Gabriela Araujo-Pardo and Luis Montejano Universidad Nacional Autonóma de México México

Camino Balbuena Universitat Politècnica de Catalunya Barcelona

Juan Carlos Valenzuela Universidad de Cádiz Cádiz

Abstract

Let $(\mathcal{P}, \mathcal{L}, I)$ be a partial linear space and $X \subseteq \mathcal{P} \cup \mathcal{L}$. Let us denote by $(X)_I = \bigcup_{x \in X} \{y : yIx\}$ and by $[X] = (X)_I \cup X$. With this terminology a partial linear space $(\mathcal{P}, \mathcal{L}, I)$ is said to admit a $(1, \leq k)$ -identifying code if the sets [X] are mutually different for all $X \subseteq \mathcal{P} \cup \mathcal{L}$ with $|X| \leq k$. In this paper we give a characterization of k-regular partial linear spaces admitting a (1, < k)-identifying code. Equivalently, we give a characterization of k-regular bipartite graphs of girth at least six admitting a $(1, \leq k)$ -identifying code. That is, k-regular bipartite graphs of girth at least six admitting a set C of vertices such that the sets $N[x] \cap C$ are nonempty and pairwise distinct for all vertex $x \in X$ where X is a subset of vertices of $|X| \leq k$. Moreover, we present a family of k-regular partial linear spaces on $2(k-1)^2+k$ points and $2(k-1)^2 + k$ lines whose incidence graphs do not admit a $(1, \leq k)$ -identifying code. Finally, we show that the smallest (k; 6)-graphs known up to now for k - 1 not a prime power admit a $(1, \leq k)$ -identifying code.

1 Introduction

We only consider undirected simple graphs without loops or multiple edges. Unless otherwise stated, we follow the book by Godsil and Royle [18] for terminology and definitions.

Let G be a graph with vertex set V = V(G) and edge set E = E(G). The distance between two vertices u, v in G, $d_G(u, v)$ or simply d(u, v), is the length of a shortest path joining u and v. The degree of a vertex $v \in V$, denoted by $d_G(v)$ or d(v), is the number of edges incident with v. The minimum degree of G is denoted by $\delta(G)$, and a graph is said to be k-regular if all its vertices have the same degree k. The neighborhood N(v) of a vertex v is the set of all vertices that are adjacent to v. The closed neighborhood of v is defined by $N[v] = N(v) \cup \{v\}$. For a vertex subset $X \subseteq V$, the neighborhood of X is defined as $N(X) = \bigcup_{x \in X} N(x)$, and $N[X] = N(X) \cup X$. The girth of a graph G is the length of a shortest cycle and a (k; g)-graph is a k-regular graph with girth g. A (k; g)-cage is a smallest (k; g)-graph.

Let C be a nonempty subset of V. For $X \subseteq V$ the set of vertices I(C) = I(C; X) is defined as follows

$$I(C) = \bigcup_{x \in X} N[x] \cap C.$$

If all the sets I(C) are different for all subset $X \subseteq V$ where $|X| \leq k$, then C is said to be a $(1, \leq k)$ -identifying code in G. In 1998, Karpovsky, Chakrabarty and Levitin [22] introduced $(1, \leq k)$ -identifying codes in graphs. Identifying codes appear motivated by the problem of determining faulty processors in a multiprocessor system. We say that a graph G admits a $(1, \leq k)$ -identifying code if there exists such a code $C \subseteq V$ in G. Not all graphs admit $(1, \leq k)$ -identifying codes, for instance Laihonen [23] pointed out that a graph formed by a set of independent edges cannot admit a $(1, \leq 1)$ -identifying code, because clearly for all $uv \in E$, $N[u] = \{u, v\} = N[v]$. It is not difficult to see that if G admits $(1, \leq k)$ identifying codes, then C = V is also a $(1, \leq k)$ -identifying code. Hence a graph admits $(1, \leq k)$ -identifying codes if and only if the sets N[X] are mutually different for all $X \subseteq V$ with $|X| \leq k$. Results on identifying codes in specific families on graphs as well as results on the smallest cardinality of an identifying code can be seen in [6, 9, 13, 14]. Laihonen and Ranto [24] proved that if G is a connected graph with at least three vertices admitting a $(1, \leq k)$ -identifying code, then the minimum degree is $\delta(G) \geq k$. Gravier and Moncel [17] showed the existence of a graph with minimum degree exactly k admitting a $(1, \leq k)$ -identifying code. Recently, Laihonen [23] proved the following result.

Theorem 1 [23] Let $k \ge 2$ be an integer.

- (i) If a k-regular graph has girth $g \ge 7$, then it admits a $(1, \le k)$ -identifying code.
- (ii) If a k-regular graph has girth $g \ge 5$, then it admits a $(1, \le k 1)$ -identifying code.

According to item (ii) of Theorem 1, all (k; 6)-graphs admit a $(1, \leq k - 1)$ identifying code. The main aim of this paper is to approach the problem of characterizing bipartite (k; q)-graphs for $q \ge 6$ admitting $(1, \le k)$ identifying codes. To do that we consider a bipartite graph as the incidence graph of a partial linear space $(\mathcal{P}, \mathcal{L}, I)$ [18]. A point $p \in \mathcal{P}$ and a line $L \in \mathcal{L}$ are said to be incident if $(p, L) \in I \subseteq \mathcal{P} \times \mathcal{L}$ and for short this is denoted by pIL or LIp. A partial linear space is an incidence structure in which any two points of \mathcal{P} are incident with at most one line of \mathcal{L} . This implies that any two lines are incident with at most one point. The *incidence graph* \mathcal{B} of a partial linear space $(\mathcal{P}, \mathcal{L}, I)$ is the graph with vertex set $V(\mathcal{B}) = \mathcal{P} \cup \mathcal{L}$ and edge set $E(\mathcal{B}) = I$, i.e., two vertices are adjacent if and only they are incident. It is easy to check that \mathcal{B} is a bipartite graph of girth at least 6. A partial linear space $(\mathcal{P}, \mathcal{L}, I)$ is said to be *k*-regular if every line is incident with k points and every point is incident with k lines. Obviously the incidence graph of a k-regular partial linear space is a k-regular bipartite graph.

First, we define a partial linear space admitting a $(1, \leq k)$ -identifying code. In our main theorem we give a characterization of k-regular partial linear spaces admitting a $(1, \leq k)$ -identifying code. As a consequence of this result, we show that minimal (k; 6)-cages, which are the incidence graphs of projective planes of order k - 1, do not admit a $(1, \leq k)$ -identifying code. Moreover, we present a family of k-regular partial linear space on $2(k-1)^2 + k$ points and $2(k-1)^2 + k$ lines whose incidence graphs do not admit a $(1, \leq k)$ -identifying code. Finally, we show that the smallest (k; 6)-graphs known up to now and constructed in [1, 2, 3, 4, 5, 7, 16] for k-1 not a prime power admit a $(1, \leq k)$ -identifying code.

The paper is organized as follows. In the next section we present our main theorem and we give a construction of a family of k-regular partial linear spaces without $(1, \leq k)$ -identifying codes. In the final section we apply the theorem to show certain families of small (k; 6)-graphs that have $(1, \leq k)$ -identifying codes.

2 Main theorem

Let $(\mathcal{P}, \mathcal{L}, I)$ be a partial linear space and $X \subseteq \mathcal{P} \cup \mathcal{L}$. Following Dembowski [10], let us denote by $(X)_I = \bigcup_{x \in X} \{y : yIx\}$ and by $[X] = (X)_I \cup X$. With this terminology we give the following definition.

Definition 2 A partial linear space $(\mathcal{P}, \mathcal{L}, I)$ is said to admit a $(1, \leq k)$ identifying code if and only if the sets [X] are mutually different for all $X \subseteq \mathcal{P} \cup \mathcal{L}$ with $|X| \leq k$.

As an immediate consequence of Theorem 1 we can write the following corollary.

Corollary 3 Let $k \ge 2$ be an integer. A k-regular partial linear space $(\mathcal{P}, \mathcal{L}, I)$ admits a $(1, \le k - 1)$ -identifying code.

Next, we present a characterization of k-regular partial linear spaces admitting a $(1, \leq k)$ -identifying code as well as some consequences.

Theorem 4 Let $k \geq 2$ be an integer. A k-regular partial linear space $(\mathcal{P}, \mathcal{L}, I)$ admits a $(1, \leq k)$ -identifying code if and only if the following two conditions hold:

- (i) For every two collinear points u, p ∈ P there exists a point z ∈ P which is collinear with just one of u, p. Equivalently, for every u, p ∈ P such that |(u)_I ∩ (p)_I| = 1, there exists z ∈ P such that |(u)_I ∩ (z)_I| + |(p)_I ∩ (z)_I| = 1.
- (ii) For every two concurrent lines L, M ∈ L there exists a line Λ ∈ L which is concurrent with just one of L, M. Equivalently, for every L, M ∈ L such that |(L)_I ∩ (M)_I| = 1, there exists Λ ∈ L such that |(L)_I ∩ (Λ)_I| + |(M)_I ∩ (Λ)_I| = 1.

Proof: Suppose that $(\mathcal{P}, \mathcal{L}, I)$ admits a $(1, \leq k)$ -identifying code and that there exist two concurrent lines $M, L \in \mathcal{L}$ such that

for every line
$$\Lambda \in \mathcal{L}, |(M)_I \cap (\Lambda)_I| = 1$$
 iff $|(L)_I \cap (\Lambda)_I| = 1.$ (1)

Let $(M)_I \cap (L)_I = \{p\}$ and consider the sets $X = \{M\} \cup ((L)_I - p) \subset \mathcal{P} \cup \mathcal{L}$ and $Y = \{L\} \cup ((M)_I - p) \subset \mathcal{P} \cup \mathcal{L}$. Observe that $X \neq Y$ and |X| = |Y| = kbecause $(\mathcal{P}, \mathcal{L}, I)$ is k-regular. Then

$$[X] = [M] \cup ((L)_I - p) \cup \bigcup_{h \in (L)_I - p} \{\Lambda \in \mathcal{L} : \Lambda Ih\},$$

$$[Y] = [L] \cup ((M)_I - p) \cup \bigcup_{h \in (M)_I - p} \{\Lambda \in \mathcal{L} : \Lambda Ih\}.$$

Clearly $[X] \cap \mathcal{P} = (M)_I \cup ((L)_I - p) = [Y] \cap \mathcal{P}$; and $[X] \cap \mathcal{L} = \{M, L\} \cup \bigcup_{h \in (L)_I - p} \{\Lambda \in \mathcal{L} : \Lambda Ih\}$ and $[Y] \cap \mathcal{L} = \{M, L\} \cup \bigcup_{h \in (M)_I - p} \{\Lambda \in \mathcal{L} : \Lambda Ih\}$. Assumption (1) yields to $[X] \cap \mathcal{L} = [Y] \cap \mathcal{L}$ meaning that [X] = [Y], which is a contradiction with the hypothesis that $(\mathcal{P}, \mathcal{L}, I)$ admits a $(1, \leq k)$ identifying code. We may reason analogously to prove that there are no two collinear points $p, q \in \mathcal{P}$ such that for every point $r \in \mathcal{P}, |(p)_I \cap (r)_I| =$ 1 iff $|(q)_I \cap (r)_I| = 1$.

Conversely, suppose that $(\mathcal{P}, \mathcal{L}, I)$ does not admit a $(1, \leq k)$ -identifying code and let us assume that for every two elements $u, v \in \mathcal{P} \cup \mathcal{L}$ such that $|(u)_I \cap (v)_I| = 1$, there exists $z \in \mathcal{P} \cup \mathcal{L}$, for which

$$|(u)_I \cap (z)_I| + |(v)_I \cap (z)_I| = 1.$$

By Corollary 5, $(\mathcal{P}, \mathcal{L}, I)$ admits $(1, \leq k-1)$ -identifying codes and hence $[X] \neq [Y]$ holds for all $X, Y \subseteq \mathcal{P} \cup \mathcal{L}$ such that $|X|, |Y| \leq k-1$. According to our assumption, there must exist two different sets $X, Y \subseteq \mathcal{P} \cup \mathcal{L}$ such that $\max\{|X|, |Y|\} = k$ and [X] = [Y]. Without loss of generality, we may assume that $X, Y \subseteq \mathcal{P} \cup \mathcal{L}, X \neq Y, |X| = k, |Y| \leq k$ and [X] = [Y].

First, let us see that |Y| = k. Let $x \in X \setminus Y$, then $(x)_I \subset [X] = [Y]$. Since $x \notin Y$ it follows that $([w] - x) \cap Y \neq \emptyset$ for all $w \in (x)_I$. Moreover as two points are incident with at most one line and two lines are incident with at most one point, we have $([w] - x) \cap ([w'] - x) = \emptyset$ for all $w, w' \in (x)_I$, $w \neq w'$. Therefore $|Y| \ge |(x)_I| = k$, giving |Y| = k.

Now let us see that each X and Y must contain both points and lines. Otherwise suppose that $X \subseteq \mathcal{P}$, then $[X] \cap \mathcal{P} = X$. In this case if $Y \subseteq \mathcal{P}$ then $[Y] \cap \mathcal{P} = Y$ yielding that X = Y because [X] = [Y], which is a contradiction. Therefore there exists $L \in Y \cap \mathcal{L}$, hence $(L)_I \subseteq [Y] \cap \mathcal{P} = [X] \cap \mathcal{P} = X$, which implies $(L)_I = X$ because $|(L)_I| = k$, as $(\mathcal{P}, \mathcal{L}, I)$ is k-regular, and |X| = k. As two lines have at most one common point and $k \geq 2$ we have $Y \cap \mathcal{L} = \{L\}$. Further, $Y \cap \mathcal{P} \subseteq [Y] \cap \mathcal{P} = [X] \cap \mathcal{P} = X$, hence we may assume that $Y = \{x_1, \ldots, x_{k-1}, L\}$ and $X = \{x_1, \ldots, x_k\} = (L)_I$. As $k \geq 2$ we can take $L' \neq L$ such that $(L')_I \cap (L)_I = \{x_k\}$, i.e., $L' \notin Y$ and $L' \notin (x_i)_I$ for $i = 1, \ldots, k - 1$, yielding that $L' \in [X] \setminus [Y]$, a contradiction because [X] = [Y]. Thus $X \not\subseteq \mathcal{P}$. Analogously, $Y \not\subseteq \mathcal{P}$, and changing points for lines we may check that $X \not\subseteq \mathcal{L}$, and $Y \not\subseteq \mathcal{L}$.

Henceforth, let us assume that

$$X \cap \mathcal{P} = \{x_1, \dots, x_s\}, X \cap \mathcal{L} = \{L_{s+1}, \dots, L_k\},$$
$$Y \cap \mathcal{P} = \{y_1, \dots, y_r\}, Y \cap \mathcal{L} = \{M_{r+1}, \dots, M_k\}$$

and let us prove the following claim.

Claim 1 (i) $(x_i)_I \cap \{L_{s+1}, \ldots, L_k\} = \emptyset$ for all $i = 1, \ldots, s$.

(ii) $(y_i)_I \cap \{M_{r+1}, \dots, M_k\} = \emptyset$ for all $i = 1, \dots, r$.

Proof: First, suppose that $y_j \notin \{x_1, \ldots, x_s\}$ for some $j \in \{1, \ldots, r\}$. As $y_j \in Y$ we have

$$(y_j)_I \subseteq [Y] \cap \mathcal{L} = [X] \cap \mathcal{L} = \{L_{s+1}, \dots, L_k\} \cup (x_1)_I \cup \dots \cup (x_s)_I.$$

As $|(y_j)_I| = k$ and $|(y_j)_I \cap (x_i)_I| \leq 1$, then $\{L_{s+1}, \ldots, L_k\} \subset (y_j)_I$, $|(y_j)_I \cap (x_i)_I| = 1$ for all $i = 1, \ldots, s$, and $(y_j)_I \cap (x_i)_I \notin \{L_{s+1}, \ldots, L_k\}$. Hence $(x_i)_I \cap \{L_{s+1}, \ldots, L_k\} = \emptyset$, so item (i) of the claim is true in this case. Second, suppose $\{y_1, \ldots, y_r\} \subseteq \{x_1, \ldots, x_s\}$, then there exists a line $M_j \notin \{L_{s+1}, \ldots, L_k\}$ because $X \neq Y$. We have $(M_j)_I \subseteq [X] \cap \mathcal{P} = [Y] \cap \mathcal{P}$. Therefore changing points for lines and reasoning as before it follows that $\{x_1, \ldots, x_s\} \subset (M_j)_I$, $|(M_j)_I \cap (L_i)_I| = 1$ for all $i = s + 1, \ldots, k$, and $(M_j)_I \cap (L_i)_I \notin \{x_1, \ldots, x_s\}$, hence $(x_i)_I \cap \{L_{s+1}, \ldots, L_k\} = \emptyset$, so item (i) of the claim holds. The proof of (ii) is analogous.

Now, suppose that $Y \cap \mathcal{L} = \{M_{r+1}, \ldots, M_k\} \subseteq \{L_{s+1}, \ldots, L_k\}$. Without loss of generality assume that $M_j = L_j, j = r+1, \ldots, k$. Hence $[X] \cap \mathcal{P} = \{x_1, \ldots, x_s\} \cup (L_{s+1})_I \cup \cdots \cup (L_k)_I = [Y] \cap \mathcal{P} = \{y_1, \ldots, y_r\} \cup (L_{r+1})_I \cup \cdots \cup (L_k)_I$. Claim 1, yields that $\{x_1, \ldots, x_s\} \subset \{y_1, \ldots, y_r\}$ and $\{L_{s+1}, \ldots, L_r\} \cap$ $Y = \emptyset$, otherwise X = Y which is a contradiction. Therefore, $|(L_{s+1})_I \cap \{y_1, \ldots, y_r\}| \leq r-s$, and as $|(L_{s+1})_I \cap (L_j)_I| \leq 1$ for all $j = r+1, \ldots, k$, we have $|(L_{s+1})_I| \leq r-s+k-r = k-s < k$ which is a contradiction. Therefore $\{M_{r+1}, \ldots, M_k\} \not\subseteq \{L_{s+1}, \ldots, L_k\}$ and in analogous way it is proved that $\{L_{s+1}, \ldots, L_k\} \not\subseteq \{M_{r+1}, \ldots, M_k\}$.

Next, suppose that $s \ge 2$ and take $M \in \{M_{r+1}, \ldots, M_k\} \setminus \{L_{s+1}, \ldots, L_k\}$. We have $(M)_I \subset [Y] \cap \mathcal{P} = [X] \cap \mathcal{P} = \{x_1, \dots, x_s\} \cup (L_{s+1})_I \cup \dots \cup (L_k)_I$. As $|(M)_I| = k$, $\{x_1, ..., x_s\} \subset (M)_I$ and $|(M)_I \cap (L_i)_I| = 1$ for all $i = s + 1, \dots, k$; thus M must be unique because $s \ge 2$. Therefore $Y \cap \mathcal{L} = \{M_{r+1}, \dots, M_k\} \subseteq \{L_{s+1}, \dots, L_k\} \cup \{M\}$. Without loss of generality assume that $Y \cap \mathcal{L} = \{M, L_{r+2}, \dots, L_k\}$. Again, $(y_i)_I \subseteq [X] \cap \mathcal{L} =$ $\{L_{s+1}, \ldots, L_k\} \cup (x_1)_I \cup \cdots \cup (x_s)_I$. By Claim 1, $(y_i)_I \cap \{L_{r+2}, \ldots, L_k\} = \emptyset$ and as $|(y_j)_I \cap \bigcup_{i=1}^s (x_i)_I| \le s$, then $k = |(y_j)_I| \le (r+1-s)+s = r+1$, so $r \ge r+1$ k-1. Hence $Y = \{y_1, \ldots, y_{k-1}\} \cup \{M\}$. Now, take $L \in X \cap \mathcal{L}, L \neq M$. As $(L)_I \subseteq [Y] \cap \mathcal{P}$, reasoning as before we obtain that $(L)_I = \{y_1, \ldots, y_{k-1}\} \cup$ $((L)_I \cap (M)_I)$ yielding that L must be unique, so $X = \{x_1, \ldots, x_{k-1}\} \cup \{L\}$. As $[X] \cap \mathcal{P} = [Y] \cap \mathcal{P} = \{x_1, \dots, x_{k-1}\} \cup (L)_I = \{y_1, \dots, y_{k-1}\} \cup (M)_I$, it follows that $(M)_I = \{x_1, \ldots, x_{k-1}\} \cup ((L)_I \cap (M)_I)$. Hence L and M are two concurrent lines such that every line Λ is concurrent with L if and only if Λ is concurrent with M because $[X] \cap \mathcal{L} = [Y] \cap \mathcal{L}$. In other words, L and M satisfy (1), which is a contradiction with the hypothesis (ii).

It remains to study the case s = 1 so that $X = \{x_1, L_2, \ldots, L_k\}$. If $r \geq 2$ reasoning as for the case $s \geq 2$ we get that $s \geq k-1$ meaning that k = 2 which is a contradiction with the fact that $2 \leq r < k$. Thus we get that r = 1 and so $Y = \{y_1, M_2, \ldots, M_k\}$. By Claim 1, $(x_1)_I = \{M_2, \ldots, M_k\} \cup ((x_1)_I \cap (y_1)_I)$ and $(y_1)_I = \{L_2, \ldots, L_k\} \cup ((x_1)_I \cap (y_1)_I)$. Hence x_1 and y_1 are two collinear points such that every point z is collinear with x_1 if and only if z is collinear with y_1 , contradicting the hypothesis (i). \Box

As an immediate consequence of Theorem 4 we get the following theorem which is a characterization of k-regular bipartite graphs of girth at least 6 admitting a $(1, \leq k)$ -identifying code.

Theorem 5 A k-regular bipartite graph \mathcal{B} of girth at least 6 admits a $(1, \leq k)$ -identifying code if and only if for every two vertices $u, v \in V(\mathcal{B})$ such that $|N(u) \cap N(v)| = 1$, there exists $z \in V(\mathcal{B})$ in such a way that $|N(u) \cap N(z)| + |N(v) \cap N(z)| = 1$.

3 Families of small (k, 6)-graphs without $(1, \leq k)$ -identifying codes

A projective plane of order k-1 is a k-regular partial linear space such that any two distinct points are collinear and any two distinct lines are concurrent. A minimal (k; 6)-cage is a bipartite graph which can be obtained as the incidence graph of a projective plane of order k-1. Using the properties of projective planes it is not difficult to check that a projective plane of order k-1 does not admit a $(1, \leq k)$ -identifying code as a consequence of Theorem 4. And in the same way it is shown that a minimal (k; 6)-cage has no $(1, \leq k)$ -identifying code as a consequence of Theorem 5.

Corollary 6 (i) A projective plane of order k-1 does not admit a $(1, \leq k)$ -identifying code.

(ii) A minimal (k; 6)-cage does not admit a $(1, \leq k)$ -identifying code.

Projective planes are not the unique partial linear spaces which do not admit a $(1, \leq k)$ -identifying code. For instance, Figure 1 depicts on the right side a partial linear space of 11 points and 11 lines which does not admit $(1, \leq 3)$ -identifying codes. On the left side we can see the corresponding (3; 6)-bipartite graph on 22 vertices. It is easy to find two different lines Land M satisfying condition (1) of the proof of Theorem 4. So this graph does not admit $(1, \leq 3)$ -identifying codes. In the next theorem we construct a family of k-regular partial linear spaces without $(1, \leq k)$ -identifying codes. The partial plane of Figure 1 belongs to this family.

Theorem 7 Let $(\mathcal{P}, \mathcal{L}, I)$ be a projective plane of order $k - 1 \geq 2$ and consider a point $p_0 \in \mathcal{P}$ and a line $L_0 \in (p_0)_I \cap \mathcal{L}$. Let $\mathcal{L}_0 = \mathcal{L} \setminus (p_0)_I$ and $\mathcal{P}_0 = \mathcal{P} \setminus (L_0)_I$ and take \mathcal{L}'_0 , \mathcal{P}'_0 disjoint copies of \mathcal{L}_0 and \mathcal{P}_0 , respectively. Observe that $|\mathcal{L}_0| = |\mathcal{P}_0| = (k - 1)^2$, thus we can consider a bijection $f : \mathcal{P}'_0 \to \mathcal{L}'_0$. Let us define a new incidence structure $\left(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f\right)$ as follows.

- 1. For all $(z', M) \in (\mathcal{P} \cup \mathcal{P}'_0) \times (\mathcal{L} \setminus \mathcal{L}_0), \ z' I'_f M \text{ iff } z' \in \mathcal{P} \text{ and } z' I M.$
- 2. For all $(z', M) \in (\mathcal{P} \cup \mathcal{P}'_0) \times \mathcal{L}_0, z' I'_f M$ iff

 $\begin{cases} z' \in \mathcal{P} \setminus \mathcal{P}_0 & and \ z'IM; \\ z' \in \mathcal{P}'_0 & and \ zIM, \ where \ z \in \mathcal{P}_0 \ is \ the \ copy \ of \ z'. \end{cases}$

Figure 1: A (3,6)-bipartite graph on 22 vertices without $(1, \leq 3)$ codes and its corresponding partial linear space.

3 For all $(z', M') \in (\mathcal{P} \cup \mathcal{P}'_0) \times \mathcal{L}'_0$, $z' I'_f M'$ iff $\begin{cases} z' \in \mathcal{P}_0 & and \ z' IM \ where \ M \in \mathcal{L}_0 \ is \ the \ copy \ of \ M'; \\ z' \in \mathcal{P}'_0 & and \ f(z') = M'. \end{cases}$

 $\begin{array}{l} Then \left(\mathcal{P} \cup \mathcal{P}_0', \mathcal{L} \cup \mathcal{L}_0', I_f'\right) \text{ is a } k \text{-regular partial linear space on } 2(k-1)^2 + k \\ points \text{ and } 2(k-1)^2 + k \text{ lines without } (1, \leq k) \text{-identifying codes.} \end{array}$

Proof: First let us see that $(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f)$ is a partial linear space. To do that let us show that two distinct lines $A', B' \in \mathcal{L} \cup \mathcal{L}'_0$ have at most one point in common. Let z' be a point such that $z'I'_fA'$ and $z'I'_fB'$. Due to the rules given in 1 and 2 and from the fact that $(\mathcal{P}, \mathcal{L}, I)$ is a projective plane it follows that z' is unique if both A' and B' are in \mathcal{L} . If both lines A' and B' are in \mathcal{L}'_0 , then $z' \in \mathcal{P}_0$ because the rule 3, so z' is unique. And finally if $A' \in \mathcal{L}_0$ and $B' \in \mathcal{L}'_0$ the unique possible point in common is $z' \in \mathcal{P}'_0$ such that f(z') = B' and A'Iz (in the projective plane) where z is the copy of z'. By duality it can be shown that there exists at most one line through two distinct points. (In Figure 2 it is depicted the incidence graph corresponding to $(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f)$, where $(\mathcal{P}, \mathcal{L}, I)$ is the projective plane of order 2. This graph is also depicted in Figure 1.) Next let us see that $(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f)$ is k-regular. It is clear that $(p_0)_{I'_f} = (p_0)_I$, i.e., every line in the set $\{M \in \mathcal{L} \cup \mathcal{L}'_0 : MI'_f p_0\}$ is incident with the same k points as in the projective plane $(\mathcal{P}, \mathcal{L}, I)$. Moreover, a line $M \in \mathcal{L}_0$ is incident with one point from $\mathcal{P} \setminus \mathcal{P}_0$ and k-1 points from \mathcal{P}'_0 because the rule 2. And a line $M \in \mathcal{L}'_0$ is incident with k-1 points from \mathcal{P}_0 and one point from \mathcal{P}'_0 due to the rule 3.

Finally observe that $(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f)$ has no $(1, \leq k)$ -identifying codes because any two lines from the set $\{M \in \mathcal{L} \cup \mathcal{L}'_0 : MI'_f p_0, M \neq L_0\}$ satisfy the property (1) given in the proof of Theorem 4. \Box

Figure 2: The incidence graph of $(\mathcal{P} \cup \mathcal{P}'_0, \mathcal{L} \cup \mathcal{L}'_0, I'_f)$, where $(\mathcal{P}, \mathcal{L}, I)$ is the projective plane of order 2.

4 Families of small (k, 6)-graphs with $(1, \le k)$ -identifying codes

Minimal (k; 6)-cages are known to exist when k - 1 is a prime power. The order of any (k; 6)-cage is denoted by n(k; 6). A new way for constructing projective planes via its incidence matrices is given in [5]. By removing some rows and columns from these matrices some new bipartite (k; 6)-graphs with 2(qk - 1) vertices are obtained for all $k \leq q$ where q is a prime power [5]. The same result is also obtained in [3], but finding these graphs as subgraphs of the incidence graph of a known projective plane. For k = q the same result is obtained in [1], also using incidence matrices. Moreover

in [5] the incidence matrix of a (q-1; 6)-regular balanced bipartite graph on 2(q(q-1)-2) vertices was obtained. When q is a square and is the smallest prime power greater than or equal to k-1, (k; 6)-regular graphs with order $2(kq - (q - k)(\sqrt{q} + 1) - \sqrt{q})$ have been constructed in [16]. Recently, these results have been improved finding new bipartite (k; 6)graphs with 2(qk-2) vertices for all $k \leq q$ where q is a prime power [2]. These graphs have the smallest number of vertices known so far among the regular graphs with girth 6 yielding that $n(k; 6) \leq 2(qk-2)$ is the best upper bound known up to now. More details about constructions of cages can be found in the survey by Wong [25] or in the survey by Holton and Sheehan [21] or in the more recent dynamic cage survey by Exoo and Jajcay [12]. In this later survey some of the above mentioned constructions are described in a geometric way.

The main aim of this section is to prove that the mentioned new small bipartite (k; 6)-graphs for all $k \leq q$ where q is a prime power constructed in [1, 2, 3, 4, 5, 7, 16] admit a $(1, \leq k)$ -identifying code. With this aim we shall verify that the corresponding partial k-regular linear space admits $(1, \leq k)$ -identifying code by means of Theorem 4. We recall some geometric notions introduced in [2, 16]. A generalized d-gon of order k - 1 is a partial linear space whose incidence graph is a k-regular bipartite graph with girth 2d and diameter d. Finite generalized d-gons exist only for $d \in \{3, 4, 6\}$ (see [8, 18]). When d = 3, a 3-gon of order k - 1 is a projective plane of order k - 1 (see [8, 18]). A t-good structure in a generalized d-gon (see [16]) is a pair $(\mathcal{P}^*, \mathcal{L}^*)$ consisting of a set of points \mathcal{P}^* and a set of lines \mathcal{L}^* satisfying the following conditions:

- 1. Any point not belonging to \mathcal{P}^* is incident with t lines contained in \mathcal{L}^* .
- 2. Any line not belonging to \mathcal{L}^* is incident with t points contained in \mathcal{P}^* .

Clearly, by removing the points and lines of a t-good structure from a (q + 1)-regular generalized d-gon, we obtain a (q + 1 - t)-regular partial linear space. Its incidence graph is a balanced bipartite (q + 1 - t)-regular graph of girth at least 2d.

Let $(\mathcal{P}, \mathcal{L}, I)$ be a partial linear space, we say that an incidence pILis deleted if the point p is not removed from \mathcal{P} , but the line L of \mathcal{L} is replaced with the new line L - p. The point p is said to be *separated* from the line L. In [2], (t+1)-good structures were generalized by defining (t+1)-coregular structures using this removal incidence. An ordered triple $(\mathcal{P}_0, \mathcal{L}_0, \mathcal{I}_0)$, whose elements are a set of points \mathcal{P}_0 , a set of lines \mathcal{L}_0 and a set of incidences \mathcal{I}_0 , is said to be a (t + 1)-coregular structure in a generalized d-gon (see [2]) if the removal from a (q + 1)-regular d-gon of the points in \mathcal{P}_0 , the lines in \mathcal{L}_0 and the incidences in I_0 leads to a new (q - t)-regular partial linear space. Obviously, its incidence graph is a bipartite (q - t)regular graph with girth at least 2d. More precisely, in [2] the following (t+1)-coregular structures in projective planes of order q for $t \leq q - 2$ were found.

Theorem 8 [2] Let $(\mathcal{P}, \mathcal{L}, I)$ be a projective plane of order q and $L^* \in \mathcal{L}$ such that $(L^*)_I = \{p, x_1, \ldots, x_q\}$. Let $(p)_I = \{L^*, L_p^1, \ldots, L_p^q\}$ be the set of lines passing through p. The following structures $(\mathcal{P}_0, \mathcal{L}_0, \mathcal{I}_0)$ are (t + 1)coregular for $0 \leq t \leq q - 2$:

- $t = 0 : \mathcal{P}_0 = \{x_1\} \cup (L_p^1)_I; \quad \mathcal{L}_0 = \{L_p^1\} \cup (x_1)_I; \quad \mathcal{I}_0 = \emptyset.$
- $t \ge 1 : \mathcal{P}_0 = \{x_1, x_2, \dots, x_{t+1}\} \cup (L_p^1)_I \cup (L_p^2)_I \cup \dots \cup (L_p^t)_I \cup (M)_I$ where $M \in (x_{t+2})_I - L^*;$

$$\mathcal{L}_{0} = \{L_{p}^{1}, L_{p}^{2}, \dots, L_{p}^{t}, M\} \cup (x_{1})_{I} \cup \dots \cup (x_{t})_{I} \\ \cup \begin{cases} (x_{2})_{I} & \text{if } t = 1 \\ (x_{t+1})_{I} - \{A_{1}, \dots, A_{t-1}\} & \text{if } t \geq 2, \text{ where } A_{i} \in (x_{t+1})_{I} - L^{*} \\ \text{is the line connecting } x_{t+1} \text{ and} \\ M \cap L_{p}^{i}, i = 1, \dots, t-1; \end{cases}$$

 $\mathcal{I}_{0} = \{x_{j}IL : L \in (x_{j})_{I} \text{ such that } M \cap L_{p}^{i} \in (L)_{I} \text{ for some } i \in \{1, \dots, t\}, \\ j = t + 3, \dots, q\} \\ \cup \{a_{ij}IL_{p}^{j} : a_{ij} = A_{i} \cap L_{p}^{j}, j = t + 1, \dots, q, i = 1, \dots, t - 1, t \geq 2\}.$

It is not difficult to check that the partial linear spaces whose incidence graphs are the bipartite graphs constructed in [1, 2, 3, 4, 5, 7, 16] are obtained by removing (t + 1)-good or (t + 1)-coregular structures from projective planes. For all the constructions contained in these papers it is not difficult to verify the following remark:

Remark 9 If Π' is a partial linear space obtained by removing a *t*-good or a *t*-coregular structure from a projective plane Π and *p* is a removed or separated point, then *p* is incident to either q - t + 1 or to q - t + 2 lines in Π' . Moreover, in a special construction using Baer Subplanes and *t*-good

structures in projective planes of order square prime powers (see [16]), the removed points are incident with exactly $q - \sqrt{q} - t + 1$ lines in Π' .

It is worth noting that in all the constructions of k-regular partial linear spaces contained in [1, 2, 3, 4, 5, 7, 16], the smallest prime power q with $k \leq q$ and an integer $t \geq 1$ such that k = q + 1 - t are considered. Then, using the following result concerning with the existence of prime numbers in short intervals, we prove Theorem 11.

Theorem 10 [11]

- (i) If $k \ge 3275$ then the interval $[k, k(1 + \frac{1}{2ln^2(k)})]$ contains a prime number.
- (ii) If $6 \le k \le 3276$ then the interval $[k, \frac{7k}{6}]$ contains a prime power.

The Bertran's postulate states (see [19]) that for every k > 2 there exists a prime q verifying the inequality k < q < 2k. In this work we will take advantage from Theorem 10, because we only need to check the less restrictive inequality q < 2k - 2.

Theorem 11 Let q > 2 be a prime power and t < q+1 an integer. Suppose that 2t < q or if q is a square prime power that $t \in (q', q)$ where q' is also a prime power such that there is no prime power in the interval (q', q). If Π' is a (q+1-t)-regular partial plane constructed by removing a t-good or a t-coregular structure from a projective plane Π of order q, then Π' admits a $(1, \leq k)$ -identifying code.

Proof: Assume that Π' does not admit a $(1, \leq k)$ -identifying code and let L and M be two concurrent lines in Π' that satisfy the condition (1) in the proof of Theorem 4 with $\{p\} = (L)_I \cap (M)_I$. Let p_1 be a removed or separated point from L - p. Suppose that there are exactly a lines incident to p_1 in Π' (without considering L). If some of these lines had a common point with M in Π' , then Π' would admit a $(1, \leq k)$ -identifying code by Theorem 4 which is a contradiction with our assumption. Then any of these lines have in common with M points that are not in Π' or that have been separated from M. As M is incident to exactly t points in the projective plane which are not incident to M in Π' (they are removed or separated points), then a must be equal to t. Therefore, by Remark 9, we have the following three cases:

- If p_1 is incident to q t + 1 lines in Π' , then a = q t (the number of lines in Π' except L). Hence q - t = t, i.e. q = 2t. This is a contradiction with the hypothesis 2t < q.
- If p_1 is incident to q t + 1 lines in Π' , then a = q t + 1 = t, which is again a contradiction.
- If q is a square prime power, then p_1 is incident to $q \sqrt{q} t + 1$ lines in Π' and $2t = q - \sqrt{q}$. Then $q = 2^{2\alpha}$ and $t = 2^{2\alpha-1} - 2^{\alpha-1}$, which is a contradiction to the hypothesis $t \in (\sqrt{q}, q)$, because $\sqrt{q} = 2^{\alpha}$ is also a prime power.

Reasoning as above and taking into account the dual of Remark 9 it is straightforward to prove that there are not two concurrent points p and q in Π' such that for any point r in Π' we have $|(p)_I \cap (r)_I| = 1$ iff $|(q)_I \cap (r)_I| = 1$.

Then, we can conclude that Π' admits a $(1, \leq k)$ -identifying code.

As an immediate consequence of Theorem 11, we can write the following corollary.

- (i) The k-regular parcial linear spaces whose incidence Corollary 12 graphs are the (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit a $(1, \leq k)$ -identifying code.
 - (ii) The (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit a $(1, \leq k)$ *identifying code.*

In Figure 3, a 3-regular linear space of 8 points and 8 lines is depicted. It is obtained by removing from a projective plane of order 3 a 1-coregular structure, see [2]. On the right side it is shown its corresponding bipartite graph on 16 vertices.

Acknowledgement

This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2008-06620-C03-02; by Catalonian Government 1298 SGR2009 and under the Andalusian Government project P06-FQM-01649. Also this research was supported by CONACyT-México under project 57371 and PAPIIT-México under project 104609-3.

Figure 3: A 3-regular partial linear space of 8 points and 8 lines admitting $(1, \leq 3)$ -identifying code and its corresponding (3,6)-bipartite graph on 16 vertices.

References

- M. Abreu, M. Funk, D. Labbate and V. Napolitano. On (minimal) regular graphs of girth 6. Australas. J. Combin., 35:119–132, 2006.
- [2] G. Araujo-Pardo and C. Balbuena. Constructions of small regular bipartite graphs of girth 6. *Networks*, (2010). Accepted.
- [3] G. Araujo-Pardo, C. Balbuena and T. Héger. Finding small regular graphs of girth 6, 8 and 12 as subgraphs of cages. *Discrete Math.*, 310(8):1301–1306, 2010.
- [4] G. Araujo, D. González Moreno, J.J. Montellano and O. Serra. On upper bounds and conectivity of cages. *Australas. J. Combin.*, 38:221– 228, 2007.
- [5] C. Balbuena. Incidence matrices of projective planes and other bipartite graphs of few vertices. SIAM Journal on Discrete Math., 22(4):1351–1363, 2008.
- [6] N. Bertrand, I. Charon, O. Hudry, A. Lobstein. Identifying and

locating-dominating codes on chains and cycles. European J. Combin., 25:969–987, 2004.

- [7] W. G. Brown. On hamiltoninan regular graphs of girth 6. J. London Math. Soc., 42:644–648, 1967.
- [8] N. Biggs. Algebraic Graph Theory. Cambridge University Press, New York, 1996.
- [9] I. Charon, G. Cohen, O. Hudry and A. Lobstein. New identifying codes in the bynary Hamming space. *European J. Combin.*, 31:491– 501, 2010.
- [10] P. Dembowski. *Finite Geometries*. Springer-Verlag Berlin Heidelbert, 1997.
- [11] P. Dusart. The k^{th} prime is greater than k(lnk+lnlnk-1) for $k \ge 2$. Math. Comp., 68:411–415, 1999.
- [12] G. Exoo and R. Jajcay. Dynamic Cage Survey. Electron. J. Combin., 15 (2008), #DS16.
- [13] G. Exoo, V. Junnila, T. Laihonen and S. Ranto. Upper bounds for binary identifying codes. Adv. in Appl. Math., 42:277–289, 2009.
- [14] G. Exoo, V. Junnila, T. Laihonen and S. Ranto. Improved bounds on identifying codes in binary Hamming spaces. *European J. Conbin.*, 31:813–827, 2010.
- [15] F. Füredi, A. Lazebnik, V. Seress, A. Ustimenko and J. Woldar. Graphs of prescribed girth and bi-degree. J. Combin. Theory Ser B., 64(2):228–239, 1995.
- [16] A. Gács and T. Héger. On geometric constructions of (k, g)-graphs. Contrib. to Discrete Math., 3(1):63–80,2008.
- [17] S. Gravier and J. Moncel. Constructions of codes identifying sets of vertices. *Electron. J. Combin.*, 12:R13, 2005.
- [18] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2000.

- [19] G.H. Hardy and E.M. Wright. An introduction on the theory numbers, 5-th ed. Clarendon, Oxford XVI, 1979.
- [20] J.W.P Hirschfield. Projective geometries over finite fields, 2nd Ed. Clarendon, Oxford, 1995.
- [21] D.A. Holton and J. Sheehan. *The Petersen graph*. Australian Mathematical Society Lecture Series 7. Cambridge University Press, Cambridge, 1993, Chapter 6: Cages, pp. 183–213.
- [22] M. Karpovsky, K. Chakrabarty and L. Levitin. On a new class of codes for identifying vertices in graphs. *IEEE Trans. Inform. Theory*, 44:599–611, 1998.
- [23] T. Laihonen. On cages admitting identifying codes. European J. Combin., 29:737–741, 2008.
- [24] T. Laihonen and S. Ranto. Codes identifying sets of vertices. Lecture Notes in Comput. Sci., 2227:82–91, 2001.
- [25] P. K. Wong. Cages-a survey. J Graph Theory, 6: 1–22, 1982.