become equalities, that is,

dHi−1,i−1(xi) = 2 and dHi,i−1(yi) = 1, for i = 1, . . . , p. (2)

Hence, we obtain that:

• xp−1yp−1 
∈ E(H). Otherwise, since

ΔY (Hp−1,p−2) = dHp−1,p−2(yp−1) = 1

and both yp and b have also degree 1 in Hp−1,p−2, applying point (iii)
of Definition 1, it follows that {xp−1yp−1, xp−1yp, xp−1b} ⊂ E(H) and
therefore, dHp−2,p−2(xp−1) ≥ 3, which contradicts (2).
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• ayp−1 
∈ E(H), because otherwise,

dHp−2,p−2(xp−1) = ΔX(Hp−2,p−2) ≥ dHp−2,p−2(a) ≥ 3,

contradicting (2).

• xp−1b 
∈ E(H), for if not,

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(b) ≥ 2,

against (2).

As a consequence, we get that the path a, yp−1, xp−1, b of G connects the
vertices a and b.

Case 2. Suppose that xpb ∈ E(H) and ayp 
∈ E(H). Thus,
dHp−1,p−2(yp) ≥ 2, which implies that dHi,i−1(yi) ≥ 2, for i = 1, . . . , p − 1.
Since dHp,p−1(yp) ≥ 1, dH0,0(x1) ≥ 2 and dHi−1,i−1(xi) ≥ 1 for i = 2, . . . , p,
it follows that

e(H) = (dH0,0(x1) + dH1,0(y1)) +

p−1∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−1,p−1(xp) + dHp,p−1(yp)) + e(Hp,p)

≥ 4 + 3(p − 2) + 2 + 1 = 3p + 1 = e(H),

which means that all the above inequalities become equalities, that is,{
dH0,0(x1) = 2 and dHi−1,i−1(xi) = 1 for i = 2, . . . , p;

dHi,i−1(yi) = 2 for i = 1, . . . , p− 1, and dHp,p−1(yp) = 1.
(3)

Therefore, we have:

• xp−1b 
∈ E(H), because on the contrary,

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(b) ≥ 3

against (3).

• xpyp−1 
∈ E(H), for if not,

dHp−3,p−3(xp−2) = ΔX(Hp−3,p−3) ≥ dp−3,p−3(xp) ≥ 2

and this contradicts (3), since p ≥ 4.
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• xp−1yp−1 
∈ E(H), because otherwise, taking into account that
dHp−1,p−2(yp−1) = 2, we have

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(yp−1) ≥ 3,

contradicting (3).

Thus, in this case, it follows that {ayp, xpyp, xpyp−1, xp−1yp−1, xp−1b} ∩
E(H) = ∅. Consequently, there exists in G the path a, yp, xp, yp−1, xp−1, b,
and the result also holds in this case. �

Lemma 11 Let m,n, p be integers such that p ≥ 4, m > p and n > p. Let
G = (X,Y ) be a bipartite graph with |X| = m and |Y | = n, and denote by
H = (X,Y ) the bipartite complement of G. If Δ(H) ≥ 2 and e(H) ≤ 3p+1,
then K(m−p,n−p) is a topological minor of G.

Proof: Without loss of generality we may assume that Δ(H) = ΔX(H)
(otherwise it is enough to interchange the classes X with Y ). Let U =
{x1, y1, x2, y2, . . . , xp, yp} be a decreasing sequence of H. The graph Hp,p

is a bipartite graph with vertex classes X∗ = X \ {x1, . . . , xp} and Y ∗ =
Y \ {y1, . . . , yp}, so |X∗| = m− p and |Y ∗| = n− p. If e(Hp,p) = 0 then the
bipartite complement of Hp,p is K(m−p,n−p) and the result follows. So, we
may henceforth assume that e(Hp,p) ≥ 1 or in other words, ΔX(Hp,p) ≥ 1
and ΔY (Hp,p) ≥ 1, thus dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i =
1, . . . , p. Then by Lemma 9 we have e(Hp,p) = r ≤ p and Δ(Hp,p) = 1.
Let us denote the edges of Hp,p by e1 = a1b1, . . . , er = arbr, ai ∈ X∗ and
bi ∈ Y ∗, for i = 1, . . . , r. In order to prove that G contains a TK(m−p,n−p)

with set of branch vertices X∗ ∪ Y ∗, we will show the existence of vertex
disjoint (ai, bi)-paths in G, i = 1, . . . , r, with internal vertices in U . As
e(H) ≤ 3p + 1, we are done if r = 1 by applying Lemma 10, hence assume
that 2 ≤ r ≤ p.

First, suppose that 2 ≤ r ≤ p − 1. Then, by Lemma 9 (iii), (iv),
(v), for each i = 1, . . . , r and j = 0, . . . , r − 2, there exists in G the path
ai, yp−j, xp−j, bi. Thus, we only must show that there exists i ∈ {1, . . . , r}
such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G. We rea-
son by way of contradiction supposing that for all i = 1, . . . , r the path
ai, yp−(r−1), xp−(r−1), bi does not exist in G. From Lemma 9 it follows that
xp−(r−1), yp−(r−1) ∈ E(G), thus aiyp−(r−1) ∈ E(H) or xp−(r−1)bi ∈ E(H)
for each i = 1, . . . , r. We will distinguish three possible cases:
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Case 1. Assume that xp−(r−1)bi ∈ E(H) for all i = 1, . . . , r, then
dHp−r,p−r(xp−(r−1)) ≥ r and thus, dHj−1,j−1(xj) ≥ r for j = 1, . . . , p−(r−1).
Moreover, dHp−r,p−(r+1)

(yp−r) = ΔY (Hp−r,p−(r+1)) ≥ dHp−r,p−(r+1)
(bi) ≥ 2,

which means that dHj,j−1(yj) ≥ 2 for j = 1, . . . , p− r. Thus,

e(H) =

p−r∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

(
dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1))
)

+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ (r + 2)(p − r) + (r + 1) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r) + p− 2

> 3p + 1,

since 2 ≤ r < p and p > 2, which is a contradiction.

Case 2. Assume that aiyp−(r−1) ∈ E(H) for all i = 1, . . . , r, then,
reasoning as in Case 1, we have dHj,j−1(yj) ≥ r for j = 1, . . . , p − (r − 1),
and dHj−1,j−1(xj) ≥ 2 for j = 1, . . . , p− (r − 1). Thus,

e(H) =

p−(r−1)∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ (r + 2)(p − (r − 1)) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r) + p− 1

> 3p + 1,

since 2 ≤ r < p and p > 1, which is a contradiction.

Case 3. Assume that there exist i0, j0 ∈ {1, . . . , r} such that
xp−(r−1)bi0 
∈ E(H) and aj0yp−(r−1) 
∈ E(H). Clearly i0 
= j0, because
xp−(r−1)yp−(r−1) 
∈ E(H) (by Lemma 9) and by hypothesis, the path
ai, yp−(r−1), xp−(r−1), bi does not exist in G for all i = 1, . . . , r. Since
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xp−(r−1)yp−(r−1) 
∈ E(H), it follows that xp−(r−1)bj0 ∈ E(H), for if not,
we find in G the path aj0, yp−(r−1), xp−(r−1), bj0 against our assumption.
Analogously, ai0xp−(r−1) ∈ E(H). Observe that {ai0xp−(r−1), ai0bi0} ⊂
E(Hp−r,p−r) and therefore,

dHp−r,p−r(xp−(r−1)) = ΔX(Hp−r,p−r) ≥ dHp−r,p−r(ai0) ≥ 2

, which implies that dHi−1,i−1(xi) ≥ 2 for i = 1, . . . , p− (r − 1). Moreover,
observe also that {yp−(r−1)bj0, aj0bj0} ⊂ E(Hp−r,p−(r+1)) and therefore,
dHp−r,p−(r+1)

(yp−r) = ΔX(Hp−r,p−(r+1)) ≥ dHp−r,p−(r+1)
(bj0) ≥ 2, which

means that dHi,i−1(yi) ≥ 2 for i = 1, . . . , p− r. Hence,

e(H) =

p−r∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

(
dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1))
)

+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ 4(p − r) + 3 + 2(r − 1) + r

= 4p + 1− r

= 3p + 1 + (p− r)

> 3p + 1,

since r ≤ p−1. Then, if 2 ≤ r ≤ p−1, in all the possible cases, we arrive at
a contradiction with the assumption that the path ai, yp−(r−1), xp−(r−1), bi

does not exist in G for all i = 1, . . . , r. Thus, if 2 ≤ r ≤ p − 1 there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Without loss of generality we may assume that i = r. Then there exist in
G the vertex-disjoint paths aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r.

Second, assume that r = p. Then, from Lemma 9 it follows that⎧⎪⎨⎪⎩
{x1y1, . . . , xpyp} ∩ E(H) = ∅;
{aiy2, . . . , aiyp} ∩ E(H) = ∅ for i = 1, . . . , p;

{x2bi, . . . , xpbi} ∩ E(H) = ∅ for i = 1, . . . , p.

(4)

This means that for each i = 1, . . . , p and j = 0, . . . , p − 2, there exists in
G the path ai, yp−j, xp−j, bi. Thus, we only must show that there exists i ∈
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{1, . . . , p} such that the path ai, y1, x1, bi is contained in G. We reason by
way of contradiction supposing that for all i = 1, . . . , p the path ai, y1, x1, bi

does not exist in G. Since x1y1 ∈ E(G) we deduce that for each i = 1, . . . , p,
aiy1 ∈ E(H) or x1bi ∈ E(H). If {aiy1, ai∗y1} ⊂ E(H) for two indices i, i∗ ∈
{1, . . . , p}, with i 
= i∗, then dH1,0(y1) ≥ 2. Since dH0,0(x1) = ΔX(H) ≥ 2
we have

e(H) =
(
dH0,0(x1) + dH1,0(y1)

)
+

p∑
j=2

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ 4 + 2(p − 1) + p

= 3p + 2

> 3p + 1,

a contradiction. Thus, in the set {a1, . . . , ap} there is at most one vertex
adjacent to y1 in H, which means that x1 must be adjacent in H to at
least p − 1 vertices of the set {b1, . . . , bp}, due to the fact that for each
i = 1, . . . , p, aiy1 ∈ E(H) or x1bi ∈ E(H). Then dH0,0(x1) ≥ p − 1 and
therefore,

e(H) =
(
dH0,0(x1) + dH1,0(y1)

)
+

p∑
j=2

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ p + 2(p − 1) + p

= 3p + 1 + (p − 3)

> 3p + 1,

since p ≥ 4, again a contradiction with the hypothesis. Hence, there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Without loss of generality we may assume that i = r. Then there exist
in G the vertex-disjoint paths aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r, and
the result holds. �
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Theorem 12 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 4 ≤ m − s ≤
n − t, and m + n ≤ 2s + t − 1. Then G = (X,Y ) ∈ TZ(m,n; s, t) iff
G = K(m,n)−M where M is any matching of cardinality 2(m−s)+n−t+1.

Proof: By Proposition 3 and Theorem 8, if G = K(m,n) −M where M is
any matching of cardinality 2(m− s) + n− t + 1, then G ∈ TZ(m,n; s, t).
Thus, we only must show that there are no more extremal bipartite graphs.
For that, it is enough to prove that the bipartite complement H = (X,Y ) of
every extremal bipartite graph G = (X,Y ) ∈ TZ(m,n; s, t) has maximum
degree Δ(H) = 1.

Let G = (X,Y ) ∈ TZ(m,n; s, t) satisfy the hypothesis of the theorem
and let us denote by H = (X,Y ) the bipartite complement of G. Set
p = m − s and q = n − t, then 4 ≤ p ≤ q and e(H) = 2p + q + 1. If
p = q then Δ(H) = 1, follows from Lemma 11. Thus, assume that p < q.
Without loss of generality, we may assume that the vertices of the partite
set Y are ordered in such a way that dH(y1) ≥ dH(y2) ≥ · · · ≥ dH(yn).
Set Y ′ = {y1, . . . , yq−p} ⊆ Y and let us consider the bipartite graph H ′ =
(X,Y \ Y ′). Observe that |X| = m and |Y \ Y ′| = n − (q − p) = t + p. If
e(H ′) = 0 then the bipartite complement G′ of H ′ is the complete bipartite
graph K(m,t+p). Since G′ is a subgraph of G and K(s,t) ⊆ K(m,t+p), then
G contains a K(s,t), against the assumption. So, we may assume that
e(H ′) > 0, which means that dH(yi) ≥ 1 for i = 1, . . . , q − p. Hence,

e(H ′) = e(H)−
q−p∑
i=1

dH(yi) ≤ 2p + q + 1− (q − p) ≤ 3p + 1. (5)

Then the following facts can be concluded:

• E(H ′) = 3p + 1. Otherwise if E(H ′) < 3p + 1 then, from Lemma
6, it follows that G′ contains TK(m−p,n−(q−p)+p) = TK(m−p,n−q) =
TK(s,t), but this contradicts the fact that G ∈ TZ(m,n; s, t).

• dH(yi) = 1, for i = 1, . . . , q − p, thus ΔY (H) = 1, because ΔY (H) =
dH(y1). This is directly derived because all the inequalities (5) be-
come equalities since E(H ′) = 3p + 1.

Next let us see that ΔX(H) = 1. Otherwise, there is a vertex x ∈ X having
two distinct neighbors y, y∗ ∈ NH(x). Since ΔY (H) = 1, then NH(y) =
NH(y∗) = {x}, and besides, there are exactly e(H) = 2p+ q +1 > q−p+2
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vertices of degree 1 in the class Y . Let us consider the bipartite graph
G∗ = (X∗, Y ∗) whose bipartite complement H∗ = (X∗, Y ∗) is obtained
from H by removing any q−p vertices of Y \{y, y∗} of degree 1. The graph
H∗ satisfies that |X∗| = |X| = m > p, |Y ∗| = |Y | − (q − p) = t + p > p,
e(H∗) = e(H)−(q−p) = 3p+1. Further, observe that dH∗(x) ≥ 2, because
{y, y∗} ⊂ Y ∗ and {xy, xy∗} ⊂ E(H∗), which means that Δ(H∗) ≥ 2. Then,
by applying Lemma 11, the bipartite complement G∗ of H∗ contains a
TK(m−p,t+p−p) = TK(s,t). Since G∗ is a subgraph of G, we deduce that
G contains TK(s,t), and this contradicts the fact that G ∈ TZ(m,n; s, t).
Hence, Δ(H) = min{ΔX(H),ΔY (H)} = 1 and this proves the result. �
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