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Abstract

Let (P,L, I) be a partial linear space and X ⊆ P ∪ L. Let
us denote by (X)I =

⋃
x∈X{y : yIx} and by [X] = (X)I ∪X.

With this terminology a partial linear space (P,L, I) is said to
admit a (1,≤ k)-identifying code if the sets [X] are mutually
different for all X ⊆ P ∪L with |X| ≤ k. In this paper we give
a characterization of k-regular partial linear spaces admitting a
(1,≤ k)-identifying code. Equivalently, we give a characteriza-
tion of k-regular bipartite graphs of girth at least six admitting
a (1,≤ k)-identifying code. That is, k-regular bipartite graphs
of girth at least six admitting a set C of vertices such that the
sets N [x]∩C are nonempty and pairwise distinct for all vertex
x ∈ X where X is a subset of vertices of |X| ≤ k. Moreover, we
present a family of k-regular partial linear spaces on 2(k−1)2+k
points and 2(k − 1)2 + k lines whose incidence graphs do not
admit a (1,≤ k)-identifying code. Finally, we show that the
smallest (k; 6)-graphs known up to now for k − 1 not a prime
power admit a (1,≤ k)-identifying code.
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1 Introduction

We only consider undirected simple graphs without loops or multiple edges.
Unless otherwise stated, we follow the book by Godsil and Royle [18] for
terminology and definitions.

Let G be a graph with vertex set V = V (G) and edge set E = E(G).
The distance between two vertices u, v in G, dG(u, v) or simply d(u, v),
is the length of a shortest path joining u and v. The degree of a vertex
v ∈ V , denoted by dG(v) or d(v), is the number of edges incident with
v. The minimum degree of G is denoted by δ(G), and a graph is said to
be k-regular if all its vertices have the same degree k. The neighborhood
N(v) of a vertex v is the set of all vertices that are adjacent to v. The
closed neighborhood of v is defined by N [v] = N(v) ∪ {v}. For a vertex
subset X ⊆ V , the neighborhood of X is defined as N(X) = ∪x∈XN(x),
and N [X] = N(X) ∪X. The girth of a graph G is the length of a shortest
cycle and a (k; g)-graph is a k-regular graph with girth g. A (k; g)-cage is
a smallest (k; g)-graph.

Let C be a nonempty subset of V . For X ⊆ V the set of vertices
I(C) = I(C;X) is defined as follows

I(C) =
⋃

x∈X

N [x] ∩ C.

If all the sets I(C) are different for all subset X ⊆ V where |X| ≤ k,
then C is said to be a (1,≤ k)-identifying code in G. In 1998, Kar-
povsky, Chakrabarty and Levitin [22] introduced (1,≤ k)-identifying codes
in graphs. Identifying codes appear motivated by the problem of deter-
mining faulty processors in a multiprocessor system. We say that a graph
G admits a (1,≤ k)-identifying code if there exists such a code C ⊆ V
in G. Not all graphs admit (1,≤ k)-identifying codes, for instance Laiho-
nen [23] pointed out that a graph formed by a set of independent edges
cannot admit a (1,≤ 1)-identifying code, because clearly for all uv ∈ E,
N [u] = {u, v} = N [v]. It is not difficult to see that if G admits (1,≤ k)-
identifying codes, then C = V is also a (1,≤ k)-identifying code. Hence
a graph admits (1,≤ k)-identifying codes if and only if the sets N [X] are
mutually different for all X ⊆ V with |X| ≤ k. Results on identifying codes
in specific families on graphs as well as results on the smallest cardinality
of an identifying code can be seen in [6, 9, 13, 14].
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Laihonen and Ranto [24] proved that if G is a connected graph with at
least three vertices admitting a (1,≤ k)-identifying code, then the minimum
degree is δ(G) ≥ k. Gravier and Moncel [17] showed the existence of a
graph with minimum degree exactly k admitting a (1,≤ k)-identifying code.
Recently, Laihonen [23] proved the following result.

Theorem 1 [23] Let k ≥ 2 be an integer.

(i) If a k-regular graph has girth g ≥ 7, then it admits a (1,≤ k)-
identifying code.

(ii) If a k-regular graph has girth g ≥ 5, then it admits a (1,≤ k − 1)-
identifying code.

According to item (ii) of Theorem 1, all (k; 6)-graphs admit a (1,≤ k − 1)-
identifying code. The main aim of this paper is to approach the prob-
lem of characterizing bipartite (k; g)-graphs for g ≥ 6 admitting (1,≤ k)-
identifying codes. To do that we consider a bipartite graph as the incidence
graph of a partial linear space (P,L, I) [18]. A point p ∈ P and a line L ∈ L
are said to be incident if (p, L) ∈ I ⊆ P×L and for short this is denoted by
pIL or LIp. A partial linear space is an incidence structure in which any
two points of P are incident with at most one line of L. This implies that
any two lines are incident with at most one point. The incidence graph B
of a partial linear space (P,L, I) is the graph with vertex set V (B) = P ∪L
and edge set E(B) = I, i.e., two vertices are adjacent if and only they are
incident. It is easy to check that B is a bipartite graph of girth at least 6.
A partial linear space (P,L, I) is said to be k-regular if every line is inci-
dent with k points and every point is incident with k lines. Obviously the
incidence graph of a k-regular partial linear space is a k-regular bipartite
graph.

First, we define a partial linear space admitting a (1,≤ k)-identifying
code. In our main theorem we give a characterization of k-regular partial
linear spaces admitting a (1,≤ k)-identifying code. As a consequence of this
result, we show that minimal (k; 6)-cages, which are the incidence graphs
of projective planes of order k − 1, do not admit a (1,≤ k)-identifying
code. Moreover, we present a family of k-regular partial linear space on
2(k − 1)2 + k points and 2(k − 1)2 + k lines whose incidence graphs do
not admit a (1,≤ k)-identifying code. Finally, we show that the smallest
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(k; 6)-graphs known up to now and constructed in [1, 2, 3, 4, 5, 7, 16] for
k − 1 not a prime power admit a (1,≤ k)-identifying code.

The paper is organized as follows. In the next section we present our
main theorem and we give a construction of a family of k-regular partial
linear spaces without (1,≤ k)-identifying codes. In the final section we
apply the theorem to show certain families of small (k; 6)-graphs that have
(1,≤ k)-identifying codes.

2 Main theorem

Let (P,L, I) be a partial linear space and X ⊆ P∪L. Following Dembowski
[10], let us denote by (X)I =

⋃
x∈X{y : yIx} and by [X] = (X)I ∪X. With

this terminology we give the following definition.

Definition 2 A partial linear space (P,L, I) is said to admit a (1,≤ k)-
identifying code if and only if the sets [X] are mutually different for all
X ⊆ P ∪ L with |X| ≤ k.

As an immediate consequence of Theorem 1 we can write the following
corollary.

Corollary 3 Let k ≥ 2 be an integer. A k-regular partial linear space
(P,L, I) admits a (1,≤ k − 1)-identifying code.

Next, we present a characterization of k-regular partial linear spaces
admitting a (1,≤ k)-identifying code as well as some consequences.

Theorem 4 Let k ≥ 2 be an integer. A k-regular partial linear space
(P,L, I) admits a (1,≤ k)-identifying code if and only if the following two
conditions hold:

(i) For every two collinear points u, p ∈ P there exists a point z ∈ P
which is collinear with just one of u, p. Equivalently, for every u, p ∈
P such that |(u)I ∩ (p)I | = 1, there exists z ∈ P such that |(u)I ∩
(z)I |+ |(p)I ∩ (z)I | = 1.

(ii) For every two concurrent lines L,M ∈ L there exists a line Λ ∈ L
which is concurrent with just one of L,M . Equivalently, for every
L,M ∈ L such that |(L)I ∩ (M)I | = 1, there exists Λ ∈ L such that
|(L)I ∩ (Λ)I |+ |(M)I ∩ (Λ)I | = 1.
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Proof: Suppose that (P,L, I) admits a (1,≤ k)-identifying code and that
there exist two concurrent lines M,L ∈ L such that

for every line Λ ∈ L, |(M)I ∩ (Λ)I | = 1 iff |(L)I ∩ (Λ)I | = 1. (1)

Let (M)I ∩(L)I = {p} and consider the sets X = {M}∪((L)I − p) ⊂ P∪L
and Y = {L}∪((M)I − p) ⊂ P∪L. Observe that X = Y and |X| = |Y | = k
because (P,L, I) is k-regular. Then

[X] = [M ] ∪ ((L)I − p) ∪⋃
h∈(L)I−p{Λ ∈ L : ΛIh},

[Y ] = [L] ∪ ((M)I − p) ∪⋃
h∈(M)I−p{Λ ∈ L : ΛIh}.

Clearly [X] ∩ P = (M)I ∪ ((L)I − p) = [Y ] ∩ P; and [X] ∩ L = {M,L} ∪⋃
h∈(L)I−p{Λ ∈ L : ΛIh} and [Y ]∩L = {M,L}∪⋃

h∈(M)I−p{Λ ∈ L : ΛIh}.
Assumption (1) yields to [X] ∩L = [Y ]∩L meaning that [X] = [Y ], which
is a contradiction with the hypothesis that (P,L, I) admits a (1,≤ k)-
identifying code. We may reason analogously to prove that there are no
two collinear points p, q ∈ P such that for every point r ∈ P, |(p)I ∩ (r)I | =
1 iff |(q)I ∩ (r)I | = 1.

Conversely, suppose that (P,L, I) does not admit a (1,≤ k)-identifying
code and let us assume that for every two elements u, v ∈ P ∪ L such that
|(u)I ∩ (v)I | = 1, there exists z ∈ P ∪ L, for which

|(u)I ∩ (z)I |+ |(v)I ∩ (z)I | = 1.

By Corollary 5, (P,L, I) admits (1,≤ k−1)-identifying codes and hence
[X] = [Y ] holds for all X,Y ⊆ P ∪L such that |X|, |Y | ≤ k− 1. According
to our assumption, there must exist two different sets X,Y ⊆ P ∪ L such
that max{|X|, |Y |} = k and [X] = [Y ]. Without loss of generality, we may
assume that X,Y ⊆ P ∪ L, X = Y , |X| = k, |Y | ≤ k and [X] = [Y ].

First, let us see that |Y | = k. Let x ∈ X \ Y , then (x)I ⊂ [X] = [Y ].
Since x /∈ Y it follows that ([w]− x) ∩ Y = ∅ for all w ∈ (x)I . Moreover as
two points are incident with at most one line and two lines are incident with
at most one point, we have ([w]− x) ∩ ([w′]− x) = ∅ for all w,w′ ∈ (x)I ,
w = w′. Therefore |Y | ≥ |(x)I | = k, giving |Y | = k.

Now let us see that each X and Y must contain both points and lines.
Otherwise suppose that X ⊆ P, then [X] ∩ P = X. In this case if Y ⊆ P
then [Y ] ∩ P = Y yielding that X = Y because [X] = [Y ], which is a
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contradiction. Therefore there exists L ∈ Y ∩ L, hence (L)I ⊆ [Y ] ∩ P =
[X] ∩ P = X, which implies (L)I = X because |(L)I | = k, as (P,L, I) is
k-regular, and |X| = k. As two lines have at most one common point and
k ≥ 2 we have Y ∩L = {L}. Further, Y ∩P ⊆ [Y ]∩P = [X]∩P = X, hence
we may assume that Y = {x1, . . . , xk−1, L} and X = {x1, . . . , xk} = (L)I .
As k ≥ 2 we can take L′ = L such that (L′)I ∩(L)I = {xk}, i.e., L′ ∈ Y and
L′ ∈ (xi)I for i = 1, . . . , k − 1, yielding that L′ ∈ [X] \ [Y ], a contradiction
because [X] = [Y ]. Thus X ⊆ P. Analogously, Y ⊆ P, and changing points
for lines we may check that X ⊆ L, and Y ⊆ L.

Henceforth, let us assume that

X ∩ P = {x1, . . . , xs},X ∩ L = {Ls+1, . . . , Lk},

Y ∩ P = {y1, . . . , yr}, Y ∩ L = {Mr+1, . . . ,Mk}
and let us prove the following claim.

Claim 1 (i) (xi)I ∩ {Ls+1, . . . , Lk} = ∅ for all i = 1, . . . , s.

(ii) (yi)I ∩ {Mr+1, . . . ,Mk} = ∅ for all i = 1, . . . , r.

Proof: First, suppose that yj ∈ {x1, . . . , xs} for some j ∈ {1, . . . , r}. As
yj ∈ Y we have

(yj)I ⊆ [Y ] ∩ L = [X] ∩ L = {Ls+1, . . . , Lk} ∪ (x1)I ∪ · · · ∪ (xs)I .

As |(yj)I | = k and |(yj)I ∩ (xi)I | ≤ 1, then {Ls+1, . . . , Lk} ⊂ (yj)I , |(yj)I ∩
(xi)I | = 1 for all i = 1, . . . , s, and (yj)I ∩ (xi)I ∈ {Ls+1, . . . , Lk}. Hence
(xi)I ∩ {Ls+1, . . . , Lk} = ∅, so item (i) of the claim is true in this case.
Second, suppose {y1, . . . , yr} ⊆ {x1, . . . , xs}, then there exists a line Mj ∈
{Ls+1, . . . , Lk} because X = Y. We have (Mj)I ⊆ [X] ∩ P = [Y ] ∩ P.
Therefore changing points for lines and reasoning as before it follows that
{x1, . . . , xs} ⊂ (Mj)I , |(Mj)I ∩ (Li)I | = 1 for all i = s + 1, . . . , k, and
(Mj)I ∩ (Li)I ∈ {x1, . . . , xs}, hence (xi)I ∩ {Ls+1, . . . , Lk} = ∅, so item (i)
of the claim holds. The proof of (ii) is analogous.

Now, suppose that Y ∩L = {Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk}. Without
loss of generality assume that Mj = Lj, j = r + 1, . . . , k. Hence [X] ∩ P =
{x1, . . . , xs}∪(Ls+1)I ∪· · ·∪(Lk)I = [Y ]∩P = {y1, . . . , yr}∪(Lr+1)I ∪· · ·∪
(Lk)I . Claim 1, yields that {x1, . . . , xs} ⊂ {y1, . . . , yr} and {Ls+1, . . . , Lr}∩
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Y = ∅, otherwise X = Y which is a contradiction. Therefore, |(Ls+1)I ∩
{y1, . . . , yr}| ≤ r−s, and as |(Ls+1)I ∩(Lj)I | ≤ 1 for all j = r+1, . . . , k, we
have |(Ls+1)I | ≤ r−s+k−r = k−s < k which is a contradiction. Therefore
{Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk} and in analogous way it is proved that
{Ls+1, . . . , Lk} ⊆ {Mr+1, . . . ,Mk}.

Next, suppose that s ≥ 2 and take M ∈ {Mr+1, . . . ,Mk}\{Ls+1, . . . , Lk}.
We have (M)I ⊂ [Y ] ∩ P = [X] ∩ P = {x1, . . . , xs} ∪ (Ls+1)I ∪ · · · ∪ (Lk)I .
As |(M)I | = k, {x1, . . . , xs} ⊂ (M)I and |(M)I ∩ (Li)I | = 1 for all
i = s + 1, . . . , k; thus M must be unique because s ≥ 2. Therefore
Y ∩ L = {Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk} ∪ {M}. Without loss of gener-
ality assume that Y ∩ L = {M,Lr+2, . . . , Lk}. Again, (yj)I ⊆ [X] ∩ L =
{Ls+1, . . . , Lk}∪ (x1)I ∪ · · · ∪ (xs)I . By Claim 1, (yj)I ∩{Lr+2, . . . , Lk} = ∅
and as |(yj)I∩

⋃s
i=1(xi)I | ≤ s, then k = |(yj)I | ≤ (r+1−s)+s = r+1, so r ≥

k− 1. Hence Y = {y1, . . . , yk−1}∪ {M}. Now, take L ∈ X ∩L, L = M . As
(L)I ⊆ [Y ]∩P, reasoning as before we obtain that (L)I = {y1, . . . , yk−1} ∪
((L)I ∩(M)I) yielding that L must be unique, so X = {x1, . . . , xk−1}∪{L}.
As [X] ∩ P = [Y ] ∩ P = {x1, . . . , xk−1} ∪ (L)I = {y1, . . . , yk−1} ∪ (M)I , it
follows that (M)I = {x1, . . . , xk−1} ∪ ((L)I ∩ (M)I). Hence L and M are
two concurrent lines such that every line Λ is concurrent with L if and only
if Λ is concurrent with M because [X] ∩ L = [Y ] ∩ L. In other words, L
and M satisfy (1), which is a contradiction with the hypothesis (ii).

It remains to study the case s = 1 so that X = {x1, L2, . . . , Lk}. If
r ≥ 2 reasoning as for the case s ≥ 2 we get that s ≥ k − 1 meaning
that k = 2 which is a contradiction with the fact that 2 ≤ r < k. Thus
we get that r = 1 and so Y = {y1,M2, . . . ,Mk}. By Claim 1, (x1)I =
{M2, . . . ,Mk} ∪ ((x1)I ∩ (y1)I) and (y1)I = {L2, . . . , Lk} ∪ ((x1)I ∩ (y1)I).
Hence x1 and y1 are two collinear points such that every point z is collinear
with x1 if and only if z is collinear with y1, contradicting the hypothesis
(i). �

As an immediate consequence of Theorem 4 we get the following the-
orem which is a characterization of k-regular bipartite graphs of girth at
least 6 admitting a (1,≤ k)-identifying code.

Theorem 5 A k-regular bipartite graph B of girth at least 6 admits a (1,≤
k)-identifying code if and only if for every two vertices u, v ∈ V (B) such
that |N(u) ∩N(v)| = 1, there exists z ∈ V (B) in such a way that |N(u) ∩
N(z)|+ |N(v) ∩N(z)| = 1.
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3 Families of small (k, 6)-graphs without (1,≤ k)-
identifying codes

A projective plane of order k−1 is a k-regular partial linear space such that
any two distinct points are collinear and any two distinct lines are concur-
rent. A minimal (k; 6)-cage is a bipartite graph which can be obtained as
the incidence graph of a projective plane of order k− 1. Using the proper-
ties of projective planes it is not difficult to check that a projective plane
of order k − 1 does not admit a (1,≤ k)-identifying code as a consequence
of Theorem 4. And in the same way it is shown that a minimal (k; 6)-cage
has no (1,≤ k)-identifying code as a consequence of Theorem 5.

Corollary 6 (i) A projective plane of order k−1 does not admit a (1,≤
k)-identifying code.

(ii) A minimal (k; 6)-cage does not admit a (1,≤ k)-identifying code.

Projective planes are not the unique partial linear spaces which do not
admit a (1,≤ k)-identifying code. For instance, Figure 1 depicts on the right
side a partial linear space of 11 points and 11 lines which does not admit
(1,≤ 3)-identifying codes. On the left side we can see the corresponding
(3; 6)-bipartite graph on 22 vertices. It is easy to find two different lines L
and M satisfying condition (1) of the proof of Theorem 4. So this graph
does not admit (1,≤ 3)-identifying codes. In the next theorem we construct
a family of k-regular partial linear spaces without (1,≤ k)-identifying codes.
The partial plane of Figure 1 belongs to this family.

Theorem 7 Let (P,L, I) be a projective plane of order k − 1 ≥ 2 and
consider a point p0 ∈ P and a line L0 ∈ (p0)I ∩ L. Let L0 = L \ (p0)I and
P0 = P \ (L0)I and take L′0, P ′0 disjoint copies of L0 and P0, respectively.
Observe that |L0| = |P0| = (k − 1)2, thus we can consider a bijection

f : P ′0 → L′0. Let us define a new incidence structure
(
P ∪ P ′0,L ∪ L′0, I ′f

)
as follows.

1. For all (z′,M) ∈ (P ∪ P ′0)× (L \ L0), z′I ′fM iff z′ ∈ P and z′IM .

2. For all (z′,M) ∈ (P ∪ P ′0)× L0, z′I ′fM iff{
z′ ∈ P \ P0 and z′IM ;
z′ ∈ P ′0 and zIM, where z ∈ P0 is the copy of z′.
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L
M

Figure 1: A (3,6)-bipartite graph on 22 vertices without (1,≤ 3) codes and its
corresponding partial linear space.

3 For all (z′,M ′) ∈ (P ∪ P ′0)× L′0, z′I ′fM ′ iff{
z′ ∈ P0 and z′IM where M ∈ L0 is the copy of M ′;
z′ ∈ P ′0 and f(z′) = M ′.

Then
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is a k-regular partial linear space on 2(k−1)2+k

points and 2(k − 1)2 + k lines without (1,≤ k)-identifying codes.

Proof: First let us see that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is a partial linear space.

To do that let us show that two distinct lines A′, B′ ∈ L ∪ L′0 have at
most one point in common. Let z′ be a point such that z′I ′fA′ and z′I ′fB′.
Due to the rules given in 1 and 2 and from the fact that (P,L, I) is a
projective plane it follows that z′ is unique if both A′ and B′ are in L. If
both lines A′ and B′ are in L′0, then z′ ∈ P0 because the rule 3, so z′ is
unique. And finally if A′ ∈ L0 and B′ ∈ L′0 the unique possible point in
common is z′ ∈ P ′0 such that f(z′) = B′ and A′Iz (in the projective plane)
where z is the copy of z′. By duality it can be shown that there exists at
most one line through two distinct points. (In Figure 2 it is depicted the

incidence graph corresponding to
(
P ∪ P ′0,L ∪ L′0, I ′f

)
, where (P,L, I) is

the projective plane of order 2. This graph is also depicted in Figure 1.)
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Next let us see that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is k-regular. It is clear that

(p0)I′f = (p0)I , i.e., every line in the set {M ∈ L ∪ L′0 : MI ′fp0} is incident

with the same k points as in the projective plane (P,L, I). Moreover, a
line M ∈ L0 is incident with one point from P \ P0 and k − 1 points from
P ′0 because the rule 2. And a line M ∈ L′0 is incident with k − 1 points
from P0 and one point from P ′0 due to the rule 3.

Finally observe that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
has no (1,≤ k)-identifying

codes because any two lines from the set {M ∈ L ∪ L′0 : MI ′fp0, M = L0}
satisfy the property (1) given in the proof of Theorem 4. �

p0 L0

P0

L′0

L0

P ′0

Figure 2: The incidence graph of
(
P ∪ P ′

0
,L ∪ L′

0
, I ′f

)
, where (P ,L, I) is the

projective plane of order 2.

4 Families of small (k, 6)-graphs with (1,≤ k)-iden-

tifying codes

Minimal (k; 6)-cages are known to exist when k − 1 is a prime power. The
order of any (k; 6)-cage is denoted by n(k; 6). A new way for constructing
projective planes via its incidence matrices is given in [5]. By removing
some rows and columns from these matrices some new bipartite (k; 6)-
graphs with 2(qk− 1) vertices are obtained for all k ≤ q where q is a prime
power [5]. The same result is also obtained in [3], but finding these graphs
as subgraphs of the incidence graph of a known projective plane. For k = q
the same result is obtained in [1], also using incidence matrices. Moreover
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in [5] the incidence matrix of a (q − 1; 6)-regular balanced bipartite graph
on 2(q(q − 1) − 2) vertices was obtained. When q is a square and is the
smallest prime power greater than or equal to k − 1, (k; 6)-regular graphs
with order 2(kq − (q − k)(

√
q + 1) − √q) have been constructed in [16].

Recently, these results have been improved finding new bipartite (k; 6)-
graphs with 2(qk − 2) vertices for all k ≤ q where q is a prime power [2].
These graphs have the smallest number of vertices known so far among the
regular graphs with girth 6 yielding that n(k; 6) ≤ 2(qk − 2) is the best
upper bound known up to now. More details about constructions of cages
can be found in the survey by Wong [25] or in the survey by Holton and
Sheehan [21] or in the more recent dynamic cage survey by Exoo and Jajcay
[12]. In this later survey some of the above mentioned constructions are
described in a geometric way.

The main aim of this section is to prove that the mentioned new small
bipartite (k; 6)-graphs for all k ≤ q where q is a prime power constructed
in [1, 2, 3, 4, 5, 7, 16] admit a (1,≤ k)-identifying code. With this aim
we shall verify that the corresponding partial k-regular linear space admits
(1,≤ k)-identifying code by means of Theorem 4. We recall some geometric
notions introduced in [2, 16]. A generalized d-gon of order k−1 is a partial
linear space whose incidence graph is a k-regular bipartite graph with girth
2d and diameter d. Finite generalized d-gons exist only for d ∈ {3, 4, 6} (see
[8, 18]). When d = 3, a 3-gon of order k − 1 is a projective plane of order
k − 1 (see [8, 18]). A t-good structure in a generalized d-gon (see [16]) is a
pair (P∗,L∗) consisting of a set of points P∗ and a set of lines L∗ satisfying
the following conditions:

1. Any point not belonging to P∗ is incident with t lines contained in L∗.

2. Any line not belonging to L∗ is incident with t points contained in P∗.

Clearly, by removing the points and lines of a t-good structure from a
(q + 1)-regular generalized d-gon, we obtain a (q + 1 − t)-regular partial
linear space. Its incidence graph is a balanced bipartite (q + 1− t)-regular
graph of girth at least 2d.

Let (P,L, I) be a partial linear space, we say that an incidence pIL
is deleted if the point p is not removed from P, but the line L of L is
replaced with the new line L − p. The point p is said to be separated
from the line L. In [2], (t + 1)-good structures were generalized by defining
(t + 1)-coregular structures using this removal incidence. An ordered triple
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(P0,L0,I0), whose elements are a set of points P0, a set of lines L0 and a set
of incidences I0, is said to be a (t + 1)-coregular structure in a generalized
d-gon (see [2]) if the removal from a (q + 1)-regular d-gon of the points in
P0, the lines in L0 and the incidences in I0 leads to a new (q − t)-regular
partial linear space. Obviously, its incidence graph is a bipartite (q − t)-
regular graph with girth at least 2d. More precisely, in [2] the following
(t+1)-coregular structures in projective planes of order q for t ≤ q−2 were
found.

Theorem 8 [2] Let (P,L, I) be a projective plane of order q and L∗ ∈ L
such that (L∗)I = {p, x1, . . . , xq}. Let (p)I = {L∗, L1

p, . . . , L
q
p} be the set of

lines passing through p. The following structures (P0,L0,I0) are (t + 1)-
coregular for 0 ≤ t ≤ q − 2:

t = 0 : P0 = {x1} ∪ (L1
p)I ; L0 = {L1

p} ∪ (x1)I ; I0 = ∅.

t ≥ 1 : P0 = {x1, x2, . . . , xt+1} ∪ (L1
p)I ∪ (L2

p)I ∪ · · · ∪ (Lt
p)I ∪ (M)I

where M ∈ (xt+2)I − L∗;

L0 = {L1
p, L

2
p, . . . , L

t
p,M} ∪ (x1)I ∪ · · · ∪ (xt)I

∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x2)I if t = 1

(xt+1)I − {A1, . . . , At−1} if t ≥ 2, where Ai ∈ (xt+1)I − L∗

is the line connecting xt+1 and
M ∩ Li

p, i = 1, . . . , t− 1;

I0 = {xjIL : L ∈ (xj)I such that M ∩ Li
p ∈ (L)I for some i ∈ {1, . . . , t},

j = t + 3, . . . , q}
∪{aijILj

p : aij = Ai ∩ Lj
p, j = t + 1, . . . , q, i = 1, . . . , t− 1, t ≥ 2}.

It is not difficult to check that the partial linear spaces whose incidence
graphs are the bipartite graphs constructed in [1, 2, 3, 4, 5, 7, 16] are
obtained by removing (t + 1)-good or (t + 1)-coregular structures from
projective planes. For all the constructions contained in these papers it is
not difficult to verify the following remark:

Remark 9 If Π′ is a partial linear space obtained by removing a t-good
or a t-coregular structure from a projective plane Π and p is a removed or
separated point, then p is incident to either q− t + 1 or to q− t + 2 lines in
Π′. Moreover, in a special construction using Baer Subplanes and t-good
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structures in projective planes of order square prime powers (see [16]), the
removed points are incident with exactly q −√q − t + 1 lines in Π′.

It is worth noting that in all the constructions of k-regular partial linear
spaces contained in [1, 2, 3, 4, 5, 7, 16], the smallest prime power q with
k ≤ q and an integer t ≥ 1 such that k = q + 1 − t are considered. Then,
using the following result concerning with the existence of prime numbers
in short intervals, we prove Theorem 11.

Theorem 10 [11]

(i) If k ≥ 3275 then the interval [k, k(1+ 1
2ln2(k)

)] contains a prime num-

ber.

(ii) If 6 ≤ k ≤ 3276 then the interval [k, 7k
6 ] contains a prime power.

The Bertran’s postulate states (see [19]) that for every k > 2 there
exists a prime q verifying the inequality k < q < 2k. In this work we will
take advantage from Theorem 10, because we only need to check the less
restrictive inequality q < 2k − 2.

Theorem 11 Let q > 2 be a prime power and t < q+1 an integer. Suppose
that 2t < q or if q is a square prime power that t ∈ (q′, q) where q′ is also a
prime power such that there is no prime power in the interval (q′, q). If Π′

is a (q + 1− t)-regular partial plane constructed by removing a t-good or a
t-coregular structure from a projective plane Π of order q, then Π′ admits
a (1,≤ k)-identifying code.

Proof: Assume that Π′ does not admit a (1,≤ k)-identifying code and let
L and M be two concurrent lines in Π′ that satisfy the condition (1) in
the proof of Theorem 4 with {p} = (L)I ∩ (M)I . Let p1 be a removed or
separated point from L− p. Suppose that there are exactly a lines incident
to p1 in Π′ (without considering L). If some of these lines had a common
point with M in Π′, then Π′ would admit a (1,≤ k)–identifying code by
Theorem 4 which is a contradiction with our assumption. Then any of these
lines have in common with M points that are not in Π′ or that have been
separated from M . As M is incident to exactly t points in the projective
plane which are not incident to M in Π′ (they are removed or separated
points), then a must be equal to t.Therefore, by Remark 9, we have the
following three cases:
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• If p1 is incident to q − t + 1 lines in Π′, then a = q − t (the number
of lines in Π′ except L). Hence q − t = t, i.e. q = 2t. This is a
contradiction with the hypothesis 2t < q.

• If p1 is incident to q − t + 1 lines in Π′, then a = q − t + 1 = t, which
is again a contradiction .

• If q is a square prime power, then p1 is incident to q−√q− t+1 lines
in Π′ and 2t = q − √q. Then q = 22α and t = 22α−1 − 2α−1, which
is a contradiction to the hypothesis t ∈ (

√
q, q), because

√
q = 2α is

also a prime power.

Reasoning as above and taking into account the dual of Remark 9 it is
straightforward to prove that there are not two concurrent points p and q in
Π′ such that for any point r in Π′ we have |(p)I∩(r)I | = 1 iff |(q)I∩(r)I | = 1.

Then, we can conclude that Π′ admits a (1,≤ k)-identifying code. �

As an immediate consequence of Theorem 11, we can write the following
corollary.

Corollary 12 (i) The k-regular parcial linear spaces whose incidence
graphs are the (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit
a (1,≤ k)-identifying code.

(ii) The (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit a (1,≤ k)-
identifying code.

In Figure 3, a 3-regular linear space of 8 points and 8 lines is depicted.
It is obtained by removing from a projective plane of order 3 a 1-coregular
structure, see [2]. On the right side it is shown its corresponding bipartite
graph on 16 vertices.
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Figure 3: A 3-regular partial linear space of 8 points and 8 lines admitting (1,≤ 3)-
identifying code and its corresponding (3,6)-bipartite graph on 16 vertices.
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